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Abstract: Wampee (Clausena lansium) fruits (CLS), whose pulp can be used to prepare 

fruit cups, desserts, jam, or jelly, can be eaten along with the peel. In this study, a PC12 cell 

model was built to observe the protective effect of CLS against H2O2-induced oxidative 

stress. We found that pretreatment with CLS increased cell viability and inhibited 

cytotoxicity, caspase-3 activity and DNA condensation. CLS also attenuated the increase in 

ROS production and MMP reduction. Moreover, we attempted to determine whether CLS 

suppressed the expression and phosphorylation of NF-κB. Western blot and immunostaining 

assay revealed that CLS inhibited H2O2-induced up-regulation of NF-κB p65 and pNF-κB 

p65. And CLS significantly suppressed the translocation of NF-κB p65 and pNF-κB p65 

from cytoplasm to nuclear. Also, seven major compounds including a new flavanoid, 

luteolin-4'-O-β-D-gluco-pyranoside (3) and six known compounds 1,2, 4–7 were isolated 

and identified from CLS. Their antioxidative and H2O2-induced PC12 cell apoptosis-reversing 

activity were determined. These findings suggest that CLS and its major constituents 

(flavanoids) may be potential antioxidant agents and should encourage further research into 

their use as a functional food for neurodegenerative diseases. 
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1. Introduction 

Apoptosis, or programmed cell death, is a highly regulated process that involves the activation of a 

series of molecular events. Neuronal cell death due to apoptosis is a common characteristic of 

neurodegenerative diseases [1]. When neural cells are under oxidative stress, excessive reactive oxygen 

species (ROS) are produced that induce neuronal death. It has been well demonstrated that oxidative 

stress was associated with both physiological process of aging and pathological progression in the 

central nervous system (CNS) leading usually to some neurodegenerative disorders such as Parkinson’s 

and Alzheimer’s diseases [2,3]. Thus, a reasonable strategy for delaying the disease’s progression is to 

prevent reactive oxygen species (ROS) mediated cellular injury by dietary or pharmaceutical augmentation 

of free radical scavengers.  

Wampee [Clausena lansium (Lour.) Skeels] belongs to the Rutaceae family which is distributed 

widely in India, Vietnam, Thailand and southern China. Its fruits, which resemble grapes in appearance, 

can be eaten along with the peel at a full ripe stage. Previous studies on the bioactivities of wampee mainly 

focused on its leaves, stems and seeds which showed hepatoprotective activity [4], hypoglycemic [5], 

antifungal and antiviral activities [6], antiplatelet [7], anticancer [8], anti-inflammatory, antidiabetic and 

antioxidant activities [9]. It is also applied as a folk medicine in India and China for the treatment of 

stomachic and bronchitis, and it acts as a vermifuge as well. For the first time, this study examined the 

neuroprotective effects of wampee peel extracts using H2O2 at high concentration as an inducer of 

oxidative stress in vitro models [10], and further investigates its underlying mechanisms of action in 

H2O2-induced PC12 cells. The current findings demonstrated that CLS partly reversed the apoptosis of 

H2O2-induced PC12 cell via the NF-κB pathway and regulation of cellular redox status. We also 

investigated the constituents from CLS. Seven major compounds, including a new flavanoid, 

luteolin-4'-O-β-D-glucopyranoside (3) and six known compounds 1,2, 4–7 were isolated from CLS and 

identified. The structures of these isolates 1–7 are shown in Figure 1A. Their antioxidative and 

H2O2-induced PC12 cell apoptosis reversing activity were also evaluated.  

2. Results and Discussion 

2.1. Structure Elucidation of the New Compound 3 

Compound 3 was obtained as an amorphous yellow powder. Positive electrospray ionization mass 

spectrometry (ESI-MS) gave a [M+Na]+ ion at m/z 511 and the molecular formula of C22H22O12 was 

deduced in combination with the 1H- and 13C-NMR data. The 1H-NMR spectrum of 3 exhibited three 

meta-coupled doublets at δH 7.96 (1H, d, J = 2.0 Hz, H-2'), 6.93 (1H, d, J = 8.4 Hz, H-5') and 7.51 (1H, 

dd, J = 8.4, 2.0 Hz, H-6') consistent with a 1',3',4'-trisubstituted flavanoid B ring. Two meta-coupled 

doublets at δH 6.22 (1H, d, J = 2.0 Hz, H-6) and 6.45 (1H, d, J = 2.0 Hz, H-8) were consistent with a 

5,7-dioxygenated flavanoid A ring. The 1H-NMR spectrum of 3 displayed seven other heteroatom 
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protons between δH 3.12 to 5.58. From the 13C-NMR of compound 3, it found that there were six more 

carbon signals between 52.2 and 106.0 in the compound. These data suggested the presence of a 

glucopyranose in compound 3. The signal of the anomeric proton appeared at 5.58 as a doublet (1H, d, 

