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Abstract: α-Amylase from Trichoderma harzianum was covalently immobilized on 

activated wool by cyanuric chloride. Immobilized α-amylase exhibited 75% of its initial 

activity after 10 runs. The soluble and immobilized α-amylases exhibited maximum activity 

at pH values 6.0 and 6.5, respectively. The immobilized enzyme was more thermally stable 

than the soluble one. Various substrates were hydrolyzed by immobilized α-amylase with 

high efficiencies compared to those of soluble α-amylase. The inhibition of the immobilized 

α-amylase by metal ions was low as compared with soluble enzyme. On the basis of the 

results obtained, immobilized α-amylase could be employed in the saccharification of 

starch processing. 
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1. Introduction 

α-Amylase (EC 3.2.1.1; α-1,4-D-glucan glucanohydrolase) hydrolyzes α-1,4-glucosidic bonds in 

starch, amylopectin, and glycogen in an endo fashion and forms low molecular weight products. Starch 

hydrolyzates with high-dextrose content are extensively used in the food industry and as a source of 

fermentable sugars. The industrial preparation of glucose syrups involves a preliminary starch 

saccharification to maltodextrin using α-amylase, followed by a second hydrolysis to glucose using 

glucoamylase. α-Amylases are applied in several biotechnological applications such as food processing, 

textile, paper and pharmaceutical industries. [1]. Microbial amylases have almost completely replaced 

chemical hydrolysis of starch in the starch processing industry [2]. In fact amylolytic enzymes account 

for almost 25% of the global enzyme sales [3,4]. 

Immobilized enzymes have several advantages over soluble enzymes. Immobilization of enzymes 

minimizes the inhibition by substrates, reaction products, inhibitors, solvents, detergents or any 

environmental conditions. In addition, enzyme immobilization results in good operational and storage 

stability, high sensitivity, high selectivity, short response times and high reproducibility [5,6].  

Like many other enzymes, immobilized amylase would gain improved stability and reusability [7,8]. 

Multipoint and multisubunit covalent immobilization improve the stability of monomeric or 

multimeric enzymes [9,10]. Various nanomaterials and nanostructures generally provide a large 

surface area and low mass-transfer resistance, which enables better interaction with the enzyme, 

increases immobilization efficiency, and enhances the long-term storage and recycling stability of the 

enzyme [11]. Generally, immobilized α-amylase is characterized by suitable hardness, density and 

porosity, which is more appropriate for practical applications [12]. α-Amylase has been covalently 

immobilized onto a wide variety of supports as poly(hydroxyethylmethacrylate), poly(methyl-

methacrylate-acrylic acid) microspheres, zirconium membranes, epoxy group-containing porous 

membranes, phthaloyl chloride-containing amino group functionalized glass beads and a cyclic 

carbonate functional hybrid matrix [13–18]. Ion-exchange adsorption of α-amylase have also been 

performed on nitrocellulose membrane and chitosan beads [19,20]. 

The use of wool as immobilization support has been very limited [21,22]. 1,3,5-Triazine derivatives 

have found widespread applications in the pharmaceutical, textile, plastic and rubber industries [23,24]. 

The ease of displacement of chlorine atoms in cyanuric chloride by various nucleophiles groups (thiol, 

amino, imino and hydroxyl functions) results in stable linkages. The support material can have critical 

effect on the stability and the efficiency of enzyme immobilization. Recently, we published paper on 

the immobilization of horseradish peroxidase using wool as support which was activated by a 

multifunctional reactive center (cyanuric chloride) [25]. The activation of wool by cyanuric chloride 

permits a high multipoint covalent attachment. Therefore, this paper focused on immobilization of  

α-amylase from T. harzianum on wool activated by cyanuric chloride. Optimization and 

characterization of the immobilized enzyme compared with the soluble enzyme has been detected.  

