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Abstract: Neglected agricultural products (NAPs) are defined as discarded material in 

agricultural production. Corn cobs are a major waste of agriculture maize. Here, a 

methanolic extract from corn cobs (MEC) was obtained. MEC contains phenolic 

compounds, protein, carbohydrates (1.4:0.001:0.001). We evaluated the in vitro and in vivo 

antioxidant potential of MEC. Furthermore, its antiproliferative property against tumor 

cells was assessed through MTT assays and proteins related to apoptosis in tumor cells 

were examined by western blot. MEC showed no hydroxyl radical scavenger capacity,  

but it showed antioxidant activity in Total Antioxidant Capacity and DPPH scavenger 

ability assays. MEC showed higher Reducing Power than ascorbic acid and exhibited  

high Superoxide Scavenging activity. In tumor cell culture, MEC increased catalase, 
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metallothionein and superoxide dismutase expression in accordance with the antioxidant 

tests. In vivo antioxidant test, MEC restored SOD and CAT, decreased malondialdehyde 

activities and showed high Trolox Equivalent Antioxidant Capacity in animals treated with 

CCl4. Furthermore, MEC decreased HeLa cells viability by apoptosis due an increase of 

Bax/Bcl-2 ratio, caspase 3 active. Protein kinase C expression increased was also detected 

in treated tumor cells. Thus, our findings pointed out the biotechnological potential of corn 

cobs as a source of molecules with pharmacological activity. 

Keywords: apoptosis; HeLa cells; maize; phenolic compounds 

 

1. Introduction 

Reactive species are molecules or atoms that have an electronic instability and for this reason have 

the characteristic of being highly reactive [1]. Consequently, reactive species can promote the 

oxidation of extracellular and intracellular biomolecules producing several damages to living 

organisms [2]. In order to protect their biomolecules from damage caused by reactive species, living 

organisms have developed antioxidant systems, which act by preventing or act directly blocking the 

formation of reactive species and prevent damage caused by these unstable molecules/atoms [3]. 

Human cells have used an enzymatic antioxidant system containing enzymes like superoxide 

dismutase (SOD), catalase (CT) and system containing small molecules (non-proteic), such as ascorbic 

acid, tocopherol, and glutathione [4]. These systems are critical for the redox status homeostasis and 

for protecting human cells. In fact, when this homeostasis is disrupted and there are more reactive 

species than antioxidants several diseases can develop. Actually, several reports have shown close 

associations between reactive species and human degenerative diseases like as aging, arthritis, 

malignant neoplasm and cardiovascular diseases [5]. 

In addition, human organisms have also used exogenous antioxidant mainly obtained from the food 

to protect their cells. Thus, in order to inhibit or reduce the effects of reactive species it is recommended 

to intake antioxidants and to add antioxidant in food products. Because of this, synthetic compounds, 

such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), tert-butyl-hydroquinone 

(TBHQ) and propyl gallate (propyl 3,4,5-trihydroxybenzoate, PG) are widely used as antioxidants in 

the food industry [6]. However, these compounds have been regarded as toxic [7]. 

Due to possible problems associated with the use of synthetic antioxidants, the identification of 

novel antioxidants has been of great interest. In recent decades, several studies have reported that the 

extracts from various natural sources, mainly plants, posses antioxidant activity [8,9]. Moreover, many 

purified molecules from these sources have been reported as potential antioxidant compounds [10]. 

Furthermore, several studies have shown the relation between antioxidant and antiproliferative 

activities of compounds from plant sources [11,12]. Phytochemicals have been shown to inhibit the 

proliferation of different tumor cell lines, such as colon cancer cells HT29, breast cancer cells MCF-7 [13] 

and human liver cancer cells HepG2 [14,15]. The antitumor action of antioxidants seems to exhibit 

different mechanisms and specific reaction of each cell, but this generally will reduce the number of 

free radicals that can initiate the development of a tumor [16]. 



Molecules 2014, 19 5362 

 

Many studies have reported the antioxidant and antiproliferative activities of extracts from plant 

sources. However, few studies have evaluated compounds from neglected agricultural products 

(NAPs). Included in the NAPs are sources like fruit peels (exocarp), endocarp, husk, wood, leaves that 

are not normally consumed by humans, crustacean exoskeletons, etc. In this context, the agriculture of 

maize produces various NAPs and the corn cobs can be described as one of the main ones. The maize 

production in 2010/2011 was approximately 810 million tons and estimates of corn cob production 

were approximately the same amount. However, only a small amount of corn cob produced has any 

iotechnological applications. For instance, corn cobs have been explored to develop novel cellulose 

fibers with similar properties to those of common textile fibers [17]. Besides, corn cobs are a 

promising biofuel fermentation substrate due to their low cost and high cellulose and hemicellulose 

content [18]. There is a great incentive to further exploit corn and its NAPs in order to provide a more 

complete characterization of its benefits. In this context, polysaccharides from corn cobs had been 

studied, they showed immunogenic [19], mitogenic [20], antioxidant and antiproliferative activities [21]. 