J1,2 = 7.3 Hz, diaxial) and the assignments of the other glucose protons suggested this glucopyranose was 

a β-D-glucopyranose. On the basis of HMBC correlations, the singlet signal at δH 3.89 (3H, s, -OCH3), 

which typically represents a methoxy proton, showed a correlation with 147.3 (C-3'), thus  

confirming the assignment of the methoxy group at C-3'. From the data above, compound 3 was 

identified as luteolin-4'-O-β-D-glucopyranoside. The known phenolics were identified, by  

comparing of their spectroscopic data with data previously reported in the literature, as  

rutin (1) [11], quercetin-7-O-β-L-glucopranoside (2) [12], clausenamide (4) [13], quercetin (5) [12], 

(E)-3-(4-hydroxyphenyl)acrylic acid (6) [14] and benzoic acid (7). 

Figure 1. The main chemical constituents of CLS. Chemical structures of the compounds 1–7 

(A). The HPLC fingerprint analysis of CLS from fruits of wampee and its main components (B). 

Compounds: rutin (1), quercetin-7-O-α-L-glucopranoside (2), luteolin-4'-O-β-D-glucopyranoside 

(3), clausenamide (4), quercetin (5), (E)-3-(4-hydroxyphenyl)acrylic acid (6) and benzoic acid (7). 

 

2.2. Analysis of the Constituents of CLS and Quantitation of Lutin and Quercetin-7-O-β-L-gluco- 

pyranoside in CLS 

The TP and TF content of the CLS were determined to be 75.6 ± 8.7 mg/g gallic acid equivalents and 

34.2 ± 3.0 mg/g rutin equivalents, respectively. The HPLC fingerprint analysis of the active fraction is 

shown in Figure 1B, where seven compounds, namely rutin (1), quercetin-7-O-α-L-glucopyranoside (2), 
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luteolin-4'-O-β-D-glucopyranoside (3), clausenamide (4), quercetin (5), (E)-3-(4-hydroxyphenyl)acrylic 

acid (6) and benzoic acid (7) were identified. The contents of rutin and quercetin-7-O-β-L-glucopyranoside 

in CLS were also measured by HPLC to be 3.21‰ ± 0.23‰ and 2.80‰ ± 0.18‰, respectively.  

2.3. Antioxidative Activity of CLS and Its Isolates 1–6 

The DPPH radical scavenging activity of CLS and its isolates 1–6 increased with increased 

concentration and the IC50 (the concentration required to scavenge 50% of radical) values of CLS and 

positive control (gallic acid) were 18.88 ± 1.23 and 19.31 ± 1.07 µg/mL, respectively. Gallic acid, as a 

trihydroxybenzoic acid, is used as a standard for determining the phenol content of various analytes by 

the Folin-Ciocalteau assay, acts as an antioxidant and also helps to protect human cells against oxidative 

damage, so we used gallic acid as positive control.  

Figure 2. Antioxidant activity of CLS from the fruits of wampee peel. Superoxide anion 

scavenging activity of CLS (A); DPPH radical scavenging activity of CLS (B); Reducing 

power activity of CLS (C).  

 
 

(A) 

(B) 
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Figure 2. Cont. 

 

As shown in Figure 2A, the isolate 2 and CLS exhibited comparable activity level compared with 

positive control. The isolate 2 demonstrated a dose-dependent increase in DPPH radical scavenging 

activity by 7.56%, 24.05% and 65.45% at the concentrations of 1, 10 and 20 μg/mL, as compared to the 

control. The superoxide anion scavenging effects of CLS and the isolates 1–6 were analyzed and the 

results are given in Figure 2B. The isolates 1,2 and CLS exhibited comparable activity level compared 

with positive control (Gallic acid). The isolate 2 demonstrated the strongest superoxide anion 

scavenging activity by 5.62%, 31.31% and 58.92% at the concentrations of 1, 10 and 20 μg/mL, as 

compared to the control. Reducing power is widely used in evaluating the antioxidant activity of plant 

polyphenols. The reducing power is generally associated with the presence of reductones, which exert 

antioxidant action by breaking the free radical chains by donating a hydrogen atom. In the present study, 

the CLS and the isolates 1–6 exhibited a strong reducing power, as shown in Figure 2C. At 20 μg/mL, 

the reducing power ability of the isolate 2 and CLS were 1.12 ± 0.10 and 0.73 ± 0.06, respectively. 

While, the reducing power ability of positive control (gallic acid) was 0.81 ± 0.07. All in all, the CLS and its 

isolates showed the antioxidative activity and reducing power, and these activities of the CLS are probably 

due to the presence of phenolic compounds, especially flavanoids, which might act as electron donors. 

