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Abstract: Aryl-keto-containing α-amino acids are of great importance in organic  

chemistry and biochemistry. They are valuable intermediates for the construction of hydroxyl 

α-amino acids, nonproteinogenic α-amino acids, as well as other biofunctional components. 

Friedel-Crafts acylation is an effective method to prepare aryl-keto derivatives.  

In this review, we summarize the preparation of aryl-keto containing α-amino acids by  

Friedel-Crafts acylation using acidic α-amino acids as acyl-donors and Lewis acids or 

Brönsted acids as catalysts. 

Keywords: aryl-keto α-amino acid; Friedel-Crafts acylation; Lewis acid; triflic acid  

 

1. Introduction 

Aryl-keto functional groups are of great importance in organic and biological chemistry.  

α-Amino acids containing aryl-keto functional groups have emerged as versatile and important 

building blocks for the synthesis of biological compounds, pharmaceutical intermediates, and  

natural products for several decades [1–5] (Scheme 1). By utilizing optically pure α-amino acids, 
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which act as multifunctional and commercially available chiral pools, it is possible to prepare optically 

pure compounds. 

Scheme 1. Synthesis and application of aryl-keto α-amino acids.  

 

Recently, the synthesis of aryl-keto α-amino acids using methods that are straightforward and 

convenient has attracted more attention. To this end, numerous methods have been developed, such as 

nucleophilic substitution [6,7], catalytic alkylations [8,9], and Michael additions [10] and so on. 

Generally, these methods require the preparation of special reagents and expensive catalysts while 

rigorous conditions are also necessary. Furthermore, the chiral resolution of the enantiomers creates 

difficulties in the application of these strategies. Friedel-Crafts acylation [11], a method used to acylate 

aromatic rings, has been widely used in organic synthesis. The corresponding products are less reactive 

than the original compounds due to the electron-withdrawing effects of the carbonyl group, which 

hinder multiple acylations. Due to the resonance effect, no carbocation rearrangements occur during 

the reaction. Construction of aryl-keto α-amino acids by Friedel-Crafts acylation has been carried out 

for many years [12–14]. Through the reaction of aromatics and a side chain of α-amino acids 

derivatives, it is easy to synthesize optically pure α-amino acids containing enantiomer skeletons. 

Hydroxy α-amino acids and non-proteinogenic α-amino acids can be easily prepared, followed by 

further hydrogenolysis and deprotection. In addition, the enantiomer configuration can be well 

controlled by using chiral α-amino acids as acyl-donors, which is useful for chiral and asymmetric 

synthesis. It is well known that catalysts such as Lewis acids and Brönsted acids are essential for 

Friedel-Crafts acylation. The preparation of aryl-keto α-amino acids is mainly carried out by the 

catalysis of AlCl3, hydrofluoric acid (HF), or triflic acid (TfOH). This review focuses on the strategies 

used for the construction of aryl-keto α-amino acids by Friedel-Crafts acylation using different 

catalysts, aiming to provide a comprehensive discussion about alternative methods for the preparation 

of aryl-keto α-amino acids as well as their derivatives. 
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2. General Methods to Prepare Aryl-keto α-Amino Acid Derivatives  

In this article, we briefly discuss the general methods used to prepare aryl-keto α-amino  

acid derivatives. The strategies are categorized based on the use of α-amino acid derivatives in  

the reactions. 

2.1. α-Amino Acid Derivatives as the Reactants 

The Claisen condensation is an effective method for the preparation of β-keto esters [15]. Reactions 

of α-amino acid derivatives such as glycine Schiff base esters (1, Scheme 2A), isocyano esters (2, 

Scheme 2B), or glycine derivatives (3, Scheme 2C) with benzyl chloride or aryl anhydride analogs in 

the presence of bases are procedures for the construction for aryl-keto α-amino acid derivatives [16–18].  