Moreover, the pharmacological potential of other molecules from corn cobs such as phenolic compounds 

had not been evaluated so far. Accordingly, the aim of this work was to obtain a methanolic 

polysaccharide free extract from corn cobs, and assesses its antioxidant activity using in vitro and  

in vivo tests, as well as, its effect on human adenocarcinoma cells (HeLa cells) viability. 

2. Results and Discussion 

2.1. MEC up-Regulates Antioxidant Activity in Vitro 

Polar solvents such as ethanol, ethyl acetate and acetone, etc. are widely used for the extraction of 

antioxidant components from plant materials. However, extraction with methanol often results in  

a higher recovery of total extractable compounds [22]. Thus, we choose to work with methanolic 

extract. Due to its physico-chemical characteristics of high solubility of phenolic compounds in 

organic solvents, these molecules are probably involved in the antioxidant found in methanol extracts. 

In the methanolic extract obtained in our work, the total phenolic, protein and carbohydrate content 

was 1.4:0.001:0.001 respectively, indicating that the observed biological activities are probably related 

to phenolic compounds due to its proportion in compared to proteins and carbohydrates. High amounts 

of phenolic compounds in methanolic extracts is very common, even in those obtained from NAPs like 

wood and pericarp of Caesalpinia decapetala [23]. 

Phenolic compounds are considered important antioxidants, so in our work we decided to evaluate 

the antioxidant potential of methanolic extract from corn cob (MEC), and for this purpose different 

antioxidant tests were used. Antioxidants are compounds that can prevent biological and chemical 

substances from radical-induced oxidation damage. Because radical oxidation of substrates occurs 

through a chain reaction involving three stages (i.e., initiation, propagation and termination), 

antioxidants show their effects through various mechanisms. Thus, we used different methods to 

evaluate the effect of the corn cobs extract on initiation (total antioxidant capacity, DPPH assay, and 

power reducing), propagation (iron chelating) and termination (superoxide and hydroxyl radical 

scavenging activities) stages. 
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Initially, the MEC was evaluated in a test known as Total Antioxidant Capacity (TAC) [24].  

The methanolic extract showed a TAC relative to 98.03 mg AAE (ascorbic acid equivalent)/g of 

sample. The material extracted with the solvent was fairly efficient in reducing the molybdenum in 

assay, indicating a high antioxidant potential of the sample. The TAC values obtained with MEC was 

similar to other natural extract [21,25], even when compared to another research that performed  

the TAC assay with methanolic extract [26]. 

The MEC also showed high DPPH radical scavenging activity; the maximum activity was achieved 

using about 10 µg/mL of sample, which reached a value of 50% of DPPH scavenging (Figure 1). 

DPPH scavenging results of MEC were similar to those of α-tocopherol—an established antioxidant 

compound—and only in high concentrations did this vitamin surpass the MEC activity (Figure 1).  

Li et al. [27] obtained hawthorn fruit extracts using different organic solvents and evaluated their 

antioxidant capacity. Compared to all extraction conditions of the cited work above, our methanol 

extract from corn cob reached a value 10 times higher than scavenging of DPPH. 

Figure 1. In vitro DPPH activity scavenging of MEC. The activity of Methanolic Extract is 

represented by the continuous line. The dashed line expresses activity of the known antioxidant 

α-tocopherol. MEC and positive control were used at the same concentrations (0; 0.5; 1.0; 

2.5; 5.0; 10; 15 µg/mL). Letters a,b,c,d,e Indicate significantly differences between different 

concentrations of the same sample. x,y Represent significantly difference between different 

samples at similar concentrations. Student-Newman-Keuls test (p < 0.05). 

 

In another study, the methanolic extract of corn cob showed an activity of about 16% of radical 

scavenging in the same DPPH assay [28]. The difference in results when compared to our data could 

be attributed to source properties. When the maize is subject to different periods of solar radiation, 

humidity, temperature and rainfall throughout the year, this can lead it to the synthesis of different 

proportions of molecules that will influence in extract activities. 

The antioxidant proprieties of bran wheat extract were evaluated in another study and its free 

radical scavenging properties against DPPH were lower than those found for MEC [29]. The capacity 

to scavenge the DPPH radical also was measured with a methanolic extract from bran wheat, another 

NAP [30]. In this work, bran extracts from five wheat varieties indigenous to Pakistan were evaluated, 

and none of the samples showed the DPPH scavenging values higher than MEC. 
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In addition to the described tests, promising results were obtained in the reducing power assay.  