T. harzianum α-amylase was previously purified and characterized with wide substrate specificity [26]. 
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2. Results and Discussion 

The immobilization of T. harzianum α-amylase on wool activated by cyanuric chloride has been 

studied. In the present study, the effect of different concentrations of cyanuric chloride on the 

immobilization of T. harzianum α-amylase at pHs 5.5 or 7.2 was detected. An increase of cyanuric 

chloride concentration led to an increase in the immobilization efficiency. The maximum 

immobilization efficiency (70%) was detected at 4% cyanuric chloride and pH 7.2 (Table 1). Higher 

cyanuric chloride concentrations yielded a decrease in immobilization efficiency. The lowering in the 

retained activity by increasing the cyanuric chloride concentration could be attributed to the increase of 

multipoint attachments of the enzyme to the modified wool support which lead to changes in the 

structure of the enzyme. Although this could be produce an increase in enzyme stability it was 

discarded considering the decrease in activity. The effect of the soluble α-amylase concentration on the 

rate of immobilization was also studied. This study was performed under the optimum conditions of 

the immobilization process (pH 7.2 with 4% cyanuric chloride) mentioned above. Figure 1 show that 

the residual activity of immobilized enzyme increased with increasing the soluble α-amylase 

concentration, while the maximum rate of enzyme immobilization was detected at 150 units/g 

activated wool (75% residual activity). The same residual activity was detected at enzyme 

concentrations of 200 and 250 units. 

Table 1. Effect of cyanuric chloride percentage and pH on the immobilization efficiency of 

Trichoderma harzianum α-amylase (200 units). 

Cyanuric Chloride %
Immobilization Efficiency % 

pH 5.5 pH 7.2 

2 15 ± 0.7 25 ± 1.3 
4 50 ± 2.8 70 ± 3.8 
6 30 ± 1.7 45 ± 2.1 
8 12 ± 0.7 22 ± 1.1 

Each value represents the mean of three experiments ± S.E. 

Figure 1. The effect of the soluble α-amylase concentration on the rate of immobilization. 

The immobilization process was performed at pH 7.2 with 4% (w/v) cyanuric chloride. 

Each point represents the mean of three experiments ± S.E. Please add one space between 

% and activity in the y axis in the Figures 1 and 4. 
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It is known that the morphology of wool is characterized by the presence of scales, which greatly 

contribute in protecting the wool from damage and affect other important properties of wool, such as 

luster and shrinkage. The SEM images in Figure 2 show that the scales on the untreated wool fiber 

(wool sample) are clear and arranged compactly around the fiber. The scales changed slightly after 

activation and α-amylase immobilization. The foreign materials observed in the SEM image could be 

attributed to the immobilized enzyme. The formation of new chemical bonds caused by binding of 

cyanuric chloride to wool and T. harzianum α-amylase has been confirmed by FTIR.  

Figure 2. SEM images of wool sample (10,010×) and α-amylase immobilized wool  

sample (10,000×). 

 

 

FTIR spectra of the wool sample, the activated wool sample and the immobilized wool- α-amylase 

sample are shown in Figure 3. Amide bands are observed at 1,630 cm−1 (C=O stretch, amide I), 1,520 cm−1 

(N-H bend, amide II) and a weak band at 1,240 cm−1 (C-N stretch, amide III). These spectra showed a 

displacement and enlargement of the original band approximately 1,520 cm−1 related to the N-H 

deformation band, indicating the involvement of the amine groups in the chemical reaction. The 

characteristic peak of the triazinyl ring that appears at approximately 1,540 cm−1 confirms the success 

of activation and/or the enzyme immobilization reaction. The band at 1,390 cm−1 resulting from a CH3 
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symmetric bending mode appears with a slight increase in intensity with respect to the same band 

present in the activated wool sample, which adds evidence for the success of the immobilization of  

α-amylase on activated wool. 

Figure 3. FT-IR spectra of the wool sample, the activated wool sample and the immobilized 

wool- α-amylase sample. 

 

The most important advantage of immobilization is the possible repeated use of enzymes. 