Scheme 2. Preparation of aryl-keto α-amino acid derivatives by Claisen condensation. 
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Reagents and conditions: (a) KOt-Bu, THF, −78 °C; (b) PhCOCl; (c) aq. HCl; (d) R2COCl or (R2CO)2O,  

1,8-diazabicyclo-[5.4.0]undec-7-ene; (e) MeOH-HCl; (f) (i) n-BuLi, THF, −78 °C; (ii) ZnCl2, lithium 

diisopropylamide, −78 °C. R1 = Ph, H; R2 = 3,4-methylenedioxy-, 3,4,5-trimethoxy-, 3,4-dichloro-; R3 = Ts, 

TFA, Boc; R4 = t-Bu, Me, Bn; R5 = H-, 4-phenyl-, cyclohexyl-. 

The cross-coupling reaction is widely used in organic synthesis to directly form a C-C bond 

between two components. Through the reaction of acyl or alkyl halides of α-amino acid derivatives 

with organic metal compounds, in the presence of palladium catalysts, numerous synthesis of aryl-keto 

α-amino acid derivatives have been reported (Scheme 3) [19,20].  

Scheme 3. Cross-coupling reaction: a useful method to construct aryl-keto α-amino acids. 
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PhCH2Pd(PPh3)2Cl and (Ph3P)2PdCl2]. (b) H2O/i-PrOH; (c) Zn/Cu, dimethylacetamide, benzene; (d) R2COCl, 

(Ph3P)2PdCl2. R
1 = H-, 4-fluoro-; R2 = H-, 4-methoxy-, 4-acetoxy-. 
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The major barriers to their application are the difficulties in the preparation of organic metal compounds. 

Acetamidomalonate 16 has been used for the classical synthesis of α-amino acids by C-alkylation, under 

basic conditions for many decades [21–24]. Through the reaction between acetamidomalonate 16 and 

α-bromoacetophenone (15), 4-phenyl-4-oxo-2-acetamido-2-ethoxycarbonylbutyrate (17) was easily 

obtained (Scheme 4) [25]. Following acid hydrolysis and enzymatic resolution using carboxypeptidase A 

digestion, α-benzoyl-L-alanine and α-benzoyl-D-alanine were isolated in high yield and enantiomeric purity. 

A more comprehensive study has been reported by Varasi and coworkers [26]. Through the reaction of 

acetamidomalonate and α-chlorocetophenone, a series of kynurenic acid derivatives were prepared. 

Meanwhile, in the presence of tert-butyl lithium, acetamidomalonate could readily react with benzoyl 

chloride to form the corresponding β-keto amino acid derivative [27]. 

Scheme 4. Synthesis of α-benzoyl-L-alanine and α-benzoyl-D-alanine from acetamidomalonate. 
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tetramethylguanidine, DMF; (d) carboxypeptidase A, pH = 7.8; (e) NaOH. 

In addition, the Grignard reaction of azlactones [28], nucleophilic substitution with  

phenyl lithium [29,30] or α-bromoalanine derivative [31], oxidation of tryptophan [32], reaction of  

N-acylimino acetates and trimethylsilyl enol ethers [33], acylation reaction with lithio dianion [34], 

reaction of Schiff base esters and silyl enol ether of acetophenone [35] are also useful methods for the 

preparation of aryl-keto α-amino acids and their corresponding derivatives. 

2.2. Non-Amino Acid Derivatives as the Reactants 

It has been reported that the nucleophilic reaction of ethyl benzoylacetate with diazonium is feasible 

for the preparation of ethyl α-phenylazobenzoylacetate [36], which can be used as a useful 

intermediate for the preparation of β-phenylserine (Scheme 5A). And the chiral amine can also be used 

as a useful amine-donor in Michael addition with benzoylacrylic acid to prepare aryl-keto  

α-amino acid derivatives (Scheme 5B) [10].  
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Scheme 5. Preparation of aryl-keto α-amino acids from non-amino acid derivatives. 
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Reagents and conditions: (a) sodium nitrite, HCl, sodium acetate; (b) acetic acid, Zn, acetic anhydride;  

(c) H2, Pd/C, acetic acid; (d) dilute HCl, NH4OH; (e) (i) SOCl2; (ii) dilute HCl; (iii) HCl/ethanol; (f) sodium 

acetate, acetic anhydride: (g) methanol, 60 °C; (h) H2, Pd/C, ethanol. 