In summary, this method assesses the capacity of a sample to donate electrons in the presence of ferric 

chloride under acid conditions and thus reduce Fe+3 to Fe+2. The MEC showed absorbance values 

higher than ascorbic acid when we used the same mass to perform the test (Figure 2). The results 

obtained with MEC were higher than those obtained with other methanol extracts, such as those 

obtained with extract of Armillaria mellea that required a concentration five times higher than MEC to 

present the same activity [31]. This shows that MEC had a great electron-donator capacity to iron 

atoms in a slightly acidic environment, and then the extract could act as antioxidant in this condition. 

Figure 2. In vitro reducing power effect of MEC. The test expresses sample ability to 

reduce the iron ions Fe3+ to Fe2+. The activity of methanolic extract has been represented to 

continuous line. The dashed line expresses activity to already known antioxidant (ascorbic 

acid). MEC and ascorbic acid were used in the follow concentrations 0; 20; 40; 80; 120; 

160; 300 µg/mL. a,b,c,d,e Indicate significantly differences between different concentrations 

of the same sample. x,y Represent significantly difference between different samples at 

similar concentrations. Student-Newman-Keuls test (p < 0.05) Absorbance at 700 nm. 

 

We used two methods that evaluate the ability/capacity of a sample to donate electrons because we 

tried to simulate situations that may be found in living organisms. Since the chemical environment of 

each method is different, a molecule can exhibit good activity in one method but not in the other. 

According to the results of TAC and reducing power, the MEC had proton-donation ability and could 

serve as free radical inhibitors and act in the initiation stage of oxidation of cellular compounds, 

preventing certain molecules to be degraded in different environmental conditions found at the cells 

like as lysosome and mitochondria. 

The MEC showed no activity under any of the conditions used for the test of iron chelating capacity 

and hydroxyl scavenging activity assay. The chelating ability of a compound is defined as the 

formation of bonds between two or more separate binding sites within the same molecule and a single 

central atom. This characteristic is usually attributed to organic compounds, such as polysaccharides, 

which bind to metal atoms form a chelate [32]. Analyzing thus, strong indications lead us to believe 
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that absence of MEC activity in iron chelating capacity assay was due to the low amount of 

polysaccharides in the extract. 

Some free radicals are formed in mitochondria as a result of the electron transport system carried 

out in this organelle [23]. The excess electrons can move out of this mitochondrial system and react 

with molecular oxygen to create many reactive oxygen species (ROS). Molecular oxygen with an 

additional electron, called superoxide anion, is extremely reactive and can promote oxidative 

degradation of lipids and important proteins which increases the probability of degenerative diseases, 

like Alzheimer's disease [33]. The data presented in this paper showed that MEC had substantial 

superoxide anion scavenging activity, with values of about 97.4% ± 3.7% activity being obtained with 

low amounts (40 µg/mL), an activity which remains constant with higher amounts of MEC (Figure 3). 

Other methanolic extracts showed high superoxide anion scavenging activity, such as the extracts from 

fruits and flowers of Hypericum lydium Boiss (around 100% of superoxide anion scavenging activity). 

However, the extract amount used to obtain this activity was much higher (10 mg/mL) [34] when 

compared to the MEC one used. In another work using NAPs, free radical and reactive oxygen species 

scavenging activities of peanut skin (exocarp) extract were measured; the maximum scavenging 

activity was achieved only when 500 µg/mL of sample was used, an activity value that is 10-fold lower 

than that of MEC [35]. Our results support the strong superoxide anion scavenging capacity of MEC. 

Overall, the antioxidant data obtained using MEC suggests a promising antioxidant potential of corn 

cobs. Furthermore, it can improve the utilization of corn cobs and reduce environmental pollution. 

Figure 3. In vitro superoxide radicals scavenging activity of MEC. The methanolic extract 

reaches maximum activity with 40 µg/mL of sample. Sample concentrations used were 0; 

2.5; 5.0; 10; 20; 40; 50 µg/mL. Letters a,b,c,d,e Indicate significantly differences between 

different concentrations of the same sample. Student-Newman-Keuls test (p < 0.05). 

 

2.2. Effect of MEC on Cells Antioxidant Enzymes 

Among the various causes of mutations in genetic material, DNA damage caused by increased 

oxidative stress appears as a crucial event to raise the number of significant changes in this important 

molecule. A large number of mutations can worsen the severity of tumor cells, can alter the behavior 

of these cells enabling them to invade nearby tissue or spread to organs distant from the site of origin. 

Tumor cells often have a weakened antioxidant system and repeatedly system failure occurs due to 
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mutations in important genes involved in the repair of damaged molecules besides deficiency of 

enzymes and compounds to combat oxidative stress [36,37]. 

Since we have demonstrated that MEC displays antioxidant activity, this prompted us to investigate 

if a human cancer cell line (HeLa cells) treated with MEC would display any change in redox status. 

To do this, the expression of catalase (CAT), superoxide dismutase (SOD) and metallothionein (MT) 

in HeLa cells was checked. 

