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Abstract: Intramolecular hydrogen bonds (IHBs) play a central role in the molecular 

structure, chemical reactivity and interactions of biologically active molecules. Here, we 

study the IHBs of seven related o-carbonyl hydroquinones and one structurally-related 

aromatic lactone, some of which have shown anticancer and antioxidant activity. 

Experimental NMR data were correlated with theoretical calculations at the DFT and  

ab initio levels. Natural bond orbital (NBO) and molecular electrostatic potential (MEP) 

calculations were used to study the electronic characteristics of these IHB. As expected, 

our results show that NBO calculations are better than MEP to describe the strength of the 

IHBs. NBO energies (∆Eij
(2)) show that the main contributions to energy stabilization 

correspond to LPσ* interactions for IHBs, O1
…O2-H2 and the delocalization LPπ* for 

O2-C2 = Cα(β). For the O1
…O2-H2 interaction, the values of ∆Eij

(2) can be attributed to the 

difference in the overlap ability between orbitals i and j (Fij), instead of the energy difference 

between them. The large energy for the LP O2π* C2 = Cα(β) interaction in the compounds  

9-Hydroxy-5-oxo-4,8, 8-trimethyl-l,9(8H)-anthracenecarbolactone (VIII) and 9,10-dihydroxy-

4,4-dimethylanthracen-1(4H)-one (VII) (55.49 and 60.70 kcal/mol, respectively) when 

compared with the remaining molecules (all less than 50 kcal/mol), suggests that the IHBs 

in VIII and VII are strongly resonance assisted. 
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1. Introduction 

Hydroquinones (HQ) and their oxidized form, quinones (Q), constitute a biologically relevant redox 

pair. A number of them come from natural sources [1,2] and exhibit a large number of biological 

activities related to their redox potential [3–6]. Although p-hydroquinone is more stable than  

p-quinone, usually substituted p-hydroquinones (p-HQ) are thermodynamically less stable than 

substituted p-quinones (p-Q), but p-Q can be effectively transformed into p-HQ by several 

mechanisms in biological systems [7], and therefore they can co-exist inside living organisms. The 

biological activity of hydroquinones has been related to their capability to lose an electron followed by 

deprotonation (or alternatively lose a hydrogen atom), to afford the corresponding semiquinone 

radical. These intermediates have been associated to biological properties, such as pro-oxidant activity, 

by interacting with several intracellular molecules, such as DNA and proteins. 

Modulation of the electron-transfer capability is very important for the biological activity of 

quinones and hydroquinones. Among the interactions that play a central role in this issue, the 

formation of inter- or intramolecular hydrogen bonds in these molecules plays a key role [8–10]. A 

recent electrochemical study about quinones possessing intramolecular hydrogen bonds (IHBs) shows 

that this interaction stabilizes the anion radical structure, leading to a shift in reduction potentials 

toward less negative values when compared with quinones without IHBs [11]. IHBs have shown 

appreciable effects on the antioxidant properties of hydroquinones and related phenols [12,13]. 

The strength of a hydrogen bond lies between a weak covalent bond and Van der Waals  

interactions [14], and plays an important role in the geometry of single molecules as well as in the 

molecular structure of liquids and solids. Hydrogen bonds are important in areas as diverse as biology, 

chemistry and material science [15]. By definition, a hydrogen bond is an attractive interaction of the  

X-H…Y type, where the molecular fragment X-H acts as a hydrogen bond donor and Y acts as a 

hydrogen bond acceptor [16]. 

The o-carbonyl hydroquinone moiety is an important structural feature of several natural products with 

different biological activities, such as doxorubicin, daunorubicin [17], 2,5-dihydroxyacetophenone [18] and 

peyssonol A [19,20]. o-Carbonyl hydroquinones have also been used as building blocks for natural [21,22] 

and synthetic [23–26] compounds with a diversity of biological properties. In previous works, our 

group showed that some o-carbonyl hydroquinones can inhibit some tumor cell growth acting at the 

mitochondrial level [27–29]. Also theoretical and experimental NMR studies of some related 

hydroquinones has been carried out [30]. The IHBs present in these compounds, have been invoked as 

a key factor for their mitochondrial-mediated anti-cancer activity [31,32]. 

