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Abstract: Damage to peripheral nerves caused during a surgical intervention often results 

in function loss. Fluorescence imaging has the potential to improve intraoperative 

identification and preservation of these structures. However, only very few nerve targeting 

agents are available. This study describes the in vivo nerve staining capabilities of locally 

administered fluorescent lectin-analogues. To this end WGA, PNA, PHA-L and LEL were 

functionalized with Cy5 (λex max 640 nm; λem max 680 nm). Transfer of these imaging agents 

along the sciatic nerve was evaluated in Thy1-YFP mice (n = 12) after intramuscular 

injection. Migration from the injection site was assessed in vivo using a laboratory 

fluorescence scanner and ex vivo via fluorescence confocal microscopy. All four lectins 

showed retrograde movement and staining of the epineurium with a signal-to-muscle ratio 

of around two. On average, the longest transfer distance was obtained with WGA-Cy5 

(0.95 cm). Since WGA also gave minimal uptake in the lymphatic system, this lectin type 

revealed the highest potential as a migration imaging agent to visualize nerves. 
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1. Introduction 

Damage to the peripheral nervous system (PNS) is a surprisingly common complication after 

surgery (e.g., prostatectomy, colorectal surgery and the removal of head and neck tumors) [1–5]. Many 

peripheral nerves are encountered within the surgical field and their intraoperative identification is 

often difficult. Unfortunately, trauma to these nerves can lead to chronic function loss and, as such, can 

negatively influence the quality of life of patients [6,7]. 

In recent years intraoperative fluorescence imaging was introduced to increase contrast between a 

target lesion and the surrounding anatomy. Fluorescent dyes such as fluorescein and indocyanine green 

(ICG) are routinely used in the evaluation of perfusion and optical detection of cancerous lesions [8]. 

During sentinel lymph node biopsies the addition of fluorescence, incorporated in a hybrid imaging 

agent, was shown to improve optical detection after local administration of a tracer [9,10].  

In the preclinical setting fluorescence has been used to image (peripheral) nerves. Unfortunately, 

fluorescent dyes alone have not yet shown the required specificity for nervous tissue necessary for their 

application in the clinic [11]. To increase specificity, a targeting moiety can be introduced that selectively 

binds to cells expressing a specific biomarker. This approach has already been applied frequently in cancer 

imaging [12,13]. Compounds that stain the entire nervous system have been described in literature, e.g., 

FAM-NP 41 [14]. Unfortunately, intravenous administration may also increase the chance of systemic 

toxicity. Since the latter is a great concern, we reasoned that, in analogy to the clinically applied sentinel 

node procedure [9,10], local tracer administration could provide an alternative means to highlight nerves 

while reducing the (systemic) dose [15]. Following a local administration, only the nerves in the anatomy 

that is being surgically interrogated will be stained. 

Lectins are a group of proteins, with size varying between 4–10 nm, which have shown promise as 

imaging agents [16–19]. Previously, these proteins have been used for (trans synaptic) axonal tracing 

in ex vivo histological research to identify neuronal pathways; labeling occurred with horse radish 

peroxidase (HRP)[16,18,20,21]. Lectins are able to bind to specific sugar groups (oligosaccharides), 

leading to affinity for proteoglycans (PGs) present on the extracellular matrix of peripheral nervous 

tissue [22]. These PGs consist of a protein core to which one or more glycan chains are attached [23], 

creating five distinct PGs; chondroitin sulfate proteoglycan (CSPG), heparan sulfate proteoglycan 

(HSPG), keratan sulfate proteoglycan (KSPG), dermatan sulfate proteoglycan (DSPG) and hyoluronan 

proteoglycan (HP) [24,25]. For examples of different lectins and their corresponding accessory sugar 

moieties and PGs, see Table 1. 

Reasoning that a local administration of lectins may also provide in vivo migration along peripheral 

nerves, in this study Cy5-labeled lectin derivatives were evaluated for their value in vivo. Performance 

of the lectins was scored by: (i) measuring the transfer distance of the lectins along the course of the 

nerve; (ii) determining the fluorescence signal measured in the nerve to the signal in the surrounding 

tissue (signal-to-background-ratio; SBR) and (iii) evaluating the binding mode after ex vivo incubation 

of nerve tissue. 
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Table 1. Lectins and their corresponding binding sugar moiety/proteoglycan [22,26–28]. 