The antioxidant enzyme system presents itself as an effective combatant of reactive oxygen species. 

Catalase is an important enzyme that catalyzes the decomposition of hydrogen peroxide to water and 

oxygen [38], while MT binds to metal atoms and decreases the production of hydroxyl radicals [39] 

and SOD catalyzes the dismutation of superoxide into oxygen and hydrogen peroxide [40]. 

The treatment of HeLa cells with MEC resulted in changing the amount of antioxidant protein 

produced (Figure 4). CAT and MT expressions were higher in treated cells which indicated that MEC 

exerts antioxidant action in those cells by increasing intracellular production of key antioxidant enzymes. 

Figure 4. Effect of MEC on level of CAT, SOD and MT in HeLa cells. Graphic represents 

the relation of protein normalized to actin. (A) Catalase enzyme; (B) MT—Metallothionein; 

(C) SODMn—Superoxide dismutase. In the upper right are the images of the western blot 

of proteins involved. Letters a,b,c,d Indicate significantly differences between different 

concentrations of the same sample. Student-Newman-Keuls test (p < 0.05).  

 

CAT was increased about 2.5 fold in the presence of 20 µg/mL MEC (Figure 4A). MT increased 

about 8.0 fold when 50 µg/mL of the extract was used (Figure 4B). Another important enzyme 

involved in cellular antioxidant process is SOD; the amount of this enzyme was increased only  



Molecules 2014, 19 5367 

 

1.5-fold in the presence of MEC (5 µg/mL) compared to the control. However, the amount of enzyme 

decreases proportionally with the increase in the amount of extract used (Figure 4C). 

2.3. In Vivo Antioxidant Potential of MEC 

Since we have demonstrated that MEC displays antioxidant activity in vitro and in cell system,  

it prompted us to treat normal rats with MEC in order to detect any changes in their redox status. Thus, 

Trolox equivalent antioxidant capacity (TEAC) in serum and liver from CCl4-intoxicated rat were 

determined. According to results given in Table 1, vitamin E (positive control) and MEC produce an 

increase in TEAC values when compared to the CCl4 group. This increased antioxidant activity in samples 

following MEC administration could indicate a direct absorption of several antioxidant compounds. 

Table 1. Effect of MEC on liver and serum Trolox equivalent antioxidant capacity 

(TEAC), MDA, CAT and SOD in CCL4-intoxicated rat. 

Group 
Liver † 

TEAC MDA CAT SOD 

Control 1.00 ± 0.04 1.00 ± 0.04 1.00 ± 0.18 1.00 ± 0.16 
CCl4 

a 0.65 ± 0.03 a 2.85 ± 0.15 a 0.50 ± 0.53 a 0.70 ± 0.68 
CCl4 + Vit E b 1.00 ± 0.05 b 0.98 ± 0.07 b 1.00 ± 0.18 b 0.96 ± 0.13 
CCl4 + MEC b 0.96 ± 0.04 b 1.00 ± 0.07 b 1.05 ± 0.13 b 0.94 ± 0.93 

Group 
Serum † 

TEAC MDA CAT SOD 

Control 1.00 ± 0.47 1.00 ± 0.7 1.00 ± 0.16 1.00 ± 0.84 
CCl4 

a 0.60 ± 0.35 a 2.26 ± 1.3 a 0.78 ± 0.34 a 0.60 ± 0.85 
CCl4 + Vit E a 0.87 ± 0.55 a,b 1.23 ± 0.9 b 0.96 ± 0.39 b 0.97 ± 0.76 
CCl4 + MEC b 1.04 ± 0.36 a,b 1.46 ± 0.7 b 0.95 ± 0.40 b 0.94 ± 0.11 

† Data are expressed as values average ± standard deviation compared to control (n = 6 rats per group); 

Comparison between groups was made using the Student-Newman-Keuls test; a Significantly different from 

the control group (p < 0.05); b Significantly different from the CCL4 group (p < 0.05); SOD, superoxide 

dismutase; CAT, catalase; MDA, malondialdehyde; Vit E, vitamin E. 

The SOD and CAT activities in liver and serum deceased with CCl4 treatment (Table 1) probably 

due the number of deleterious effects caused by the accumulation of trichloromethyl radicals (CCl3•) 

and trichloromethylperoxyl radicals (CCl3O2•), which appear in rats because CCl4 is metabolized in 

the cytocrome P450 system to give both reactive species. In addition, since SOD and CAT activities 

are low, CCl3O2• and other reactive species cause peroxidative degradation of cell lipid membranes, 

that leads to the formation of lipid peroxides, which produce malonaldehyde (MDA). MDA is one of 

the most important biomarker of lipid peroxidation. Thus, as expected, CCl4 increased the amount of 

MDA in the samples (Table 1). 

