Supplementary Materials

1. Determination of the Structure of Compounds 12 b and 12c

Mass spectrometry data showed that these products were two isomers with the molecular formula $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClO}_{3}$ (see Experimental Section). The ${ }^{1} \mathrm{H}$-NMR spectra of both products were similar and each contained signals of methyl and methoxy groups protons. From the data it can be assumed that these were methyl esters of isomeric acetyl chlorobenzoic acids. At the same time, the ${ }^{13} \mathrm{C}$-NMR spectra of the compounds were different. The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of product $\mathbf{1 2 c}$ did not contain a signal corresponding to the carbonyl carbon atom of the acetyl group, but there was a signal with chemical shift $\delta=109.1 \mathrm{ppm}$, which cannot be attributed to any alleged atom of the methyl esters of acetyl chlorobenzoic acids. The data suggest that the reaction product was the isomer of the ester. Namely, it was 6 -chloro-3-methoxy-3-methylisobenzofuran- $1(3 H)$-one (compound 12c) formed during the treatment of the reaction mixture after the carbonylation.

To confirm this assumption, we recorded the infrared spectrum of the product. The absorption band at $1774 \mathrm{~cm}^{-1}$ was registered, which corresponds to the stretching vibrations of the γ-lactone carbonyl group. It finally corroborated the proposed structure of compound 12c and suggested that this product was formed via methoxycarbonylation of a Cl atom in ortho-position to the acetyl group.

At the same time, a signal with a chemical shift $\delta=201.4 \mathrm{ppm}$ corresponding to the carbonyl carbon of the acetyl group presented in the ${ }^{13} \mathrm{C}$-NMR spectrum of product $\mathbf{1 2 b}$. Also, all other signals corresponded to methyl acetylchlorobenzoate. The presence of a $\mathrm{CO}_{2} \mathrm{CH}_{3}$ group was confirmed with IR spectroscopy. The absorption bands at $1727 \mathrm{~cm}^{-1}$ and at $1697 \mathrm{~cm}^{-1}$ are characteristic to the stretching vibrations of the carbonyl group in esters and the carbonyl group in aryl ketones, respectively. Thus, product 12b was indeed a methyl acetylchlorobenzoate. The position of the methoxy group in product 12b was determined using ${ }^{13} \mathrm{C}$-NMR with specific decoupling of the aromatic ring protons (Figure S1).

Figure S1. The signal of carboxyl carbon atom in ${ }^{13} \mathrm{C}$-NMR spectra of product 12 b with specific proton decoupling (a)-decoupled of proton H_{a}; (b)-decoupled of proton H_{b}; (c)-decoupled of proton H_{c}) and without any decoupling (d).

(a)

(c)

(b)

(d)

It is evident from the presented data that the interaction of the methoxy carbonyl group with proton $\mathbf{H}_{\mathbf{a}}$ is the strongest (the largest coupling constant disappeared at decoupling, Figure S1a). The C-H coupling constant for proton $\mathbf{H}_{\mathbf{c}}$ has a lower value, and the interaction with proton \mathbf{H}_{b} is almost absent.

This means that the second product of compound $\mathbf{1 2}$ methoxycarbonylation is methyl 2-acetyl-5chlorobenzoate compound 12b.
2. NMR Spectra of Products
$6 c$
dimethyl 4-methylisophthalate (23)

VPBC, $50, \mathrm{BF}=75.47 \mathrm{MHz}$, SOLVENT - CDC13, 29 ApF 20100
dimethyl 4-methylisophthalate (23)

12b

methyl 2-acetyl-5-chlorobenzoate (18)

12b
methyl 2-acetyl-5-chlorobenzoate (18)

6-chloro-3-methoxy-3-methylisobenzofuran-1(3H)-one (12c)

6-chloro-3-methoxy-3-methylphthalide (17)

6-chloro-3-methoxy-3-methylisobenzofuran-1(3H)-one (12c)
6-chloro-3-methoxy-3-methylphthalide (17)

13a

methyl 5-chloro-2-(trifluoromethyl)benzoate (24)