2.4. Effects of CLS and its Isolates 1–6 on Cell Viability in PC12 Cells 

We next sought to determine whether CLS and the isolates 1–6 can reverse the apoptosis of 

H2O2-induced PC12 cells. The viability of PC12 cells incubated with 1,200 µM H2O2 for 24 h was 55% 

of the control value (Figure 3), but this increased significantly by 9.12%, 17.13%, 21.26% when cells 

were pretreated with CLS at 1, 10 and 20 µg/mL. As shown in Figure 3, 6 h after treatment, the isolate 1 

showed a dose-dependent increase in the viability of PC12 cells by 2.13%, 6.59% and 17.56% at the 

concentrations of 1, 10 and 20 μg/mL, respectively, as compared to the model. Isolate 2 demonstrated a 

dose-dependent increase in the viability of PC12 cells by 2.57%, 9.34% and 35.91% at the 

concentrations of 1, 10 and 20 μg/mL, respectively, as compared to the model. Isolate 3 significantly 

increased the viability of PC12 cells by 1.84%, 7.53% and 13.52% at concentrations of 1, 10 and  

(C) 
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20 μg/mL, as compared to the model. Isolate 5 significantly increased the viability of PC12 cells by 3.55% 

and 8.24% at concentrations of 10 and 20 μg/mL, as compared to the model. These results suggested that 

CLS and its isolates 1–3, 5 could promote the viability of H2O2-induced PC12 cells against apoptosis. 

Figure 3. PC12 Cells were pretreated with the indicated concentrations of CLS for 12 h, then 

further co-cultured with 1,200 µM H2O2 for 6 h. Cell viability were determined by MTT 

assays, and expressed as percentages of the corresponding values for the control group. 

 
Note: * p < 0.05 vs. control; # p < 0.05 vs. 1200 μM H2O2. 

2.5. Effects of CLS on DNA Condensation, Intracellular ROS Production and MMP Loss in PC12 Cells 

DAPI staining revealed that nuclear DNA condensation and nuclear fragmentation occurred after 

treatment with 1,200 µM of H2O2. Pretreatment with CLS inhibited these apoptotic features (Figure 4A). 

The ratio of apoptotic cells incubated with 1,200 µM H2O2 for 24 h was 84.45% while the negative 

control value was 6.38% (Figure 4B), but this decreased significantly to 52.38% and 20.83% when cells 

were pretreated with CLS at 1 and 5 µg/mL (p < 0.001 and p < 0.001, respectively). These results 

indicate that CLS has an anti-apoptotic effect against H2O2-induced apoptosis in PC12 cells. Treatment 

with 1,200 µM H2O2 significantly increased intracellular ROS production from 11.89% (normal cells) to 

20.7% of total cells, but CLS at 1 and 5 µg/mL significantly reduced ROS production to 17.17% and 1.22% 

of total cells (p < 0.05, and p < 0.001, respectively) (Figure 4D). Besides, treatment with 1,200 µM H2O2 

significantly decreased the fluorescence intensity of the MMP probe from 7.41% (normal cells) to 

4.02% of total cells. However, CLS pretreatment at 1 and 5 µg/mL maintained MMP at 8.67% and 

9.72% of total cells (p < 0.05, and p < 0.05, respectively) (Figure 4F).  
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Figure 4. Apoptotic nuclei were measured by incubation of the cells with DAPI 

fluorescence dye followed by observation under fluorescence microscopy (20×). 

Morphology of apoptotic cells stained with DAPI (A) and the ratio of apoptotic cells (B); 

Effects of CLS on intracellular ROS production (C and D): Cells were pretreated with the 

indicated concentrations of CLS for 12 h, and then co-cultured further with 1,200 µM H2O2 

for 5 h, respectively. Then, ROS accumulation was measured by incubation of the cells with 

DCFH-DA fluorescent dye followed by observation under fluorescence spectrophotometer 

(20×); Effects of CLS on intracellular loss of MMP (E and F) in PC12 cells. Cells were 

pretreated with the indicated concentrations of CLS for 12 h, and then co-cultured further 

with 1,200 µM H2O2 for 5 h, respectively. Then, MMP reduction was measured by 

incubation of the cells with rhodamine 123 fluorescent dye followed by observation under 

fluorescence spectrophotometer (20×). The images shown are representative of three 

experiments. Data are presented as the means ± S.E.M. (n = 5).  

 
Control         1,200 µM H2O2 

 
1,200 µM H2O2 + 1 µg/mL CLS     1,200 µM H2O2 + 5 µg/mL CLS 

 

A 

B 
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Figure 4. Cont.  