MEC reestablished the levels of MDA even in the presence of CCl4, probably because MEC 

reestablished SOD and CAT activities. We showed that the presence of MEC in cell culture increased 

the level of CAT (Figure 4) which justifies in part the MEC effects in vivo. However, we also showed 

that MEC decreased the SOD amount in cells. In addition, we suggested that the SOD levels decrease 

in cells due the high MEC superoxide radical scavenging activity. Thus, we believe that MEC 
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compounds responsible for MEC superoxide radicals scavenging activity were absorbed in low 

amounts or were not absorbed and/or they were quickly metabolized by rats. In addition, we suggest 

that MEC’s effects on antioxidant enzymes could be related to its ability to block the deleterious 

effects of reactive species resulting from the biotransformation of CCl4.  However, further research is 

still needed to obtain more detailed information about the in vivo actions of MEC. 

2.4. MEC Exhibits Anti-Proliferative and Pro-Apoptotic Activity 

In addition to the antioxidant activity, other pharmacologic activities have been attributed to natural 

extracts from several sources such as the ability to inhibit or reduce the proliferation of tumor  

cells [41,42]. Thus, in order to investigate the potential of MEC as an antiproliferative agent, HeLa 

cells were treated with MEC and cellular viability assessed by MTT reduction. Figure 5 shows that 

MEC dramatically decreased HeLa cells viability. MEC showed IC50 for antiproliferative activity of  

10 μg/mL with 80% inhibition of cell growth at 40 μg/mL. Quercetin, a phenolic compound used as 

positive control showed an IC50 of 1.5 μg/mL (data not shown). 

Figure 5. Effect of MEC on HeLa cell proliferation measured by MTT test. HeLa cells 

proliferation was carry out in the presence or absence of MEC (0; 2.5; 5.0; 10; 20; 40;  

50 µg/mL). Letters a,b,c,d Indicate significantly differences between different concentrations 

of the same sample. Student-Newman-Keuls test (p < 0.05). 

 

In another study, methanolic extracts were used to assess the ability to inhibit tumor cell 

proliferation. An extract obtained from horse chestnut, which inhibited about 79% of HeLa cell 

proliferation at 125 µg/mL proved potent [43]. Ren et al. [44] used 80 µM of clitocine, a purified 

compound, which reduced HeLa cell viability about 90%, an antiproliferative effect similar to that 

shown by MEC results. Extract derived from olive oil by-products inhibited the proliferation of  

MDA-MB-231 breast cancer cells with 6 mg/mL of extract [45]. Thus, when we compared these data 

to the antiproliferative activity of MEC, we could infer that MEC had higher antitumor potential. 

Additionally, to determine whether MEC (from 2.5 to 50 µg/mL) had unspecific cytotoxicity on any 

cell type, we also tested the effect of MEC on the growth of 3T3, a normal fibroblast cell line.  

With this cell line MEC showed inhibition of cell growth (20%) only at the highest dose (50 µg/mL; data 

not shown). 
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Next, we evaluated if the action of MEC as an antiproliferative agent is related to the induction of 

apoptosis. The cell death process involves several events closely related to dysfunction of 

mitochondrial and plasma membranes and the production of proteins involved in cell destruction. 

Apoptosis is a well-described mechanism of programmed cell death and an important event in the 

natural development of multicellular organisms. Compounds that induce tumor cell death by apoptosis 

are of great importance, since the apoptosis process does not involve cellular inflammatory cascades 

and therefore would not affect neighboring normal cells [46]. 

Thus, in order to investigate if MEC induced apoptotic events in HeLa tumor cells, proteins related 

to cell death by apoptosis were analyzed. The Bax/Bcl-2 ratio is an important parameter to evaluate  

the apoptosis process [47]. The increased amount of Bax and decreased Bcl-2 will allow greater 

permeability of mitochondrial membrane due to the formation of pores by Bax family protein, and this 

fact will release factors involved in death cell [48]. HeLa tumor cells treated with MEC displayed an 

augment of the expression of Bax protein while Bcl-2 protein dropped (Figure 6). 

Figure 6. Effect of MEC on several proteins levels involved in cell death. Graphic 

represents the relation of protein normalized to actin. (A) Bcl-2 protein; (B) Bax protein; 

(C) pro-Caspase 3; (D) PKC – Protein kinase; (E) in the box, Bax/Bcl-2 ratio. In the  

upper right are the images of the western blot of proteins involved. Letters a,b,c,d  

Indicate significantly differences between different concentrations of the same sample.  

Student-Newman-Keuls test (p < 0.05). 
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Thus, Bax/Bcl-2 ratio has high values with a maximum of 9.6 when we used a concentration of  

20 µg/mL of MEC (Figure 6F). Thus, we suggest that MEC antiproliferative mechanism is related to its 

capacity to induce the release of mitochondrial proteins involved in cell death. 