Furthermore, the reaction of an organometallic serine derivative and benzaldehyde following further 

oxidation [37], intramolecular acyl migration reaction of acyclic imides [38], Diels-Alder reaction with 

amino acid dienophile [39], cross-coupling reactions with aromatic dithianes [40] are also feasible for 

the preparation of aryl-keto α-amino acid derivatives.  

The general methods for the preparation of aryl-keto α-amino acids based on α-amino acid 

derivatives as the reactants or non-amino acid derivatives are of great importance. Most of these 

processes are sophisticated, involve cumbersome steps and the use of special catalysts, in addition to 

requiring time-consuming chiral resolution.  

3. Preparation of Aryl Keto α-amino Acids by Friedel-Crafts Acylation 

Friedel-Crafts acylation is one of the most powerful methods in organic synthesis [41], in which the 

Lewis acid or Brönsted acid is an indispensible catalyst to promote the reactions [42–45]. α-Amino 

acids such as aspartic acid and glutamic acid are crucial chiral pool reagents for the preparation of 

enantiomerically pure compounds. Friedel-Crafts acylation with α-amino acid derivatives as acyl 

donors is a convenient strategy to construct aryl keto α-amino acids with the remaining enantiomer 

configuration. For this purpose, numerous Friedel-Crafts acylations of stoichiometric amounts of  

α-amino acid derivatives were reported with AlCl3, HF, or TfOH as catalysts. 

3.1. AlCl3 Catalyzed Friedel-Crafts Acylation 

AlCl3 is the most commonly used catalyst in Friedel-Crafts acylation [46] and has been widely used 

for the preparation of aryl keto α-amino acids. Aspartic anhydrides, effective and popular acyl donors, 

are well studied for this purpose. For avoiding the racemization of optically active amino acids during 

the reaction, amino groups should be protected. Due to the specific structure of anhydrides, the 
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regioselectivity should be taken into consideration. Generally, two kinds of products were obtained as 

β-aryl keto α-amino acids and β-aryl keto β-amino acids (Scheme 6). 

Scheme 6. α- and β- amino acids derived from aspartic anhydrides. 
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In 1976, Reifenrath and coworkers reported the Friedel-Crafts acylation of phthalylaspartic 

anhydride and benzene in the presence of AlCl3 (Scheme 7A) [47]. Through comprehensive study, 

they found that acylation occurred to produce β-aryl keto α-amino acids 35 as the single products. The 

same work was reported by Xu, along with the mechanism of the reaction (Scheme 7B) [48]. Due to 

the strong electron withdrawing effect of the N-phthaloylamino group to α-carbonyl group, the 

resonance form for generation of β-aryl keto α-amino acids 38 was more stable. 

Scheme 7. Acylation direction of phthalylaspartic anhydride in Friedel-Crafts acylation. 
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Reagents and conditions: (a) benzene, AlCl3; (b) H2/Pt. 

Another study was reported by Nordlander and coworkers in 1985 (Scheme 8) [49].  

N-(Trifluoroacetyl) aspartic anhydride (40) was treated with veratrole (39) to construct aryl-keto  

α-amino acid derivatives for the preparation of 2-amino-6,7-dihydroxy-l,2,3,4-tetrahydronaphthalene 

(ADTN) derivative 42, which was a powerful agonist of dopamine [50].  