On the basis of the above considerations, it appears interesting to study the effect of the molecular 

structure on the characteristics of the IHBs present in a series of o-carbonyl hydroquinones (Figure 1). 

Therefore, the aim of this work is to study experimentally the IHBs in a series of structurally related  

o-carbonyl hydroquinones and one aromatic lactone, through the use of nuclear magnetic resonance 
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(NMR). Several theoretical approaches can be used to study IHBs, for instance atoms in molecules (AIM) 

methodology [33,34]. Another scarcely explored methodology is through the use of molecular electrostatic 

potential (MEP), though this methodology has been mainly used for intermolecular HBs [35,36], more 

recently it has also been used to study intramolecular HBs [37]. The interesting results from this study 

made us decide the use this methodology. Besides, we have also used the natural bond orbitals (NBO) 

methodology, a widely used technique to study IHBs [38]. 

Figure 1. Structure of compounds studied in this work. 

 

2. Results and Discussion 

All the molecules studied here, containing IHBs (Figure 1), can be classified as resonance-assisted 

hydrogen bonds (RAHBs) [39,40] although this concept has been questioned in recent years [41–44]. 

RAHBs are characterized as conjugated molecular fragments connected through the hydrogen bond 

donor, which provokes a strong hydrogen bond compared with a system without the conjugation. We 

will take this definition into account in further analysis.  

2.1. Geometry Optimization 

The optimized geometry of all molecules have been obtained at the B3LYP/6-31++G(d,p) and  

MP2/6-31++G(d,p) levels of theory. The main calculated geometrical parameters for the 

characterization of IHBs, besides the experimental 1H-NMR shifts for H2 (Figure 1), are summarized 

in Table 1. While chloroform is a hydrogen bond donor, it is classified as a weak one (Abraham’s H 

donor parameter α = 0.15) [45], therefore it does not represent a significant competition to the strong 

IHBs present in this molecules. Therefore, the 1H-NMR chemical shift of H2 is a suitable parameter to 

represent the strength of the IHBs. We also measured the NMR spectra of compound I, which is not 

one of the strongest IHBs in the series, in DMSO-d6, a HB acceptor. The chemical shift for H2 was 

12.55 ppm, only 0.01 ppm away from the value measured in chloroform (12.54 ppm). This observation 

shows that the studied IHBs remain unchanged, even in DMSO. 
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Table 1. 1H-NMR chemical shifts for H2 and geometrical parameters for hydrogen bonds 

calculated at B3LYP/6-31++G(d,p) and MP2/6-31++G(d,p) level of theory. The 

numbering of compounds is according to Figure 1. 

Molecule δH2 
B3LYP/6-31++G(d,p) MP2/6-31++G(d,p) 

O1
…O2 O2-H2 O1

…H2 < O2-H2
…O1

 O1
…O2 O2-H2 O1

…H2 < O2-H2
…O1

 

I 12.54 2.540 0.996 1.638 148 2.573 0.989 1.682 148 
II 12.32 2.556 0.994 1.657 148 2.592 0.988 1.703 148 
III 13.08 2.533 0.998 1.624 149 2.567 0.991 1.667 149 
IV 12.70 2.538 0.996 1.634 149 2.571 0.990 1.679 148 
V 12.95 2.525 0.997 1.617 149 2.570 0.989 1.676 148 
VI 12.94 2.521 0.997 1.613 149 2.521 0.997 1.613 149 
VII 14.53 2.505 1.005 1.584 150 2.543 0.995 1.637 149 
VIII 15.60 2.482 1.014 1.544 152 2.526 0.999 1.608 150 
R2  0.89 0.98 0.94 0.92 0.39 0.84 0.50 0.59 

Distances in Å, Angle in °, δ in ppm. R2 corresponds to correlation between NMR δH2 and geometrical parameters. 