The increase of apoptotic factors in the cytoplasm promotes the activation of enzymes closely 

related to apoptotic events, such as the cysteine-aspartic acid protease (caspase) family. Caspases exist 

as inactive proenzymes, termed pro-caspases, which undergo proteolytic processing producing 

subunits that dimerize to form the active enzyme [49]. Caspase-3 is activated in the apoptotic cell both 

by extrinsic (death ligand, usually in the surface of the cytoplasmic membrane) and intrinsic 

(mitochondrial, by the apoptossome complex) pathways [50]. According to the results obtained in  

the present study, the concentration of 20 µg/mL of MEC decreased the amount of pro-caspase 3 

(Figure 5). 

Besides those proteins mentioned here, other proteins and proteases have important role in  

the apoptosis process. Kinase protein families, such as protein kinase C (PKC) play central roles in 

cellular metabolism. In our study, it was observed that HeLa cells treated with 20 µg/mL MEC 

displayed a significant increase (around 4-fold) in their PKC expression. Therefore, this kinase may 

play a crucial role in the mechanism of action of MEC. However, further studies are needed to confirm 

this hypothesis. 

3. Experimental 

3.1. Materials 

Potassium ferricyanide, ferrous sulfate (II), n-propanol, acetic acid, ethanol, and sulfuric acid were 

obtained from Merck (Darmstadt, Germany). Sodium chloride was purchased from Sigma Chemical Co. 

(St. Louis, MO, USA). HeLa cells (ATCC CCL-2) were a gift from Silvia R. B. Medeiros, Department 

of Genetic and Cell Biology, UFRN, Brazil. Embryo fibroblast 3T3 (ATCC CCL-164) were a gift 

from Carmen Ferreira (Department of Biochemistry, UNICAMP, Campinas, SP, Brazil). Cell culture 

medium components (Dulbecco’s-Minimum essential medium (DMEM)), L-glutamine, sodium 

bicarbonate, non-essential amino acids, sodium pyruvate, fetal bovine serum (FBS), and phosphate 

buffered saline (PBS) were purchased from Invitrogen Corporation (Burlington, ON, Canada).  

All other solvents and chemicals were of analytical grade. 

3.2. Production of Methanolic Extract from Corn Cob (MEC) 

Fresh corn samples, purchased at a local market, were cleaned, washed, and grains were completely 

stripped to avoid contamination of the seeds. They were further chopped into small pieces, dried, and 

grounded into flour. A methanol (160 mL) was added to 10 g of corn cob powder and stirred in the 

dark and at 22 °C for about 24 h. After that, the solvent was evaporated and permanent mass (~1.7 g) 

kept protected from light and used for further analysis. 
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3.3. In Vitro Antioxidant Tests 

3.3.1. Total Antioxidant Capacity (TAC) 

The method of assay is based on the reduction of molybdenum VI (Mo+6) to Mo+5 by the sample 

and subsequent formation of a green phosphate/Mo+5 complex in an acidic solution. The samples were 

incubated at 95 °C for 90 min; the tubes contained the MEC and reagent solution (0.6 M sulfuric acid, 

28 mM sodium phosphate and 4 mM ammonium molybdate). After the mixture had cooled to room 

temperature, the absorbance of each solution was measured at 695 nm against a blank. The antioxidant 

capacity was expressed as mg of ascorbic acid equivalent/g of sample.  

3.3.2. The Hydroxyl Radical Scavenging Activity 

The hydroxyl radical scavenging activity of MEC was investigated using Fenton’s reaction as the 

assay basis. The results were expressed as the rate of inhibition. Hydroxyl radicals were generated 

using a previously described method in 3 mL of 150 mM sodium phosphate buffer (pH 7.4) containing 

10 mM FeSO4 × 7H2O, 10 mM EDTA, 2 mM sodium salicylate, 30% H2O2 and to assess the activity 

of sample different amount of MEC (0; 20; 40; 80; 120; 160; 300 µg/mL) were used. In the control, 

sodium phosphate buffer replaced the H2O2. The solutions were incubated at 37 °C for 1 h, and 

monitoring absorbance at 510 nm. 

3.3.3. The Superoxide Radical Scavenging Activity 

The superoxide radical scavenging assay was based on the capacity of MEC (0; 2.5; 5.0; 10;  

20; 40; 50 µg/mL) to inhibit the photochemical reduction of nitroblue tetrazolium (NBT) in the 

riboflavin-light-NBT system. Each 3 mL reaction mixture contained 50 mM phosphate buffer  

(pH 7.8), 13 mM methionine, 2 mM riboflavin, 100 mM EDTA, 75 mM NBT, and 1 mL sample 

solution. After 10 min of illumination with a fluorescent light source, the production of blue formazan 

was monitored as absorbance increased at 560 nm. The entire reaction assembly was enclosed in a box 

lined with aluminum foil. Identical tubes with the reaction mixture were kept in the dark and served as 

the blank. 