As part of developing a strategy for the construction of aryl-keto α-amino acids for preparation  

of dopamine agonists, Melillo and coworkers reported the reaction of 2-chloroanisole with  

N-(methoxycarbonyl) aspartic anhydride (44) resulting in the generation of single isomer 45  
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(Scheme 9) [13]. The key finding in this study was that chlorine as a removable directing group 

prevented the generation of other isomers to produce para ketone as a single product. 

Scheme 8. Preparation of ADTN bis(methyl ether) from veratrole by Friedel-Crafts acylation. 
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Reagents and conditions: (a) AlCl3 (2.5 eq), CH2Cl2; (b) (i) triethylsilane, trifluoroacetic acid; (ii) 

PCl5, CH2Cl2, SnCl4, 0 °C; (iii) triethylsilane, BF3·Et2O; (iv) K2CO3, MeOH, H2O, reflux. 

Scheme 9. Preparation of homotyrosine derivative from 2-chloroanisole. 
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Reagents and conditions: (a) AlCl3 (2.5 eq), CH2Cl2, MeNO2; (b) H2, Pd/C, i-PrOH. 

To further study the regioselectivity of anhydrides, Griesbeck and Heckroth published a 

comprehensive discussion about the reaction between aspartic anhydrides and a variety of  

aromatics [51]. Several N-protected aspartic anhydrides 47a–47e, 37 were reacted with numerous 

aromatics for investigation of the effect factor for α/β-selectivity of the products. As a conclusion, both 

the N-protecting groups and aromatics affect the α/β-selectivity of products (Table 1).  

Table 1. Regioselectivity of anhydrides in Friedel-Crafts acylation.  
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Time 
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α/β-amino 
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(%) 

47a benzene 5 55/45 51 47c toluene 5 7/93 47 

47a toluene 5 39/61 33 47c o-xylene 15 39/61 52 

47a o-xylene 15 30/70 65 47d benzene 5 84/16 76 

47a mesitylene 15 100/0 51 47d toluene 5 100/0 71 

47a anisole 72 50/50 31 47d o-xylene 15 74/26 83 

47a veratrole 96 100/0 18 47e benzene 5 95/5 78 

47a naphthalene 15 95/5 44 47e toluene 5 80/20 62 

47b benzene 5 95/5 76 47e o-xylene 15 56/44 70 

47b toluene 5 64/36 52 37 benzene 5 100/0 64 

47b o-xylene 15 58/42 67 37 toluene 5 88/12 71 

47c benzene 5 30/70 55 37 o-xylene 15 48/52 83 
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It is well known that amino-protecting groups of anhydrides not only determine the ratio of  

α/β-amino acids but also prevent the racemization of optically active amino acids during the reactions. 

The most commonly used amino-protecting groups are as follows: ethoxycarbonyl, methoxycarbonyl, 

trifluoroacetyl, benzoyl, tosyl, acetyl, phthaloyl groups and so on. While the preparation of N-protected 

amino acids is not easy due to the racemization [52], the indispensable deprotection makes large  

scale-production difficult. In this case, Lin and coworkers reported a precedent of α-amino acid 

anhydride hydrochloride as the acyl-donor in the Friedel–Crafts acylation reaction (Scheme 10) [12].  

L-Aspartic anhydride hydrochloride (51), prepared from L-aspartic acid [53], was treated with 

anhydrous benzene in the presence of anhydrous AlCl3 to form aryl-keto α-amino acid hydrochloride 

52 in high yield. Upon further hydrogenolysis, L-homophenylalanine (53), a versatile building block 

for the synthesis of pharmaceutical drugs such as angiotensin converting enzyme (ACE) inhibitors,  

β-lactam antibiotics, acetylcholinesterase inhibitors, and neutral endopeptidase inhibitors [54], was 

obtained in quantitative yield with >99% ee by HPLC.  

Scheme 10. L-Aspartic anhydride hydrochloride as the acyl-donor in Friedel–Crafts acylation. 
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Reagents and conditions: (a) AlCl3 (2.6 eq), MeNO2, reflux; (b) H2, Pd/C, 2 N HCl, 55 °C. 