 
Control           1200 µM H2O2 

 
1,200 µM H2O2 + 1 µg/mL CLS     1,200 µM H2O2+ 5 µg/mL CLS 

 

 
Control                 1,200 µM H2O2 

C 

D 

E 
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Figure 4. Cont.  

 
1,200 µM H2O2 + 1 µg/mL CLS   1,200 µM H2O2+ 5 µg/mL CLS 

 

Meanwhile, treatment with 1,200 µM H2O2 significantly increased ROS fluorescence intensity 

compared with control image, but CLS significantly inhibited ROS fluorescence intensity compared 

with H2O2-treated image (Figure 4C). On the other hand, treatment with 1,200 µM H2O2 significantly 

decreased MMP fluorescence intensity compared with the control, but CLS significantly increased 

MMP fluorescence intensity compared with H2O2-treated group (Figure 4E). 

2.6. Effects of CLS on the Pathway of NF-κB 

Nuclear factor kappa B (NF-κB), a redox-sensitive transcription factor, is regulated by various 

apoptotic stimuli or inhibitors. It is involved in brain function, particularly following injury and in 

neurodegenerative conditions such as Alzheimer’s disease. A number of reports have shown that 

NF-κB is inhibited by apoptosis-inducing agents in human cancer cells. NF-κB itself may serve as a 

pro-survival agent in various circumstances. The activation of NF-κB is known to induce the expression 

of Bcl-2 and Bcl-xL. Inducible loss of NF-κB activity is associated with the down-regulation of 

anti-apoptotic Bcl-2 family members and the occurrence of apoptosis. NF-κB is composed of homo- and 

heterodimeric complexes of members of the Rel family: p50, p65, c-Rel, p52 and RelB. And the most 

common and best-characterized form of NF-κB is the p65/p50 heterodimer. So we mainly detected the 

NF-κB p65 in this manuscript. 

F 
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NF-κB p65 levels were measured in PC12 cells by western blot. As shown in Figure 5A, CLS 

significantly decreased the expression of NF-κB p65 in a concentration-dependent manner. Nuclei 

stained with DAPI appear in blue, and NF-κB p65 labeled with Alexa 488 in red. Treatment with  

1,200 µM H2O2 significantly stimulated entry of NF-κB p65 to the nucleus from the cytoplasm 

compared with control image. However, CLS (1 and 5 μg/mL) could obviously suppress NF-κB p65 

entry to the nucleus from the cytoplasm (Figure 6A,B). 

Figure 5. Effects of CLS on NF-κB p65, pNF-κB p65 and caspases-3 expression in 

H2O2-treated PC12 cells by western blot analysis. Densitometric analyses of protein bands 

were normalized to a loading control β-actin. Data are presented as the means ± S.E.M.  

(n = 5). All experiments included in vehicle, 1200 µM and CLS treatment using β-actin as 

the loading control. (A) Expression of NF-κB p65, (B) expression of pNF-κB p65, and (C) 

expression of caspases-3.  

 
 

 

(A) 

(B) (C) 
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Figure 6. Effects of CLS on nuclear translocation of NF-κB p65 (A upper and B) and 

pNF-κB p65 (A bottom and C) in PC12 cells. NF-κB p65 and pNF-κB p65 labeled with 

Alexa-488 (red fluorescence), nuclear stained with DAPI (blue fluorescence) and merge (red 

and blue fluorescence). Magnification 20×. The images shown are representative of three 

experiments. Data are presented as the means ± S.E.M. (n = 5).  

 

 

L)

 

pNF-κB p65 levels were measured in PC12 cells by western blot. As shown in Figure 5B, CLS 

significantly decreased the expression of pNF-κB p65 in a concentration-dependent manner. Moreover, 

activation of NF-κB p65 pathway was observed by immunostaining. Nuclear stained with DAPI in blue, 

(B) 

(C) 

(A) 
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and pNF-κB p65 labeled with Alexa 488 in red. Treatment with 1200 µM H2O2 significantly stimulate 

pNF-κB p65 entering nuclear from cytoplasm compare with control image. However, CLS (1 and 5 

μg/mL) could obviously suppress pNF-κB p65 entering nuclear from cytoplasm (Figure 6A,C).  

2.7. Effects of CLS on Caspase-3 Expression 

To further examine the participation of the mitochondrial apoptotic pathway in the neuroprotective 

activity of CLS against H2O2-induced PC12 cells, the activation of caspase-3 was also detected. As 

shown in Figure 5C, the caspase-3 activity up-regulated in the H2O2-treated group compared with the 

control, whereas CLS (1 and 5 μg/mL) pretreatment caused a significant decrease in caspase-3 activity. 