3.3.4. Ferric Chelating 

The ferrous ion chelating ability of samples was investigated according previously described [51]. 

Briefly, the reaction mixture that contained samples (0; 20; 40; 80; 120; 160; 300 µg/mL), FeCl2  

(0.05 mL, 2 mM) and ferrozine (0.2 mL, 5 mM) was mixed well and incubated for 10 min at room 

temperature. The absorbance of the mixture was measured at 562 nm against a blank. 

3.3.5. Reducing Power 

Briefly, 4 mL of reaction mixture containing different MEC or ascorbic acid concentrations (0; 20; 

40; 80; 120; 160; 300 µg/mL) in 0.2 M phosphate buffer (pH 6.6), was incubated with potassium 

ferricyanide (1% w/v) at 50 °C for 20 min. The reaction was stopped by addition of TCA solution 
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(10% w/v). The solution was then mixed with distilled water and ferric chloride (0.1% w/v) solution, 

and the absorbance was measured at 700 nm.  

3.3.6. DPPH Assay 

The hydrogen-donating or radical scavenging ability to stable DPPH radical in a methanolic 

solution was measured in this assay. Methanolic solution of DPPH (3 mL, 4 × 10−6 mol/L) was added 

to 1 mL of MEC or positive control (0; 0.5; 1; 2.5; 5; 10; 15 µg/mL) dissolved in methanol [52]. The 

decrease in absorbance at 517 nm was determined after 30 min in the darkness.  

3.4. In Vivo Antioxidant Tests 

Wistar rats (200–220 g) were used in the course of this study. After an acclimation period, the rats 

were randomly divided into four groups of six each. The first group (untreated control) received saline 

(0.9%, w/v) daily by oral gavage. Rats of second receive CCl4: oil mineral (1:1, 2 mL/kg bw/day, s.c.). 

The third group received a daily oral dose of vitamin E (50 mg/kg bodyweight). The fourth group was 

given daily oral dose of MEC in saline solution (100 mg/Kg bw). In addition, the rats of third and 

fourth groups were administered simultaneously with CCl4: oil mineral (1:1, 2 mL/kg bw/day, s.c.) on 

alternate days after 30 min of MEC or vitamin E administration. 24 h after the last CCl4 administration, 

in 21th day, the animals were euthanized with 20 mg/Kg thiopental (0.5 g Thiopenthax, Cristália,  

São Paulo, Brazil).  Their blood samples were collected by cardiac puncture in tubes contained citrate 

and centrifuged (3000 g, 15 min, 4 °C) and the plasma was keep at −20 °C for further analysis.  

The livers of rats were dissected immediately their death, frozen in dry ice and stored at −80 °C until 

use for analysis. 

3.4.1. Determination of Total Antioxidant Capacity of Serum and Liver Homogenate 

In order to determinate the antioxidant capacity of samples from rats we performed a Trolox 

equivalent antioxidant capacity (TEAC) assay as described before [53]. Briefly, 7 mM 2,20-azinobis-

(3-ethyl-benzothiazoline-6-sulfonate) (ABTS, 5 mL) was added to 140 mM potassium persulfate 

(0.088 mL). After 12 h in dark (25 °C) this solution was diluted with ethanol (98%) to an absorbance 

of 0.7 ± 0.05 at 734 nm. Two mL of this diluted ABTS solution was added to samples (0.02 mL). The 

absorbance was measured 6 min after at 734 nm. TEAC was expressed as µM Trolox equivalent per 

mg protein. 

3.4.2. Malonaldehyde (MDA) Levels 

To assess lipid peroxidation, MDA production was measured with the thiobarbituric acid reaction.  

Liver, about 1 mg, was homogenized in ice cold 0.15 M KCl solution (9 mL) and centrifuged  

(10,000 g, 20 min, 4 °C). An aliquot of the resulting supernatant (0.25 mL) was added to thiobarbituric 

acid solution (1.5 mL of 1% H3PO4 and 0.5 mL of 0.6% thiobarbituric acid). After 45 min at 100 °C in 

a water bath, n-butanol (2 mL) was added and the samples were stirred and centrifuged (10,000 g,  

4 °C, 15 min). The butane layer absorbance was measured at 520 nm (L1) and 533 nm (L2)  
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(Genesys 10s, UV-Vis, Thermo Scientific, Madison, WI, USA). The MDA amount was determined as 

L2-L1 and expressed as nmol/g of liver tissue. 

3.4.3. Catalase Activity 

The catalase activity from rat liver extract was measured according to the Aebi method [54]. The 

disappearance of hydrogen peroxide was observed using a spectrophotometer (240 nm, 1 min, 25° C). 