An inspection to Table 1 shows that the boundary cases are well described by both the MP2 and 

DFT methods. The largest chemical shift of VIII is in agreement with the shortest O1
…H2 distance, 

which indicates the strongest IHB. On the other hand, the lowest chemical shift of II accords with the 

largest O1
…H2 distance, showing that II has the weakest IHB among these HQs. When all molecules 

are compared, B3LYP/6-31++G(d,p) calculations are more suitable to describe the IHB geometrical 

parameters, according with the quantitative correlation of their strength with geometrical parameters 

and NMR chemical shift data (see correlation coefficients in Table 1). Because B3LYP/6-31++G(d,p) 

optimized geometries gave better correlations with experimental NMR data, we used these results for 

further calculations. The main features of the IHBs in this series of molecules, were explored through 

the use of NBO and MEP calculations. 

2.2. Molecular Electrostatic Potential 

Because the electrostatic characteristic is always present in hydrogen bonds, several methods based 

in the electrostatic potential have been developed for their study [46–49]. MEP maps have been used 

to qualitatively rationalize trends observed in hydrogen bond donors and acceptors [50–52]. The MEP 

maps displayed in Figure 2, were generated projecting the color-coded values onto the 0.004 a.u.  

iso-potential energy surface. The red color indicates high electron-density sites, blue color indicates 

low electro-density sites and green-yellow color indicates neutral sites in the molecules. In this Figure, 

the MEPs of I and II, which present the weakest IHB, and the MEPs of VII and VIII, which present 

the strongest IHB, are shown as representative examples. Electron-rich sites are observed in the 

aromatic rings. The IHB site shows a remarkably electron-rich zone in both the donor and acceptor 

oxygens, while a small neutral zone appears on the hydrogen of the IHB from I, II and VII. Unlike the 

previous cases, VIII presents a more extended neutral zone on the hydrogen atom and the electron-rich 

zone around the oxygens is reduced. 
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Figure 2. Molecular electrostatic potential (0.004 a.u.) of I, II, VII and VIII. 

Quantitative MEP descriptors, such as the minimized electrostatic potential (Vmin) and the recently 

described Vα(r) parameter, have been used to characterize hydrogen bond basicity and acidity, 

respectively [53–55]. The Vα(r), calculated for H2 at r = 0.55Å, and the value of Vmin near O1 for all 

molecules are presented in Table 2. From this Table we observe, as a general tendency, that an 

increase of Vα(r), and therefore an increase of IHB donor strength, leads to a decrease in Vmin, and 

therefore lowering the IHB acceptor strength. This trend indicates that structural differences among the 

molecules, such as the presence of an additional aromatic ring in VII and VIII, affects both, the donor 

and acceptor hydrogen bond capabilities. The strong IHB exhibited by VIII, is in agreement with the 

higher value of Vα(r) (higher acidity of donor) and the lower value for Vmin(O2) (higher basicity of 

acceptor). Nevertheless, considering both parameters separately for all molecules, they do not correlate 

with the NMR data. In both cases, we could not find a lineal relationship between δH2 and Vα(r) or 

between δH2 and Vmin(O2), being R2 = 0.37 and R2 = 0.05 respectively. This can be explained because 

Vmin and the Vα(r) descriptors are significantly perturbed by the IHB. Regions of positive and negative 

MEP on the surfaces of hydrogen bond donors and acceptors, are influenced by the formation of 

intramolecular contacts in these molecules. The trends of Vα(r) and Vmin with the increase of HB 

interaction point in the opposite direction, and explain why MEP is not an appropriate descriptor for 

IHB strength. 
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Table 2. MEP values (B3LYP/6-31+G**//B3LYP/6-31++G**), Vmin and Vα(r) (kcal/mol). 