Friedel-Crafts acylation catalyzed by Lewis acids leads to aryl-keto α-amino acids as well as their 

derivatives. However, due to the low solubility of α-amino acid derivatives in common organic 

solvents, reaction yields are low and sometimes a large excess of aromatics, long reaction times, and 

high temperatures are required. Furthermore, the environmental pollution caused by these catalysts has 

to be dealt with. 

3.2. HF Catalyzed Friedel-Crafts Acylation 

HF has been used as a catalyst and solvent in Friedel-Crafts acylation for many years [55,56]. It has 

also been used for the construction of aryl-keto α-amino acid derivatives. In 1998, Bednarek reported 

the preparation of amino acids with aryl-keto functions in the side chains [57]. In this study,  

ω-carboxyl-α-amino acid 54 was treated with aromatics such as anisole, 2-methoxybiphenyl, butyl 

phenyl ether, or 1,3-dimethoxybenzene in the presence of HF as a catalyst. All of the aryl-keto  

α-amino acid derivatives were obtained in high yield in the form of HF salts, which were further 

incorporated into peptides by conventional methods of coupling (Scheme 11).  

3.3. TfOH Catalyzed Friedel-Crafts Acylation 

TfOH is one of the most important Brönsted acid catalysts used in Friedel-Crafts  

acylation [44,45,58,59]. Due to its high dissolving capacity, it can easily dissolve most of the α-amino 

acid derivatives. Thus, TfOH catalyzed Friedel-Crafts acylation is a promising strategy to prepare aryl-

keto α-amino acids from α-amino acid derivatives.  
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In recent years, our research group has been interested in the application of Friedel-Crafts acylation 

with TfOH as catalyst and solvent. For example, by using TfOH, an effective Friedel-Crafts acylation 

of O- or C-arylglucosides was carried out at low temperature for 10 min and no deglycosidation was 

detected [60]. Introduction of biotin to aromatics through Friedel-Crafts acylation with TfOH afforded 

numerous biotin derivatives, many of which showed stronger avidin binding potential than biotin [61]. 

More importantly, synthesis of aryl-keto α-amino acids and their derivatives by TfOH catalyzed 

Friedel-Crafts acylations were well studied.  

Scheme 11. HF as catalyst in Friedel-Crafts acylation. 
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For convenient synthesis of L-homophenylalanine as well as its derivatives, aryl-keto α-amino acid 

derivatives were prepared as precursors from N-TFA-L-Asp(Cl)-OMe (60) with aromatics, followed by 

hydrogenolysis and deprotection (Table 2) [62]. N-TFA-protected L-Asp anhydride 47e, one of the 

most popular acyl donors as described previously, was treated with benzene in the presence of 

different catalysts such as AlCl3, TiCl4, H2SO4, and TfOH. The results indicated that the reaction 

proceeds well with TfOH in the generation of α- and β- carboxyl configuration products as a mixture. 

Further, another acyl-donor, L-aspartic anhydride hydrochloride (51), was treated with benzene while 

no product was detected when TfOH was used as a catalyst. To avoid the formation of β-carboxyl 

configuration products as well as improve the yield from the reaction, N-TFA-L-Asp(Cl)-OMe [63] 

was used as an acyl-donor to react with benzene. As expected, 98% of the α-carboxyl configuration 

structure was obtained as a single product within an hour, which indicated that 60 was more reactive 

than 47e or 51. Because 60 contained only one acylation site, the formation of the β-carboxyl 

configuration was prevented. Based on this result, numerous aromatics were reacted with 60 in the 

presence of TfOH. Through further hydrogenolysis and deprotection, L-homophenylalanine derivatives 

were obtained with good overall yields. 

Inspired by this study, an effective synthesis of optically active trifluoromethyldiazirinyl 

homophenylalanine by Friedel-Crafts acylation with TfOH was reported in 2009 (Scheme 12) [64]. 