The enzyme activity was determined using an extinction coefficient of 0.043/mM/cm−1. One unit of 

activity corresponds to the mmol of H2O2 destroyed/min/mg protein. 

3.4.4. Superoxide Dismutase (SOD) Activity 

SOD activity from rat liver extract was assayed spectrophotometrically as described [55]. One SOD 

unit represents the amount of enzymes required to inhibit the rate of NBT oxidation by 50%.  

The activity was expressed as unit/mg of protein. 

3.5. MTT Assay 

HeLa cells were grown in culture flasks in DMEM medium with 10% fetal bovine serium.  

Cells were plated into 96-well plates at a density of 5 × 103 cell/well and allowed to attach for 

overnight at 37 °C and 5% CO2. In the antiproliferative assay, MEC was added (0; 2.5; 5.0; 10; 20; 40;  

50 µg/mL). After 72 h incubation, traces of extract were removed by washing the cells with PBS and 

fresh medium and 10 μL of 12 mM 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) dissolved in PBS was added to determine the effects of the sample on cell proliferation.  

The cells were then incubated for 4 h at 37 °C and 5% CO2. To solubilize the reduced MTT product, 

isopropanol (100 μL) containing 0.04 N HCl was added to each well and thoroughly mixed using  

a multichannel pipettor. Within 1 h of HCl-isopropanol addition, the absorbance at 570 nm was read 

using a Multiskan Ascent Microplate Reader (Thermo Labsystems, Franklin, MA, USA). The percent 

of cell proliferation was calculated as follows: 

Cell proliferation (%) = 
controlofnm570Abs.

sample of nm 570 Abs.
 × 100 (1)

3.6. Western Blot (Immunoblot) 

The western blot technique was employed to evaluate the influence of the extract in the amount of 

proteins related to the enzymatic antioxidant system and apoptotic cell death. Briefly, 2 × 105 cell/well 

was cultured in the six-well plates. MEC was added to the culture according to the required test. After 

treatment, cells were collected and then lysed with lysis buffer (50 mM Tris-HCl, pH 7.5, 150 mM  

NaCl, 1% Nonidet P-40, 2 mM EDTA, 1 mM EGTA, 1 mM NaVO3, 10 mMNaF, 1 mM DTT, 1 mM 

PMSF, 25 μg/mL aprotinin, and 25 μg/mL leupeptin) and kept on ice. The lysates were then 

centrifuged at 12,000 ×g at 4 °C for 20 min; the supernatants were stored at −70 °C until use.  

The protein concentration was determined using the Bradford method. Aliquots of the lysates were 

separated by 12% SDS-PAGE and transferred to a nitrocellulose membrane using transfer buffer  

(192 mM glycine, 25 mM Tris-HCl, pH 8.8, and 20% methanol (v/v)). After blocking with 5% nonfat 
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dried milk, the membrane was incubated for 2 h with primary antibodies, and then by 30 min with 

secondary antibodies in milk-containing tris-buffered saline (TBS) and 0.5% Tween. Anti-human 

Procaspase-3, Bcl-2, Bax, PKC, Catalase, MT, SODMn and β-Actin antibodies (Cell Signaling 

Technology, Inc., Danvers, MA, USA) were used at a 1:1000 dilution as the primary antibodies, while 

horseradish peroxidase-conjugated horse anti-rabbit IgG (Sigma Chemicals, St. Louis, MO,USA) was 

used at a 1:5,000 dilution as the secondary antibody. The membrane was then exposed, and protein 

bands were detected using enhanced chemiluminescence. All chemicals used were of research grade. 

3.7. Statistical Analysis 

All data are expressed as means ± standard of quadruplicates measurements. Each experiment was 

performed at least three times. Statistical analysis was performed by one-way ANOVA using the SPSS 

Statistic version 17.0-2008 software. Student-Newmans-Keuls post-tests were performed for multiple 

group comparison. In all cases, statistical significance was set at p < 0.05. 

4. Conclusions 

The methanolic extract from corn cob powder displays potential pharmacologic activities.  

MEC showed in vitro and in vivo antioxidant capacity. High values in the total antioxidant capacity, 

DPPH assay, reducing power and scavenging of superoxide radicals demonstrated that the extract has 

powerful antioxidant activity, probably due to the amount of phenolic compounds in the extract.  

MEC restored the levels of antioxidant enzymes (SOD and CAT) and the TEAC values, moreover, it 

showed a protective effect by reducing the production of MDA in animals treated with CCl4. In HeLa cell 

culture, MEC culture increased the production of protein related with the cellular enzymatic 

antioxidant system. Furthermore, MEC also showed antiproliferative activity against cancer cells, and 

its possible mechanism of action may be related to the change in the amount of proteins involved in the 

cell death process. Thus, our results suggest a high biotechnological potential for corn cob and reveals 

this agricultural by-product to be a source of molecules with pharmacological activity. 
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