13a

methyl 5-chloro-2-(trifluoromethyl)benzoate (24)

5-chloro-3-ethyl-3-hydroxyisobenzofuran-1(3H)-one (15a)

5-chloro-3-ethyl-3-hydroxyisobenzofuran-1(3H)-one (15a)

5-acetyl-2-methoxy-3-methylbenzoic acid (20)

16a
5-acetyl-2-methoxy-3-methylbenzoic acid (20)

3. Computational Details

3.1. Energy Profiles for the Dissociation of Chlorides

Figure S2. Relaxed potential energy diagram (employing optimised geometry at each point) for the dissociation of chlorides anions from (a) radical anion of compound 12; (b) radical anion of compound 5; (c) radical anion of compound 13.

(a)

(b)

(c)

Table S1. Relaxed based potential energy scans (full energy optimization at each step) for the substrate $\mathbf{1 2}$ as a function of the $\mathrm{C}-\mathrm{Cl}$ bond distance in steps of $0.05 \AA$.

$\mathbf{r}(\mathbf{C}-\mathbf{C l}), \mathbf{\AA}$	$\mathbf{E}_{\text {tot }} \mathbf{k J} / \mathbf{m o l}$	
	para	
1.65	20.1	17.1
1.7	7.5	5.5
1.75	1.3	$\mathbf{0 . 5}$
1.8	$\mathbf{0 . 1}$	0.6
1.85	2.8	4.6
1.9	8.3	11.6
1.95	15.9	20.6
2	$\mathbf{1 8 . 4}$	27
2.05	16	28.2
2.1	12.3	$\mathbf{2 9}$
2.15	7.9	25.6
2.2	3.1	22.1
2.25	-1.9	18.1
2.3	-6.7	14
2.35	-11.1	10.1
2.4	-15.1	6.5
2.45	-18.7	3.2
2.5	-22	0.3
2.55	-24.7	-2.3
2.6	-27.3	-4.5
2.65	-29.4	-7.5
2.7	-31.3	-8.1
2.75	-32.9	-9.7
2.8	-34.7	-10.9
2.85	-36	-11.9
2.9	-37.1	-12.8
2.95	-38.1	-13.5
3	-39	-14.1
3.05	-39.7	-14.6
3.1	-40.4	-15
3.15	-42.1	-15.3
3.2	-42.5	-15.6
3.25	-42.8	-15.9
3.3	-43.2	-16.2
3.35	-43.5	-16.5
3.4	-43.8	-16.8
3.45	-44.1	-17
3.5	-44.4	-17.3
3.55	-44.7	-17.3
3.6	-45	-17.5
3.65	-45.3	-17.7
3.7	-45.5	-18.2

Table S1. Cont.

$\mathbf{r}(\mathbf{C}-\mathbf{C l}), \AA$	$\mathbf{E}_{\text {tot }}, \mathbf{k J} / \mathbf{m o l}$	
	ortho	$\boldsymbol{p a r a}$
3.75	-45.8	-18.4
3.8	-46.1	-18.7
3.85	-46.3	-18.5
3.9	-46.6	-18.7
3.95	-46.8	-19
4	-47	-19.2
4.05	-47.2	-19.4
4.1	-47.4	-19.6
4.15	-47.7	-19.8
4.2	-47.9	-20
4.25	-48.1	-20.1
4.3	-48.6	-20.4
4.35	-48.8	-20.6
4.4	-48.9	-20.8
4.45	--	-21
4.5	--	-20.3

3.2. Coordinates of All Stationary Points.

PCM Energy $=-1304.19873126$
C 0.6361660001 .2949780000 .013632000
C 2.0123950001 .4743840000 .038863000
C 2.8593330000 .3576890000 .037441000
C $2.317198000-0.938448000-0.025042000$
C $0.944942000-1.094357000-0.051002000$
C 0.0000000000 .0000000000 .000000000
Cl 4.6162940000 .5927150000 .079196000
C - $1.399252000-0.3404040000 .032087000$
C - 2.5106740000 .6696720000 .293739000
Cl -0.295924000 2.816227000-0.100040000
O -1.769951000 - $1.565744000-0.128454000$
H 2.4273940002 .4798580000 .040443000