3. Experimental 

3.1. General Information 

Optical rotations were measured using a JASCO P-1030 (Tokyo, Japan) automatic digital 

polarimeter. NMR spectra (400 MHz for 1H-NMR, 100 MHz for 13C-NMR), were recorded on a Bruker 

DPX-400 spectrometer Karlsruhe, Germany) using standard Bruker pulse programs. Chemical shifts 

were showed as the δ-value with reference to tetramethylsilane (TMS) as an internal standard. And 

ESI-MS data were obtained on an Agilent 1200 HPLC/6410B TripleQuad mass spectrometer (Bremen, 

Germany). Sephadex LH-20 (Pharmacia, Sweden), silica gel (Qingdao Ocean Chemical Co., Ltd, 

Qingdao, China), Octadecylsilanized (ODS) silica gel (Macherey-Nagel, Duren, Germany) were used 

for column chromatography. TLC was carried out on Silica gel 60 F254 (0.25 mm, Merck, Darmstadt, 

Germany), and RP-18 F254 (0.25 mm, Merck) plates, and spots were visualized by spraying with 15% H2SO4 

followed by heating. HPLC was performed using an Phenomenex C18 column (Ø 250 mm × 4.6 mm). 

Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum (FBS), and trypsin-EDTA solution 

(1×) were obtained from Hyclone (Logan, UT, USA). Vitamin E (VE) and gallic acid (GA) were 

purchased from the National Institute for the Control of Pharmaceutical and Biological Products 

(Beijing, China). Α,α-Diphenyl-β-picrylhydrazyl (DPPH), NADH, PMS and NBT were purchased from 

Sigma Chemical Co. (St. Louis, MO, USA). All other chemicals used for analysis were AnalaR grade, 

obtained from China Medicine (Group) Shanghai Chemical Reagent Corporation (Shanghai, China). 

3.2. Plant Material  

Fresh mature fruits from Clausena lansium (Lour.) Skeels were collected in June 2011 from rural 

areas around Yunfu, Guangdong Province, Central China, and characterized by the corresponding 

author. A voucher specimen was deposited at the herbarium of Guangdong Key Laboratory for Research 

and Development of Natural Drugs, Guangdong Medical College, China. The plant material was air 

dried indoors at room temperature. 

3.3. Extraction and Isolation 

Air dried, the fruits of Clausena lansium (Lour.) Skeels (5.0 kg) were extracted in 95% ethanol (20.0 L) 

at 40 °C for 24 h. The extracts were filtered through qualitative filter paper with 30–50 µm pore size 
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(DX102, Xinhua Paper Co., Ltd., Hangzhou, China). Evaporation of the organic solvent under a 

vacuum at 55 °C yielded a crude extract (CLS, 1.65 kg). The concentrated brown syrup was resuspended 

in water and gradually partitioned with petroleum ether (3 L × 3), ethyl acetate (3 L × 3) and 

water-saturated n-butanol (3 L × 3) to afford 120.0 g, 235.3 g and 330.5 g of dried organic extracts, 

respectively. The ethyl acetate fraction with the most potential activity was fractionated over a silica 

gel (200~300 mesh) column eluting with increasing amounts of MeOH in CHCl3 to give 10 fractions. 

The CHCl3-MeOH (25:1) elution was further purified on a silica gel column and eluted with 

CHCl3/MeOH (100:1→5:1), yielding compounds 3 (26.08 mg) and 6 (34.53 mg). The CHCl3-MeOH 

(20:1) eluate was further purified by a silica gel column and eluted with CHCl3/MeOH (100:1→2:1), 

yielding compounds 2 (43.88 mg) and 7 (48.12 mg). The CHCl3-MeOH (15:1) eluate was subjected to 

silica gel and Sephadex LH-20 column chromatography, followed by an octadecylsilanized silica gel 

(ODS) column eluted with MeOH/H2O (10: 90-100: 0) to give phenolics 1 (25.07 mg) and 4 (89.47 mg). 

The CHCl3-MeOH (10:1) eluate was subjected to ODS column chromatography, followed by a 

Sephadex LH-20 column with CHCl3/MeOH (7:3), yielding compound 5 (108.49 mg). The structures of 

phenolics 1-7 are shown in Figure 1.  

3.4. Luteolin-4'-O-β-D-glucopyranoside (3) 

Amorphous yellow powder; ESI-MS (positive-ion mode) [M+Na]+ m/z 511. 1H-NMR (DMSO-d6) 

δH: 3.12-5.41 (sugar protons), 3.89 (3H, s, -OCH3), 5.58 (1H, d, J = 7.3 Hz, H-1''), 6.22 (1H, d,  

J = 2.0 Hz, H-6), 6.45(1H, d, J = 2.0 Hz, H-8), 6.93 (1H, d, J = 8.4 Hz, H-5'), 7.51 (1H, dd, J = 8.4, 2.0 Hz, 

H-6'), 7.96 (1H, d, J = 2.0 Hz, H-2'), 9.82 (1H, s, 3'-OH), 10.89 (1H, s, 7-OH), 12.63 (1H, s, 5-OH). 