Trifluoromethyldiazirinyl is widely used as a photophore in photoaffinity labeling [65,66]. Upon UV 

irradiation, the photophore containing ligand can link to receptors or biomolecules by covalent bonds, 
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which makes it feasible for further separation and identification. It has been reported that the diazirine 

ring is not stable in the presence of Lewis acid over room temperature [67], while catalytic amounts of 

TfOH do not affect the diazirinyl moiety [68], making it feasible for our work. In this study,  

N-TFA-Asp(Cl)-OMe (64) was used as an acyl-donors due to its good reactivity [62]. It was found  

that 3-phenyl-3-(3-trifluoromethyl)-3H-diazirine (63) did not react with N-TFA-Asp(Cl)-OMe,  

while higher temperature promoted the decomposition of diazirine [67]. It has been revealed that  

m-methoxy-substituted 3-phenyl-3-(3-trifluoromethyl)-3H-diazirine (65) not only show higher 

reactivity, but the methoxy group can be utilized for further introduction of the tag [65]. In this case,  

3-(3-methoxyphenyl)-3-(trifluoromethyl)-3H-diazirine (65) was treated with N-TFA-Asp(Cl)-OMe 

(64) in the presence of TfOH at 0 °C and the desired products were obtained in good yield as expected. 

Due to the decomposition of the N-N double bond under traditional H2-Pd/C conditions [69], the 

carbonyl group was reduced by the triethylsilane/TFA system and through further deprotection, the 

desired products were obtained in high yield without racemization. Furthermore, the photolysis 

properties of these diazirinyl compounds were examined and appropriate values were obtained.  

Table 2. Friedel–Crafts reaction of anhydrides and stoichiometric amounts of benzene. 
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Entry Donor Catalyst (eq) Solvent Reaction Time (h) Product Yiled (%) 

1 47e AlCl3 (8) CH2Cl2 1 or 12 0 
2 47e TiCl4 (90) neat 1 or 12 1 
3 47e H2SO4 (90) neat 1 or 12 2 
4 47e TfOH (40) neat 1 61a (52), 62 (3) 
5 47e Tf2OH (25) neat 1 or 12 0 
6 51 TfOH (40) neat 1 0 
7 60 AlCl3 (8) CH2Cl2 10 61b (50) 
8 60 TiCl4 (90) neat 1 or 12 0 
9 60 H2SO4 (90) neat 1 or 12 0 

10 60 TfOH (40) neat 1 61b (98) 
11 60 Tf2OH (25) neat 1 or 12 0 

Scheme 12. Synthesis of trifluoromethyldiazirinyl homophenylalanine by Friedel-Crafts acylation. 
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Reagents and conditions: (a) TfOH, 0 °C, 2 h; (b) triethylsilane, TFA; (c) NaOH, MeOH.  
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Homotyrosine has been found in many biological products [70] and its derivatives play an 

important role in the synthesis of natural products [71]. For effective synthesis of homotyrosines, our 

group reported the Friedel-Crafts acylation of N-TFA-Asp(Cl)-OMe (64) with phenol (69) in the 

presence of TfOH (Scheme 13) [72]. As expected, p- and o- aroylbenzene derivatives were obtained in 

high yield within one hour in neat TfOH. Interestingly, N-TFA-Asp-OMe β-phenyl ester (70) as an  

O-acylated product could be obtained from N-TFA-Asp(Cl)-OMe with phenol by using diluted TfOH, 

which can be reconverted to p- and o-aroylbenzene derivatives upon Fries rearrangement. 

Scheme 13. Synthesis of homotyrosines by Friedel-Crafts acylation with TfOH. 
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69:64 = 1:3 for route a
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Reagents and conditions: (a) 3% TfOH-CH3CN, rt, 1 h; (b) TfOH, rt, 1 h; (c) TfOH, rt, 16 h; (d) H2, Pd/C, rt; 

(e) 6 N HCl, 80 °C, 6 h. 