Lectin Sugar Moiety PG Molecular Weight (KD) 

Triticum Vulgaris (Wheat germ 

agglutinin; WGA); 
β-D-GlcNAc, Neu5Ac 

HSPG, KSPG, 

HP 
36 

Arachis Hypogaea (Peanut lectin; PNA) Gal β (1–3)GalNAc CSPG, DSPG 110 

Phaseolus Vulgaris Leucoagglutinin 

(Red kidney bean; PHA-L) 

Antennary branched β (1–6) 

GlcNAc 

HSPG, KSPG, 

HP 
120 

Lycopersicon Esculentum (Tomato lectin; 

LEL) 
[GlcNAc β (1–4)]2−4 

HSPG, KSPG, 

HP 
71 

2. Results and Discussion 

2.1. Labeling Efficacy 

To study the value of lectins for in vivo visualization of nerves following a local tracer 

administration, the four different lectins used in this study (Table 1) had to be labeled with a 

fluorescent dye. We chose the far-red dye Cy5 based on its previous use in preclinical and clinical 

studies on fluorescence guided surgery [13,29]. To ensure optimal comparison between the lectins, all 

four were labeled via an identical labeling protocol (Figure 1A). The reaction between Cy5-OSu and 

the free lysine groups available on the lectins (Figure 1B,C lysine groups in blue), resulted in a 

successful fluorescent labeling with corresponding labeling ratios (Figure 2). Via absorption 

spectroscopy the average Cy5/lectin ratio was determined to be 1.38 ± 0.24, meaning that , at least one 

fluorophore was attached to the protein scaffold. Slight differences in labeling efficiency (Figure 2) 

can presumably be explained by the amount of available lysines on the lectins and their spatial 

conformation within the protein structure. As depicted in Figure 1, WGA has four available lysines per 

subunit, namely LYS33, LYS88, LYS134 and LYS149, whereas PHA-L and PNA have only 2, 

respectively LYS129/LYS215 and LYS77/LYS112. 

By increasing the ratio of fluorophores per lectins, the fluorescence signal in the stained nerve, and 

the resulting SBR, could potentially increase. The fluorescence signal will, however, not only be 

limited by the number of available binding sites on the molecule, but also by the quenching effect that 

will occur when these dyes are being placed within 10 nm of each other [30]. The maximum distances 

between available lysines were measured using the crystal structures (Figure 2) and Swissprot 

software. Here we found that, in the case of WGA, no more than one fluorophore per lectin is  

desired, as the maximum lysine-to-lysine distance is approximately 7.3 nm. For PNA and PHA-L, the 

maximum distance between the lysines is approximately 8.4 and 9.7 nm. As such, an average of  

1.5 fluorophores per lectin is considered the optimal labeling ratio. 

2.2. In Vivo Migration 

Good visualization of a nerve following local administration of a fluorescently labeled lectin requires 

migration of the imaging agent along the course of the nerve. Staining of the nerve will commence at the 

site of injection and continue along the length of the migration (Figure 3A). This process was studied  

in vivo using transgenic THY-1 YFP mice in which the nerves themselves are fluorescent in the  

520–550 nm region, thereby providing an internal reference for the migration path (Figure 3B; nerve in 
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green). An intramuscular injection was aimed at the distal part of the sciatic nerve in the hind leg (Figure 

3A). From this location, the lectin-analogues were allowed to migrate for 24 h. After this period, 

consecutive imaging at Cy5 settings (ex 633 nm, em 650–700 nm) was performed before and after 

dissection of the muscle tissue that surrounds the sciatic nerve (Figure 3C,D). 

Figure 1. Crystal structures and method of labeling. (A) WGA, consisting of two subunits, 

with four readily available lysines per subunit, covalently attached to sulphonated  

Cy5-OSu. (B) PHA-L, consisting of four subunits, with two readily available lysines per 

subunit. (C) PNA, consisting of four subunits forming a tetrahedral structure, with two 

readily available lysines per subunit. To the best of our knowledge, the crystal structure for 

LEL (tomato lectin) is unknown. 

 

Figure 2. Cy5/Lectin labeling ratio per lectin. 
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Figure 3. In vivo distribution of locally injected lectins (A) Schematic representation of the 

local injection of Cy5-lectins and the corresponding migration path. The injection site (IS) 

and sciatic nerve (N) are depicted in blue and green respectively. The lymphatic tract 

leading from the IS to the lymph node (LN) is shown in red. (B) Illustration of the YFP 

signal in the nerves (green) which served as control for the localization of the nerves. 

Representative images of the injection site before (C) and after (D) removal of the nerve, 

and excised nerves (E). In each of these pictures, yellow arrows -the injection site; purple 

arrows -fluorescence signal from injection site and nerve, red arrows -the control side 

nerve and light blue arrows -the control nerve.  