Molecule Vα(r) Vmin(O1) 

I 165.0 −48.9 
II 169.2 −45.0 
III 163.2 −50.5 
IV 161.7 −51.3 
V 165.7 −48.2 
VI 164.1 −49.2 
VII 166.2 −49.5 
VIII 174.9 −43.6 

2.3. NBO Analysis 

The NBO analysis results, natural charges and Wiberg bond orders, are presented in Table 3.  

Table 4 shows the calculated stabilization energies. Correlations between natural charges and Wiberg 

bond order (WBO) for the atoms involved in the IHB, and the experimental δH2, were studied. The 

correlations between δH2 and natural charge on O1, O2 and H2 gave R2 values of 0.81, −0.09 and 0.90, 

respectively. These results show that the natural charge on the hydrogen atom involved in the IHB is a 

better parameter than the natural charge on the donor and acceptor oxygens in order to quantify the 

strength of the IHB. On the other hand, WBO for O2-H2 and H2
…O1 were shown to be excellent 

parameters for describing the strength of the IHB in this HQ series. In effect, the correlations of δH2 with 

O2-H2 and with H2
…O1 gave R2 = 0.99 and R2 = 0.98, respectively. 

Table 3. Natural charges (NC) and Wiberg bond order (WBO) at HF/6-311G** 

//B3LYP/6-31++G** level for selected atoms in HQs. 

Molecule NC O1 NC O2 NC H2 WBO O2-H2 WBO H2…O1 

I −0.721 −0.753 0.522 0.6470 0.0699 
II −0.717 −0.759 0.524 0.6501 0.0647 
III −0.726 −0.765 0.525 0.6395 0.0747 
IV −0.727 −0.760 0.522 0.6460 0.0712 
V −0.725 −0.763 0.524 0.6393 0.0751 
VI −0.726 −0.765 0.523 0.6402 0.0757 
VII −0.734 −0.760 0.530 0.6197 0.0890 
VIII −0.736 −0.755 0.532 0.6004 0.1051 

Analyses of the second order stabilization energies ∆Eij
(2) (Table 4) allow us to determine the orbital 

interaction responsible for the IHB. The main hyperconjugative interaction was LPO1σ*O2-H2. 

Also, a significant hyperconjugative interaction of type LPO2σ*C2=Cα(β) which accounts for the 

delocalization of phenolic oxygen electrons into the aromatic ring, is present. Accordingly, the main 

contributions to stabilization energy corresponds to the LPσ* interaction for O1
…O2-H2 IHB as well 

as the LPπ* delocalization is the main contribution for the O2-C2 = Cα(β) fragment. It can be noticed 

that the stabilization energy ∆Eij
(2) due the IHB formation is higher for VIII and VII, which present an 

additional aromatic ring fused to the hydroquinone ring. From the above, it is possible to argue that 

these IHBs are strongly assisted by resonance, involving the additional ring, which is supported by the 
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high stabilization energy for LPtotal(1 + 2) O2π* C2=Cα(β) in VIII and VII (55.49 and 60.70 Kcal/mol 

respectively) compared with values found in all remaining molecules, all with less than 50 kcal/mol 

stabilization energy. It is interesting to compare these results with a recently published work about  

1-acylthiourea species, where two conformations with different competing IHB are feasible [56]. It 

was found that those conformation where IHB was assisted by resonance, presented a stabilization 

energy corresponding to LP Oσ*H-N around 12 kcal/mol higher than those conformation without 

resonance assisted IHB.  

Table 4. Stabilization energies (kcal/mol) for selected NBO pairs (donor-acceptor) given 

by second order perturbation energies of the Fock matrix in the NBO basis for the HQs 

(HF/6-311G**//B3LYP/6-31++G**). 