13C-NMR (DMSO-d6) δC: 156.8 (C-2), 133.4 (C-3), 177.9 (C-4), 161.7 (C-5), 99.2 (C-6), 164.6 (C-7), 94.2 

(C-8), 156.8 (C-9), 104.5 (C-10), 122.5 (C-1'), 115.7 (C-2'), 147.3 (C-3'), 149.8 (C-4'), 113.9 (C-5'), 121.5 

(C-6'), 101.5 (C-1''), 74.8 (C-2''), 77.9 (C-3''), 70.2 (C-4''), 76.8 (C-5''), 61.0 (C-6''), 56.1 (3'-OCH3). 

3.5. Analysis of Total Phenolic Content and Total Flavonoid Content 

Total phenolic (TP) content of CLS was determined using the Folin-Ciocalteau assay according to a 

previously described method [15]. Total flavonoid (TF) content of CLS was determined by a 

colorimetric assay described earlier [16]. 

3.6. HPLC Analysis and Quantitation of Lutin and Quercetin-7-O-β-L-glucopranoside in CLS 

HPLC was performed to analyze the compounds in the fruits of Clausena lansium (Lour.) Skeels on a 

Phenomenex C18 column (Ø 250 mm × 4.6 mm) on an Agilent series 1200 instrument (Santa Clara, 

California, USA) under following conditions: mobile phase: H2O (A), MeOH (B); elution program: 

linear gradient from 10% B to 15% B in 20 min, 15% B to 70% B in 20 min, 70% B to 80% B in 20 min 

and then 100% B maintained for 20 min; flow rate: 0.80 mL/min; detection wavelength: 210 nm; 

injection volume: 10 µL; and oven temperature: 24 °C. 
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3.7. Determination of in Vitro Antioxidant Activity 

The free radical-scavenging activity of CLS was measured using DPPH according to the procedure 

described by Yen and Chen [17]. The ability of CLS to scavenge superoxide radical was assayed by the 

NBT reduction method according to a described procedure [18] with slight modifications. The reaction 

mixture used for the O2
− scavenging activity assay containing Tris-HCl (pH 8.1, 50 mM, 222.5 μL), 

NADH (0.15 mM, 125 μL) , PMS (0.03 mM, 25 μL), NBT (0.10 mM, 125 μL) and compound solution 

(2.5 μL), in the final volume of 500 μL. All components were dissolved in Tris-HCl 50 mM, pH 8.1. The 

reaction was conducted at 37 °C for 5 min, and initiated by the addition of PMS. The absorbance of the 

resulting solution was measured spectrophotometrically at 570 nm. The reducing power was determined 

by the method of [8]. The antioxidant activity of vitamin E was determined for comparison. 

3.8. Cell Culture 

PC12 cells were obtained from Peking Union Medical College (Beijing, China) and were cultured in 

DMEM medium supplemented with 10% heat-inactivated FBS, 100 U/mL penicillin and 100 μg/mL 

streptomycin at 37 °C in a humidified atmosphere of 5% CO2 and 95% air. 

3.9. Cell Viability Assay 

Cell viability was determined by using the MTT assay, based on the conversion of MTT to formazan 

crystals by mitochondrial dehydrogenases [19]. Briefly, PC12 cells were seeded at a density of  

1 × 104 cells/well in 96-well micro-plates for 24 h. After incubation, PC12 cells were pretreated with 

various doses of CLS (1 and 5 μg/mL) for 12 h. To test the protective effect of CLS against 

H2O2-induced neurotoxicity, the PC12 cells were co-incubated with 1,200 μM of H2O2 and different 

concentrations of CLS and the isolates (1 and 5 μg/mL) for 5 h. At the end of treatment, Cell viability 

was performed according to a reported protocol [20]. Cell viability was expressed as percentage of 

non-treated control. 

3.10. DAPI Staining Analysis 

To detect apoptosis, nuclear staining was done [21]. Briefly, PC12 cells were seeded at a density of  

5 × 104 cells/well in a six-well plate. 24 h after the seeding, PC12 cells were pretreated with various 

doses of CLS (1 and 5 μg/mL) for 12 h and then co-cultured with H2O2 for 5 h. After treatment, the cells 

were washed three times with ice-cold PBS, then cells were stained with DAPI (Roche, Basel, 

Switzerland) solution and analyzed with a fluorescence microscope. Apoptotic cells were identified by 

morphologic changes (condensation and fragmentation of their nuclei). Images were obtained with 

fluorescent microscopy on an TE-2000E microscope (Nikon, Tokyo, Japan). Images were processed 

using Photoshop software (Adobe, San Jose, CA, USA). 