Reusability of the immobilized α-amylase samples was examined by using the same conditions 

repeatedly 10 times and the measured activities are shown in Figure 4. It was observed that the 

immobilized enzyme demonstrated 75% activity after 10 runs. It was found that, the reuse capability of 

α-amylases was in the 50%–88% activity range after 5–25 runs [17,18,25–27]. 

Figure 4. Reuse of wool-α-amylase. Each point represents the mean of three  

experiments ± S.E. 

 

The effect of pH on activity of soluble α-amylase and immobilized α-amylase was evaluated by 

incubating these preparations in the buffers of varying pH values ranged from 4.0 to 8.5 (Figure 5a). 
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The soluble α-amylase and immobilized α-amylase exhibited maximum activity at pH values 6.0 and 

6.5, respectively, with greater loss of activity recorded at pH 5.0 and pH 8.5 for soluble α-amylase 

(25% and 35% residual activity, respectively) compared with the immobilized enzyme (46% and 55% 

residual activity, respectively). It was deduced that the binding between wool and enzyme led to a 

conformation change of the microenvironment around the amylase, which was the main reason for the 

property changes of amylase after immobilization [18]. After immobilization, optimum pH of α-amylase 

was shifted from pH 6 to 8 [28–30] and pH 10 to 11 [31].  

Figure 5. Optimum pH (a), optimum temperature (b), thermal stability (c) and Km (d) of 

soluble and immobilized α-amylases. Each point represents the average of two experiments.  
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Figure 5b demonstrates the effect of temperature on the activity of soluble α-amylase and 

immobilized α-amylase. The optimum reaction temperatures for the soluble and immobilized 

α-amylases were 40 °C and 50 °C, respectively. The immobilized α-amylase exhibited 60% of its 

activity at 80 °C, while the soluble enzyme retained 40% of its activity at the same temperature. The 

increase in optimum temperature was caused by the changing physico-chemical properties of the enzyme. 

After immobilization of α-amylase, a covalent bond was formed which may lead to a higher activation 

energy of the immobilized enzymes and an increase in substrate binding. One of the main reasons for 

enzyme immobilization is the anticipated increase in its stability toward various deactivating forces, 

due to restricted conformational mobility of the molecules following immobilization [15,32]. The 

increase in optimum temperature of α-amylases after immobilization has been reported in several 

studies [18,19]. The same temperature optimum (70 °C) was reported for free and immobilized  

α-amylase [30]. The thermal stability of the soluble and the immobilized α-amylases is shown in Figure 5c. 

The results showed that the soluble and immobilized α-amylase were thermally stable up to 50 °C, and 

retained 40% and 70% of the activity at 80 °C, respectively. Such an increase of thermal stability has 
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been reported for a number of immobilized enzymes [19,30]. The thermal stability of enzymes might 

be drastically increased if they are attached to the complementary surface of a relatively rigid support 

in a multipoint way [33]. 

Various substrates, such as starch, glycogen, amylopectin, amylose, α-cyclodextrine and β-

cyclodextrin were hydrolyzed by immobilized α-amylase (1 unit) with higher efficiencies than those of 

soluble α-amylase (1 unit) (Table 2), indicating that immobilization process didn’t affect the substrate 

binding site of the enzyme. Therefore, the cyanuric chloride didn’t cause any obstruction to substrate 

access at the binding site or at the active site. Variations in substrate specificities reflect differences in the 

affinities of the soluble and immobilized α-amylases. Similar results were observed by Pascoal et al. [34], 

where starches from various different sources were hydrolyzed by free and immobilized α-amylases 

from Aspergillus niger. Akkaya et al. [31] reported that free and immobilized α-amylases yielded the 

highest activity when corn starch was used as the substrate. 

Table 2. The substrate specificity of soluble and immobilized α-amylases (1 unit). 

Substrate 
Relative Activity % 

Soluble α-Amylase Immobilized α-Amylase 

Starch 95 ± 2.5 100 ± 3.1 
Glycogen 80 ± 1.8 90 ± 2.6 

Amylopectin 68 ± 2.1 80 ± 2.0 
Amylose 70 ± 2.2 75 ± 1.5 

α-Cyclodextrin 41 ± 1.6 53 ± 1.2 
β-Cyclodextrin 42 ± 1.2 49 ± 1.6 

The immobilized enzyme with starch is considered 100%. Each value represents the mean 

of three experiments ± S.E. 