Molecule Фi Фj ∆Eij 
(2) εj–εi/au Fij/au Фi Фj ∆Eij 

(2) εj−εi/au Fij/au

I LP1 O1 σ* O2-H2  4.04 1.58 0.072 LP1 O2 σ* C2-Cα 10.15 1.60 0.114
 LP2 O1 σ* O2-H2 28.33 1.18 0.165 LP2 O2 π* C2-Cα 48.43 0.63 0.168

II LP1 O1 σ* O2-H2  3.67 1.58 0.068 LP1 O2 σ* C2-Cα 9.19 1.61 0.109
 LP2 O1 σ* O2-H2 26.02 1.18 1.159 LP2 O2 π* C2-Cα 48.19 0.64 0.170

III LP1 O1 σ* O2-H2  4.08 1.57 0.072 LP1 O2 σ* C2-Cα 9.42 1.61 0.110
 LP2 O1 σ* O2-H2 30.58 1.18 0.171 LP2 O2 π* C2-Cα 47.57 0.64 0.167

IV LP1 O1 σ* O2-H2  4.05 1.58 0.072 LP1 O2 σ* C2-Cα 10.08 1.58 0.113
 LP2 O1  σ* O2-H2 29.01 1.18 0.167 LP2 O2 π* C2-Cβ 43.47 0.67 0.161

V LP1 O1 σ* O2-H2  4.10 1.57 0.072 LP1 O2 σ* C2-Cα 9.46 1.61 0.110
 LP2 O1 σ* O2-H2 30.88 1.18 0.173 LP2 O2 π* C2-Cα 49.06 0.64 0.170

VI LP1 O1 σ* O2-H2  4.15 1.57 0.072 LP1 O2 σ* C2-Cα 9.67 1.60 0.111
 LP2 O1 σ* O2-H2 31.31 1.19 0.174 LP2 O2 π* C2-Cα 48.22 0.63 0.169

VII LP1 O1 σ* O2-H2  4.36 1.54 0.074 LP1 O2 σ* C2-Cα 9.70 1.63 0.112
 LP2 O1 σ* O2-H2 37.44 1.17 0.189 LP2 O2 π* C2-Cα 55.49 0.65 0.178

VIII LP1 O1 σ* O2-H2  4.64 1.51 0.076 LP1 O2 σ* C2-Cα 9.82 1.60 0.112
 LP2 O1 σ* O2-H2 45.67 1.16 0.208 LP2 O2 π* C2-Cα 60.70 0.64 0.184

A good correlation is observed between the NMR chemical shift of H2 and the stabilization energies 

for LPtotalO1σ* interaction in the O2-H2 fragment (R2 = 0.98). The energy difference between the 

donor (Фi) and the acceptor (Фj) orbitals, and their overlap, determine the hyperconjugation energy. 

Lower difference in energy ɛj–ɛI as well as high overlap between them (Fij) favors hyperconjugation. 

For the LP O1σ* O2-H2 interaction, ɛj–ɛI are very similar for all molecules, so that the difference 

among ∆Eij
(2)can be attributed to the difference in the overlap ability between LP O1 and σ* O2-H2 

orbitals, given by the Fij value (Table 4). 

3. Experimental 

3.1. General Information 

Melting points were determined on a hot-stage apparatus and are uncorrected. The IR spectra were 

recorded on a FT-IR Bruker IFS 55 spectrophotometer from KBr discs; wave numbers are reported in 

cm−1. 1H-NMR and 13C-NMR spectra were obtained from a Bruker DRX-300 spectrometer (300 and  

75 MHz, respectively) in CDCl3. Chemical shifts were recorded in ppm (δ) relative to TMS as internal 
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standard. J-values are given in Hz. Electron impact (IE) high resolution mass spectra were recorded on 

a Thermo Finnigan model MAT 95XP Mass Spectrometer. Compounds I–V, VII and VIII were 

previously described [57–60], and new compounds V and VI were synthesized as follows.  