3.11. Measurement of Intracellular ROS Accumulation 

DCFH-DA can be deacetylated in cells, where it can react quantitatively with intracellular oxidants 

(mainly H2O2) to form the fluorescent product, DCF, which is retained within the cells. PC12 cells  
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(1 × 105) were cultured in 6-well plates for 24 h, followed by pretreatment with various doses of CLS  

(1 and 5 μg/mL) for 12 h and then co-cultured with H2O2 for 5 h. The cells were rinsed with PBS 

solution, and then treated with 15 mM DCFH-DA. After incubation for 30 min at 37 °C, cells were 

examined at 530 nm with a fluorescence spectrophotometer (LeicaDMI 6000B, Leica, Solms, 

Germany), with excitation at 488 nm. DCFH-DA fluorescence images data were then observed using a 

fluorescence microscope (20×). 

3.12. Measurement of Intracellular Mitochondrial Membrane Potential (MMP) 

MMP was monitored using the fluorescent dye rhodamine 123. This cell-permeable cationic dye 

preferentially partitions into the mitochondria based on the highly negative MMP. PC12 cells (5 × 104) 

were cultured in 6-well black plates for 24 h, and then pretreated with various doses of CLS (1 and  

5 μg/mL) for 12 h and then co-cultured with H2O2 for 5 h. The cells were rinsed with PBS solution, and 

1 mM rhodamine 123 (Sigma, St. Louis, MO, USA) was added to the wells. After incubation at 37 °C for 

30 min, the cells were examined at 530 nm with a fluorescence spectrophotometer, with excitation at 480 nm. 

Rhodamine123 fluorescence images data were then observed using a fluorescence microscope (20×). 

3.13. Immunostaining Assay 

PC12 were cultured in 24-well plates at 5 × 104 cells/well and then pretreated with various doses of 

CLS (1 and 5 μg/mL) for 12 h and then co-cultured with H2O2 for 5 h. After fixing with 95% ethanol for 

15 min on ice, cells were permeabilized with 0.5% Triton for 3 min at room temperature and then 

blocked with 1% bovine serum albumin solution for 1 h. Then cells were exposed to NF-κB-p65 or 

pNF-κB-p65 subunit antibody for 1 h followed by Alexa-488 conjugated secondary antibody for 1 h at 

room temperature. Subsequently, nuclei were stained with DAPI for another 10 min at room temperature 

in the dark. The nuclear translocation of NF-κB-p65 or pNF-κB-p65 was visualized by an IN Cell 2000 

Image system with a 400× lens (GE Healthcare Limited, Buckinghamshire, UK). 

3.14. Western Blot Analysis 

PC12 cells were seeded at density of 2 × 106 cells in a 25-cm2 flask for 24 h. After incubation, cells 

were pretreated with various doses of CLS (1 and 5 μg/mL) for 12 h and then co-cultured with H2O2 for 

5 h. Cells were collected and lysed on ice, then cell lysates were clarified by centrifugation and then the 

supernatants were collected and stored at −70 °C until use. 

Protein concentrations were measured using the Bradford method [22]. An equal amount of protein 

was loaded and separated using 10% polyacrylamide gel electrophoresis and transferred onto 

polyvinylidene fluoride membrane. After blocking the nonspecifc site with 5% non-fat dried milk in  

50 mM Tris-buffered saline containing 0.1% Tween-20 (TBST) for 1 h at room temperature, the 

membrane was then incubated with the specific primary antibody (1:500) at 4 °C overnight. Following 

three washes with TBST, the blots were incubated with the secondary horseradish peroxidase-conjugated 

goat anti-rabbit IgG antibody (1:1000) for 1 h at room temperature. Subsequently, the blots were washed 

again for three times with TBST and then visualized by enhanced chemiluminescence (ECL) kit 
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according to the manufacturer’s instruction. The band densities were quantified from three different 

observations using an ImageJ software (National Institutes of Health, Bethesda, MD, USA).  

3.15. Statistical Analysis 

All data were expressed as mean ± S.D. from at least three independent experiments, each performed 

in quintuplicate. Statistical significance was determined by analysis of variance and subsequently 

applying the Dunnett’s t-test (p < 0.05). 