Further investigation indicated that the reaction time was longer than that of direct Friedel-Crafts 

acylation with neat TfOH because partial hydrolysis of phenyl ester ocurred, followed by Friedel-

Crafts acylation of the carboxylic acid and aromatic hydrocarbon. Finally, two aryl-keto α-amino acid 

derivatives were subjected to further hydrogenolysis and deprotection to form optically pure 

homotyrosine derivatives.  

To further extend the scope of this strategy, glutamic acid was also investigated as the other  

acyl-donor in the Friedel-Crafts acylation with aromatics (Scheme 14) [14]. Three aromatics 

(compounds 50, 74 and 55) can readily react with N-TFA-Glu(Cl)-OMe (75) in the presence of TfOH 

with generation of aryl-keto α-amino acids in high yield. Through further reduction and deprotection, 

corresponding bishomophenylalanines 78a-c [73] were obtained in high yields without any loss of 

chiral purity. To study other applications, 3-(3-methoxyphenyl)-3-(3-trifluoromethyl)-3H-diazirine 

(65) as the aryl-donor was treated with N-TFA-Glu(Cl)-OMe (75) in the presence of TfOH. As 

expected, stereocontrolled aryl-keto α-amino acids were obtained, which was consistent with previous  

reports [64]. Following reduction by the triethylsilane/TFA system and deprotection under alkaline 

conditions, the diazirinyl moiety-based bishomophenylalanine was obtained in high yield and optical 

purity. These can be used as important components in photoaffinity labeling [74].  
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Scheme 14. Synthesis of bishomophenylalanine and diazirinyl derivative by Friedel-Crafts acylation. 

R1

TFAHN CO2CH3

ClO

*
TFAHN CO2CH3

O

*

R2

R3

TFAHN CO2CH3*

R2

R3

H2N CO2H*

R2

R3+
a b c

F3C N
N

TFAHN CO2CH3

ClO

*

+

H3CO

TFAHN CO2CH3

O

*

OCH3

CF3

NN

TFAHN CO2CH3*

OCH3

CF3

NN

H2N CO2H*

OCH3

CF3

NN

d e f

50 R1 = H

74 R1 = Me
55 R1 = OMe

75
76a (L-94%, D-90%)
76b (L-94%, D-92%)
76c,76d (L-88%, 9%)

(D-83%, 9%)

77a (L-99%, D-98%)
77b (L-98%, D-99%)
77c (L-95%, D-95%)
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Reagents and conditions: (a) TfOH, rt, 1 h; (b) H2, Pd/C, AcOH, rt, 1 h; (c) 6 N HCl, 80 °C, 6 h; (d) TfOH,  

0 °C, 3 h; (e) Et3SiH, TFA, rt, 1 h; (f) NaOH, MeOH, rt, 2 h. 

It is well known that bishomotyrosine is found in the active components of AM-toxin Ⅲ [75] and 

its convenient synthesis is of great importance. A novel and convenient synthesis of bishomotyrosine 

through construction of its aryl-keto α-amino acid derivative by Friedel-Crafts acylation was reported 

(Scheme 15) [76]. The corresponding bishomotyrosines were obtained in high optical purity and yield.  

Scheme 15. Synthesis of bishomotyrosine by Friedel-Crafts acylation with TfOH. 
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Reagents and conditions: (a) 5% TfOH-CH3CN, rt, 0.5 h; (b) TfOH, rt, 1 h; (c) TfOH, rt, 2 h; (d) H2, Pd/C, rt; 

(e) 6 N HCl, 80 °C, 6 h 

Benzophenone is another photophore that is widely used in photoaffinity labeling [77,78]. The 

benzophenone-based α-amino acids are promising structures for protein study. In 1986, Kaure J. C. 

and co-workers were the first to report the synthesis of p-benzoyl-L-phenylalanine (91) as a new 

benzophenone-based amino acid analog (Scheme 16) [79]. Furthermore, p-methylbenzoic acid, followed 

by bromination and treatment with Schiff’s base-activated glycine under basic and phase-transfer 



Molecules 2014, 19 6361 

 

 

conditions, can also be used to prepare p-benzoyl-L-phenylalanine derivatives [80]. But there are no 

reports that benzophenone skeleton was constructed on phenylalanine with Friedel-Crafts benzoylation 

due to the solubility of phenylalanine in organic solvents.  