9,10-Dihydroxy-4,4-dimethyl-3,4,5,8-tetrahydroanthracen-1(2H)-one (V). Butadiene was bubbled 

through a solution of 8,8-dimethyl-6,7-dihydro-1,4,5(8H)-naphthalenetrione (100 mg, 0.49 mmol) in 

toluene (10 mL), and the mixture left in a sealed flask at room temperature for a week. Then silica gel 

(1 g) was added and the mixture stirred overnight at room temperature. The mixture was filtered and 

the solid washed with dichloromethane. Evaporation of the solvent gave crude of V. The pure product 

(72 mg, 57%) was obtained by column chromatography. 1H-NMR δ (CDCl3): 1.50 (s, 6H, 2 × CH3), 

1.93 (t, 2H, J = 7 Hz, 3-CH2), 2.67 (t, 2H, J = 7 Hz, 2-CH2), 3.18–3.33 (m, 4H, 5- and 8-CH2), 4.29 (s, 

1H, 10-OH), 5.83 (bd, 1H, J = 10 Hz, 6- or 7-H), 5.96 (bd, 1H, J = 10 Hz, 6- or 7-H), 12.95 (s, 1H, 9-OH). 
13C-NMRδ (CDCl3): 27.21, 23.59, 24.84, 33.85, 34.98, 38.69,121.11, 121.82, 124.52, 142.98, 131.97, 

155.23, 205.13. HRMS: m/z [M+] calcd. For C16H18O3: 258.1256; found: 258.1249. IR (KBr, cm−1): 

1217, 1614, 2926, 3390. m.p. 130–132 °C.  

9,10-Dihydroxy-4,4-dimethyl-3,4,5,6,7,8-hexahydroanthracen-1(2H)-one (VI). Hydroquinone VI was 

obtained by hydrogenation, stirring a mixture of III (100 mg, 0.39 mmol) and 10% Pd/C (25 mg) in 

ethanol (30 mL), for 4 h under 20 bar of H2. The crude product was purified by flash column 

chromatography, eluting with hexane-ethyl acetate 8:1 yielding pure VI (40 mg, 38%). 1H-NMR 

δ (CDCl3): 1.50 (s, 6H, 2 CH3), 1.69–1.87 (m, 4H, 6- and 7-CH2), 1.91 (t, 2H, J = 7 Hz, 3-CH2), 2.57 

(t, 2H, J= 7 Hz, 2-CH2), 2.65 (t, 4H, J = 7 Hz, 5- and 8- CH2), 4.38 (s, 1H, 10-OH), 12.94 (s, 1H,  

9-OH). HRMS: m/z [M+] calcd. For C16H20O3: 260.14124; found: 260.14045. IR(KBr): 1610, 2927,  

3308 cm−1. m.p. 192–193.5 °C. 

3.2. Theoretical Methods 

The calculations were carried out using the Gaussian03 [61] program package, running in a 

Microsystem cluster of blades. Geometries were optimized at Møller-Plesset second-order-corrected [62] 

(MP2) ab-initio level, and Becke three-parameter Lee-Yang-Parr [63] (B3LYP) density functional 

theory (DFT) level. 6-31++G** basis set was used in both cases. We carried out the calculation in 

vacuum because this model is commonly associated to aprotic non-polar solvents, like chloroform and 

because the energies of molecules in both models are very similar [64]. No imaginary vibrational 

frequencies were found at the optimized molecular geometries, which indicate that they are true 

minima of the potential energy surface. The theoretical study of intramolecular hydrogen bond was 

carried out through the calculation of MEP and a NBO analysis. 

The MEP is related to the electron density and it has been widely used to study hydrogen bonds [51], 

reactivity [65], and to correlate biological activity with molecular structure [66,67]. The MEP 

minimum (Vmin) is computed from the optimized geometries, using equation 1 at the B3LYP/6-31+G(d,p) 

level of theory, which has been described as adequate for this kind of calculations [55]: ( ) = ∑ | | − ( )| |  (1)
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here ZA is the nuclear charge and ρ(r) the electron density. Vmin has been described [53,54] as a useful 

predictor of hydrogen bond acceptor basicity. Recently, it has been proposed that the Vα(r) descriptor [55], 

calculated at a distance of 0.55 Å from the hydrogen atom along the O-H bond, is also useful to predict 

hydrogen bond donor acidity. 