4. Conclusions 

Apoptosis might occur in, and contribute to the onset and progression of neurodegenerative  

disorders [23]. Different factors have been suggested as stimulators of apoptotic pathways. Among 

them, dysregulation of homeostasis between generation and quenching of free radicals has a great 

importance. Researchers have made considerable efforts to search for candidates capable of modifying 

this imbalance and in favor of removing excess free radicals or suppressing their generation thus 

maintaining cell integrity. Interestingly, free radicals not only cause damage to cellular structures, but 

also provoke cellular protective responses in vulnerable neurons by the compensatory upregulation of 

antioxidant enzymes and activation of oxidative sensitive factors, for example NF-κB [24]. In the current 

study, we examined the protective effect of CLS against H2O2-induced cytotoxicity in PC12 cells. 

The PC12 cell line, derived from a pheochromocytoma of the rat adrenal medulla, is a useful model 

system for the study of numerous problems in neurobiology and neurochemistry [25]. Recent studies 

also showed that ROS are deeply involved in the pathophysiology of several neurodegenerative 

diseases, such as Alzheimer’s disease [26] and PD [27]. ROS can affect mitochondrial function through 

the mitochondrial ATP-sensitive potassium (mito KATP) channels and the mitochondrial permeability 

transition pore (mPTP) [28]. On the other hand, maintenance of MMP is necessary for production of 

energy ATP and preservation of cellular homeostasis. Akao et al. have shown that maintenance of MMP 

is a critical primary determinant of cell survival [29]. Tang et al. also reported that oxidative stress by 

H2O2 exposure led to apoptosis, ROS increasing and MMP loss of PC12 cells [30].  

Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a protein complex that 

controls the transcription of DNA. NF-κB is found in almost all animal cell types and is involved in 

cellular responses to stimuli such as stress, free radicals, cytokines, and ultraviolet irradiation. Incorrect 

regulation of NF-κB has been linked to cancer, septic shock, viral infection, and improper immune 

development [31–35]. NF-κB is widely used by eukaryotic cells as a regulator of genes that control cell 

proliferation and cell survival. Active NF-κB turns on the expression of genes that keep the cell 

proliferating and protect the cell from conditions that would otherwise cause it to die via apoptosis. 

Antioxidants, which have been widely used for many years to inhibit NF-κB, were reported to block 

activation of NF-κB by various stimuli [36] or directly preventing NF-κB binding to DNA [37]. It 

suggests that ROS could be ubiquitous mediators of NF-κB activation. NF-κB is sensitive to variations 

of the cellular redox potential, but most of the observed inhibitory actions were due to the numerous side 

effects of antioxidants on multiple cellular signaling pathways. 

The caspase-3 protein is a member of the cysteine-aspartic acid protease (caspase) family [38]. 

Sequential activation of caspases plays a central role in the execution-phase of cell apoptosis. Caspases 
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exist as inactive proenzymes that undergo proteolytic processing at conserved aspartic residues to 

produce two subunits, large and small, that dimerize to form the active enzyme. Caspase-3 cleaves and 

activates caspases 6 and 7. The protein itself is processed and activated by caspases 8, 9, and 10. It is the 

predominant caspase involved in the cleavage of amyloid-beta 4A precursor protein, which is associated 

with neuronal death in Alzheimer’s disease. Alternative splicing of this gene results in two transcript 

variants that encode the same protein. Caspase-3 has been found to be necessary for normal brain 

development as well as its typical role in apoptosis, where it is responsible for chromatin condensation 

and DNA fragmentation [39]. 

In the present study, our results revealed that high concentrations of H2O2 markedly decreased the 

cell viability, obviously increased the number of apoptotic cells in the DAPI staining, confirming its 

neurotoxicity in PC12 cells. In this in vitro model, on pretreatment with CLS (1 and 5 μg/mL) in 

presence of 1,200 μM H2O2, the changes of PC12 cells induced by H2O2 were partly reversed. To further 

characterize the mechanism of CLS on functions of PC12 cells, CLS significantly inhibited the 

expression and phosphorylation of NF-κB, and translocation of NF-κB from cytoplasm to nuclear where 

NF-κB could bind to consensus sequence on the promoter and consequently enhance the expression of 

related enzymes and cytokines. 

In conclusion, this study revealed the potential neuroprotective targets of CLS (e.g., inhibition of 

cytotoxicity, reduction of ROS accumulation, DNA condensation, MMP stabilization, inhibition of 

caspase-3 activity, inhibition of NF-κB expression and phosphorylation, suppression of NF-κB 

translocation from cytoplasm to nuclear ). The neuroprotective activity of CLS may be due to its free 

radical-scavenging and antioxidant activity, resulting from the presence of flavanoids in the extracts. 

Also, seven major compounds, including a new flavanoid, luteolin-4'-O-β-D-glucopyranoside (3) and six 

known compounds 1,2, 4–7 were isolated from CLS and identified. Their antioxidative and 

H2O2-induced PC12 cell apoptosis-reversing activity were determined. The neuroprotective action of 

CLS may potentially be applied in the treatment of neurodegenerative diseases such as AD. 
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