Generally, the affinity of a substrate toward an immobilized enzyme is lower than that of the free 

enzyme due to diffusional limitations, steric effects and ionic strength [32]. The ionic strength during 

immobilization may allow control of the penetration of the enzyme into the polymeric bed [35]. At high 

ionic strength, proteins can only become immobilized on areas of the protein which are able to 

simultaneously yield a very intense multipoint adsorption, even permitting the penetration in the 

polymeric bed structure, while using low ionic strength any area of the protein with negative charges 

may be involved in the adsorption. The change in the affinity of the enzyme for its substrate is  

also caused by structural changes in the enzyme introduced by the immobilization procedure and by 

lower accessibility of the substrate to the active site of the immobilized enzyme [13]. The affinity of 

substrate toward immobilized enzyme had been observed either higher or lower compared with soluble  

enzyme [15,18]. In the present study, compared with the soluble α-amylase, the affinity of immobilized 

α-amylase to starch decreased. Figure 5d shows that the Km values of the soluble α-amylase and the 

immobilized α-amylase were 2.5 mg starch/mL and 3.125 mg starch/mL, respectively. 

The resistance of some enzymes against inactivation caused by metal ions can be considerably 

improved by immobilization [36,37]. The effect of metal ions on the activity of soluble and 

immobilized α-amylases was also studied (Table 3). Ca2+ and Co2+ enhanced the activity of soluble 

and immobilized α-amylases, whereas Ni2+ enhanced only the immobilized enzyme. The inhibition of 

the immobilized α-amylase by other metal ions was low, as compared to the soluble enzyme. Although 
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Hg2+ caused strong inhibition for the activity of the soluble α-amylase, the immobilization of enzyme 

partially protected them from this harmful ion. This result is very important considering that inhibiting 

ions are often present in crude materials used in industrial processes. Similarly, Ca2+ enhanced the 

activity of free and immobilized α-amylase and Hg2+ inhibited both enzymes [33]. However, no effects 

were observed with immobilized α-amylase in the presence Ca2+, Cu2+, Fe2+ and Zn2+ compared with 

the inhibition of free enzyme [34]. 

Table 3. The effect of metal ions on the soluble and immobilized α-amylases (1 unit). 

Metal Ion 
Relative Activity % 

Soluble α-Amylase Immobilized α-Amylase 

Control 100 ± 2.5 100 ± 3.1 
Cu2+ 70 ± 2.3 94 ± 2.8 
Ni2+ 78 ± 2.4 113 ± 2.5 
Ca2+ 109 ± 1.8 120 ± 2.3 
Zn2+ 91 ± 2.3 102 ± 3.2 
Co2+ 115 ± 1.7 125 ± 2.8 
Pb2+ 70 ± 2.2 90 ± 3.0 
Hg2+ 15 ± 0.6 60 ± 2.0 

Each value represents the mean of three experiments ± S.E. 

3. Experimental  

3.1. T. harzianum α-Amylase 

T. harzianum α-amylase was previously purified and characterized [26]. 

3.2. Preparation of Support 

An ice-cooled solution of cyanuric chloride (2%–8% w/v) in acetone-water mixture (100 mL, 1:1) 

was prepared. Wool fabric (2 g) was added into this solution and left with shaking for 30 min at 0 °C. 

Then, sodium bicarbonate solution (10% w/v, 100 mL) was drop wisely added to the above reaction 

mixture while shaking within 30 min at 0 °C. The reaction mixture was further kept under shaking and 

at 0 °C overnight. The wool sample was removed from the shaker bath and washed several times with 

acetone, water and acetone, dried in ventilated hood and kept in a plastic bag in refrigerator ready for 

enzyme immobilization. 