On the other hand, the NBO method has been recognized as a powerful tool to gain insights into 

orbital interactions, such as stabilization energies caused by electron transfer and hyperconjugation 

stabilization energies [68,69]. The NBOs are one of the consequences of natural localized orbital sets 

that include natural atomic (NAO), hybrid (NHO) and semi-localized molecular orbital (NLMO) sets, 

intermediates between basis atomic orbitals (AOs) and canonical molecular orbitals (MOs) [34]. The 

NBO method involves population analysis, which distributes computed electron density into orbitals in 

the way chemist think, in terms of physical organic chemistry. The interaction between filled and 

antibonding orbitals represents the deviation of the molecule from the Lewis structure and can be used 

as a measure of delocalization due to the presence of hydrogen bonding interaction [34]. These 

hyperconjugative interactions play an important role in hydrogen bonding. The donor-acceptor 

interaction (stabilization energy) can be calculated with second-order perturbation theory analysis. The 

hiperconjugative interaction between lone pair (LP) on acceptor oxygen and sigma antibonding on donor 

H-O (LPOσ*H-O’) in O…H-O’ complex, has been described as a major contribution to hydrogen bond 

interaction obtained by NBO analysis [70,71]. The NBO calculations were carried out at HF/6-311++G(d,p) 

level. The change of DFT to ab initio methods for NBO calculation has been described previously, to 

avoid possible unphysical results previously found when DFT method is used [72,73]. 

4. Conclusions 

Differences in molecular structures among the members of this series have significant influence on 

the characteristics of IHB C-O…H-O they present. The structures of these molecules were calculated 

using DFT and ab initio MO calculations, and contrasted with experimental data from 1H-NMR 

chemical shifts. The quantitative correlation between calculated geometrical parameters and 1H-NMR 

chemical shift in these IHBs was better described by DFT than ab initio molecular orbital calculations. 

Maps of molecular electrostatic potential (MEP) showed a large negative area on the oxygen and a 

small neutral area on the hydrogen of the C-O…H-O fragment. The neutral zone increased remarkably 

in structure VIII, which possess the strongest IHB. Quantitatively, MEP descriptors Vα(r) and Vmin 

exhibit a general tendency, where the increasing of IHB donor strength (reflected by Vα(r) leads to a 

decrease in the IHB acceptor strength (reflect by Vmin), but they do not correlate well with the  
1H-NMR data. Natural bond orbital (NBO) analysis shows that in our case, Wiberg bond order is a 

better descriptor of IHB strength than natural charges.  

Analyses of the second order stabilization NBO energies (∆Eij
(2)) shows that the main contributions 

to stabilization energy correspond to LPσ* interactions for IHB O1
…O2-H2 and the delocalization 

LPπ* for O2-C2 = Cα(β). The NMR chemical shift of H2 correlates well with the stabilization energies 

for LPtotalO2σ* O1-H1. For the above interaction, the difference in ∆Eij
(2) among the molecules can be 

attributed to the difference in the overlapping (Fij) ability between LP O1 and σ* O2-H2 orbitals, 

instead of the orbitals energy differences (εj–εI).The large energy for LP O2π* C2 = Cα(β) in VIII  

and VII (55.49 and 60.70 kcal/mol, respectively), compared with the remaining molecules (all  
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values less than 50 kcal/mol), suggests that the IHBs in VIII and VII are strongly resonance assisted  

hydrogen bonds. 

In view of results of MEP and NBO calculations, we note that the latter provide a better quantitative 

description of the strength of IHBs in these molecules, and is more suitable to understand and predict 

the characteristics of this interaction. These results not only might be of interest to gain insight into 

intramolecular hydrogen bonds but also can help to rationalize the design of new hydroquinones with 

biological activity. 
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