H $2.970309000-1.809644000-0.048720000$
H $0.523815000-2.094371000-0.093917000$
H-2.284359000 1.3623910001 .110790000
H-3.410083000 0.1024540000 .555151000
H-2.744709000 $1.280294000-0.589124000$

TS ${ }_{\text {ortho }}$

PCM Energy $=-1304.19163946$
C -0.307910 0.6734600 .250931
C 1.0859330 .8756660 .265156
C $1.920420-0.1985540 .022143$
C $1.420519-1.464402-0.377245$
C $0.052827-1.642348-0.423841$
C $-0.865564-0.617901-0.035485$
Cl $3.677831-0.0080490 .228468$
C-2.265546-0.968876 0.135702
C - 3.2134470 .0098560 .805121
Cl-1.208339 $2.294766-0.456754$
O -2.725394-2.078923-0.243998
H 1.4970911 .8658350 .459316
H $2.104030-2.268634-0.640847$
H -0.353657-2.604545-0.731723
H-2.701893 0.6523951 .528622
H -4.007686 -0.557380 1.301371
H-3.679494 0.6681200 .061235

$\mathbf{T S}_{\text {para }}$

PCM Energy $=-1304.18769149$
C 0.2811800 .7178660 .100585
C - 1.0789170 .9050020 .286738
C - $1.920320-0.2088500 .480014$
C $-1.389340-1.5101680 .339997$
C -0.031523-1.667920 0.153483
C $0.888081-0.5744960 .036164$
Cl-3.809647 0.027309-0.306289
C $2.301902-0.930236-0.115575$
C 3.4351250 .0715420 .041722
Cl 1.223065 2.227623-0.060663
O 2.623286-2.120183-0.350549
H-1.483412 1.9155400 .312895
H -2.032869 -2.384713 0.435118
H $0.395192-2.6682610 .135797$
H $3.5032210 .739844-0.824694$
H $4.367893-0.4942270 .117212$
H 3.3184370 .7029950 .927476

PCM Energy $=-843.831901204$
C $-0.392165000-1.108304000-0.000154000$
C $0.975628000-1.243577000-0.000208000$
C $1.691317000-0.0350750000 .000023000$
C 1.0434570001 .2073730000 .000326000
C -0.3487110001 .2567360000 .000361000
C - 1.1164400000 .0708100000 .000061000
Cl $3.448589000-0.085106000-0.000077000$
C -2.609805000 0.116837000-0.000126000
C - 3.350771000-1.200279000 0.000394000
O -3.206536000 1.191042000-0.000631000
H $1.483301000-2.207946000-0.000441000$
H 1.6272580002 .1259940000 .000491000
H - 0.8617780002 .2180910000 .000538000
$\mathrm{H}-3.074276000-1.792487000-0.881148000$
H - $4.428301000-1.021025000-0.000129000$
H -3.074987000 - 1.7912770000 .882978000

PCM Energy $=-843.820708656$
C 1.8673330001 .0421960000 .040390000
C $2.702037000-0.0477630000 .132705000$
C $2.321796000-1.3725940000 .145260000$
C $0.944938000-1.6122900000 .059084000$
C $0.009394000-0.559669000-0.010296000$
C $0.4930660000 .763131000-0.023819000$
C $-1.439967000-0.968626000-0.057911000$
O $-1.751877000-1.970685000-0.695662000$
$\mathrm{Cl}-0.5861480002 .145097000-0.209635000$
C - $2.490237000-0.2165240000 .731954000$
H 2.2298710002 .0692460000 .006275000
H $3.031835000-2.1958660000 .217731000$
H $0.574646000-2.6366640000 .062585000$
H-2.071058000 0.3444270001 .570980000
H-3.226854000 - 0.9411820001 .092570000
H-3.009063000 0.4917160000 .074757000
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