3.3. Immobilization Procedure 

Enzyme immobilization was carried out by end over end rotation at 90 rpm on the activated  

wool using a solution of Trichoderma harzianum α-amylase (200 units) made in 50 mM sodium 

acetate buffer pH 5.5 or Tris-HCl pH 7.2 at room temperature during overnight. Aliquots of the 

supernatant were drawn up and the wool was dried at room temperature to verify the advancement  

of the immobilization. The relative activity % of immobilized enzyme was calculated from the 

following formula:  
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Relative activity % =  × 100  (1)

3.4. Characterization of Wool and Immobilized Wool-α-Amylase 

Scanning electron microscopy (SEM) images of wool samples were examined with a Quanta FEG 

450scanning electron microscope (FEI, Amsterdam, The Netherlands). The microscope was operated  

at an accelerating voltage of 10, 20 kV. The samples were placed on the double side carbon tape on  

Al- Stub and sputtered with a 20 nm thick gold layer (Jeol JFC-1600 Auto Fine Coater, Tokyo, city, 

Japan). The Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectra for wool 

sample, activated wool sample and immobilized wool-α-amylase sample were recorded on a 

PerkinElmer spectrum 100 FT-IR spectrometer (New Jersey, NJ, US). 

3.5. α-Amylase Assay 

The α-amylase activity assay was carried out by DNS method [38], for both soluble and 

immobilized enzymes. One cm2 of wool was taken for routine assay of the activity of immobilized 

enzyme on wool. Wool was removed after 10 min incubation with 1 mL starch (1%) at 37 °C and  

1 mL DNS was added for color development. The tube containing this reaction mixture was incubated 

in a boiling water bath for 10 min and then cooled in running tap water and the absorbance was 

recorded at 540 nm. One unit of activity was defined as the amount of enzyme required to produce  

1 μmoL of maltose/min. 

3.6. Reusability of Immobilized Enzyme 

After each assay the immobilized enzyme preparation was taken out, washed with 50 mM sodium 

acetate buffer, pH 5.5 and stored overnight at 4 °C. The immobilized enzyme recovered by this procedure 

was used repeatedly. The activity determined for the first time was considered as control (100%) for 

the calculation of remaining percentage activity after each use. 

3.7. Effect of pH and Temperature 

The optimal pH and temperature for soluble α-amylase and immobilized α-amylase were made by 

using a pH ranged from 4.0 to 8.5 and a temperature range from 10 °C to 70 °C. The maximum 

activity was taken as 100% and % relative activity was plotted against different pH and temperature 

values. The thermal stability was investigated by measuring the activity of soluble α-amylase and 

immobilized α-amylase after 15 min of incubation at different temperatures prior to substrate addition. 

The % relative activity was plotted against different temperatures. 

3.8. Determination of Kinetic Constant 

The Km values were determined from Lineweaver-Burk plots by using different concentrations of 

starch as substrate (1.2–3.2 mg). 
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3.9. Substrate Specificity 

Substrate specificity was investigated by incubating the soluble and immobilized α-amylases with 

1% starch, glycogen, amylopectin, amylose, α-cyclodextrine and β-cyclodextrin. 

3.10. Effect of Metal Ions 

The effects of various metal ions (Cu2+, Ni2+, Ca2+, Zn2+, Co2+, Pb2+, Hg2+) on enzyme activity  

of soluble and immobilized α-amylases were determined by pre-incubating the enzyme with 2 mM 

metal ions for 15 min and then assaying the enzyme activity. The activity in absence of metal ions is 

taken as 100%. 

4. Conclusions 

The activated wool by cyanuric chloride as support causes less damage to the catalytic activity of  

α-amylase activity. The reuse capability of immobilized α-amylase was 75% of its activity after  

10 runs. The wool-α-amylase exhibited a significant thermal stability and resistance toward metal ions 

compared with soluble enzyme. Various substrates were hydrolyzed by immobilized α-amylase with 

high efficiencies similar to those of soluble α-amylase indicating that immobilization didn’t affect the 

substrate binding site of the enzyme and could successfully be used in several applications especially 

the saccharification of starch. 
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