Scheme 16. Previous synthesis of p-benzoyl-L-phenylalanine from p-methylbenzophenone. 
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Reagents and conditions: (a) dibenzoyl peroxide, SO2Cl2; (b) K2CO3, acetone; (c) (i) 8 N HCl; (ii) hot water, 

1 N NaOH, (d) acetic anhydride, NaOH; (e) (i) NH4OH, aspergillus acylase I, toluene; (ii) 5 N HCl, 70 °C, 

Celite; (iii) 1 N NaOH.  

For convenient synthesis of benzophenone-based α-amino acid derivatives, we carried out  

Friedel-Crafts acylation between phenylalanine derivatives 92a-b and diazirinylbenzoyl chloride 95 in 

the presence of TfOH [81]. Furthermore, two photophore (benzophenone and diazirine) based 

structures (97) were prepared as an interesting study and their detailed analysis of photo-irradiation 

were also investigated, which may contribute to the investigation of peptide-receptor interactions in 

photoaffinity labeling (Scheme 17). 

Scheme 17. Synthesis of benzophenone based α-amino acid derivatives and two 

photophores based structures by Friedel-Crafts acylation with TfOH. 
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Reagents and conditions: (a) TfOH; (b) TfOH, 0 °C; (c) NaOH. 

TfOH is not only an excellent solvent but also an effective catalyst in the Friedel-Crafts acylation of 

α-amino acid derivatives and aromatics. Inspired by these results, we investigated the utilization of 

TfOD for this study, to ensure the status of the generated acylation (Scheme 18) [82]. N-TFA-L-

Glu(Cl)-OMe (98) was treated with toluene in the presence of TfOD at room temperature for 1 h, and 
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aryl-keto α-amino acid derivatives were obtained in high yield. Interestingly, it was found that 

hydrogen/deuterium exchange occurred on the aromatic ring and the deuterium incorporation was 

calculated to be 68%–75% based on 1H-NMR spectroscopic analysis.  

Scheme 18. Friedel–Crafts reaction and hydrogen/deuterium exchange with TfOD. 
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Reagents and conditions: (a) TfOD, rt, 1 h. 

In comparison with TfOH, TfOD performs the same role in Friedel-Crafts acylation between  

α-amino acid derivatives and aromatics. On the other hand, TfOD is also the deuterium-donating 

reagent, which effectively promotes hydrogen/deuterium exchange on aromatic α-amino acids. As a 

part of developing a novel strategy, a series of hydrogen/deuterium exchanges for aromatic α-amino 

acids and their corresponding peptides were also performed in the presence of TfOD. Furthermore, 

TfOD-catalyzed hydrogen/deuterium exchange was also carried out on some cross-linkable α-amino 

acid derivatives, which will contribute to effective analysis of biological functions of bioactive 

peptides and proteins by MS [83].  

4. Conclusions  

In conclusion, aryl-keto α-amino acid derivatives, excellent building blocks in organic chemistry 

and biochemistry, can be readily prepared under different conditions using several strategies. Among 

them, Friedel-Crafts acylation in the presence of AlCl3, HF, or TfOH(D) is one of the most convenient 

and effective methods. As a strong Brönsted acid, TfOH behaves not only as a catalyst, but also as an 

excellent solvent for dissolving α-amino acid derivatives that are not easy to dissolve in common 

organic solvents. Following further hydrogenolysis and deprotection, a lot of useful non-proteinogenic 

amino acids and functional structures such as photophores containing α-amino acid derivatives are 

obtained with high optical purity and yield.  
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