 

As the images in Figure 3 demonstrate, the background signal emitted by the injection site was so 

intense that initial removal of this tissue was required to enable detection of fluorescence in the nerve 

(Figure 3E). No fluorescence was observed in the control nerve in the opposite leg (Figure 3, red 

arrow). Clinically the drawback of an intense signal at the injection site is also encountered during, 

e.g., sentinel lymph node biopsy, a procedure that relies on the local injection of a radiocolloid and/or 

fluorescent dye that subsequently migrates through the lymphatic system [31]. In this application, the 

signal from the injection site sometimes overshines lymph nodes located in close proximity [32]. Here, 

technical solutions such as changes in the imaging equipment and imaging software have been 

successfully applied to circumvent this problem [33,34]. 

Analysis in the different animals revealed that all four lectins migrated along the nerve, but slight 

differences in the efficiency could still be recorded (Table 2, Figure 4). To do this, the maximal retrograde 

transfer length determined from the normalized curves produced by MATLAB, was set at the point 

where the (average) signal in the nerve was equal to the signal in the unstained control. 
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Table 2. Migration distance and signal to background ratios. 

 WGA PNA PHA-L LEL 

Average migration distance (cm) (SD) 0.95 (0.20) 0.72 (0.13 0.81 (0.20) 0.72 (0.20) 

SBR nervecontrol (Average + SD) 2.08 (1.11) 1.72 (0.32) 1.86 (0.70) 4.88 (2.48) 

SBR nervemuscle (Average + SD) 1.86 (1.00) 1.42 (0.12) 1.12 (0.13) 1.26 (0.46) 

SBRIpsilateral lymph node (Average + SD) 0.61 (0.26) 0.70 (0.06) 3.73 (1.36) 1.11 (0.87) 

SBRContralateral lymph node (Average + SD) 0.45 (0.42) 0.55 (0.17) 0.79 (0.33) 0.86 (0.62) 

SD = Standard deviation; cm = centimeters; SBR = signal to background ratio. 

Figure 4. Migration curves. Normalized curves of (A) WGA, (B) PNA, (C) PHA-L and 

(D) LEL show the migration of the lectins along the individual nerves. On the y-axis the 

normalized intensity signal is depicted, on the x-axis the migration distance (cm).  

 

The value of the lectins as nerve visualizing imaging agents will increase with an increasing 

migration distance. For all four lectins-analogues, the normalized curves show a fast decrease in signal 

intensity along the nerve (Figure 4). Although not significant (p-value = 0.659), WGA gave the best 

migration properties (0.95 cm; Figure 4A) compared to PHA-L (0.81 cm; Figure 4C), and PNA and 

LEL (both 0.72 cm; Figure 4B,D). Local identification of peripheral nerves may help surgeons to 

navigate around the complex (nerve) anatomy in the head-and-neck area; numerous (small) nerves are 

located within a surgical field of 2 × 2 cm [35]. One may question the value of a “mere 1 cm 

migration” along the nerve within this field of view. However, during our clinical studies in the field of 

A B

C D
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fluorescence guided sentinel node biopsy we already found that fluorescence may provide surgical 

guidance towards sentinel nodes located within 1 cm of the injection site [36]. In our view this 

suggests that the compound described here may already provide value. Chemical modification of these 

imaging agents (e.g., functionalization, solubility) may increase the migration along the nerves which 

will further broaden the application of this approach. 

2.3. Signal Intensity 

In vivo visualization efficacy depends on the intensity of the fluorescence signal emitted by the 

nerve-bound lectins and the difference between the signal in the nerve and the surrounding tissue.  

The degree of visibility of the individual nerves was determined by calculating the SBR in the 

lectin-stained nerve compared to the control nerve (SBRcontrol; Table 2). The SBR of Cy5 labeled WGA 

and LEL was shown to be 1.1 to 2.8-fold higher than the ratio found for PNA and PHA-L. The SBR 

between the signal in the nerve and the signal in the control muscle tissue (SBRmuscle; Table 2) reveals 

how well a stained nerve can be potentially detected when surrounded by non-stained tissue. With 

WGA a ratio of 1.86 was obtained while with LEL and PHA-L SBR values of 1.26 and 1.12 were 

found respectively (Table 2). Based on the assumption that a SBR of approximately 2 is desirable for 

efficient in vivo visualization [37], it can be concluded that WGA would be the most effective imaging 

agent in this setting.  

Alternative Drainage Routes 

After local injection, edema is created at the site of injection. As a result, part of the injected 

volume may be transported through the lymphatic system to the lymph nodes (Figure 3A). Since in 

this experiment the aim was to achieve maximal selective staining of the nerves, such distribution via 

the lymphatics was unwanted. To determine the degree of lymphatic clearance through the lymphatic 

system, the SBR between the fluorescence signal in the nerve and inguinal lymph nodes (LN) was 

calculated (signal nerve/signal LN; Table 2). The SBR between the fluorescence signal in the 

ipsilateral lymph node and the injection site was shown to be higher for LEL and PHA-L, compared to 

WGA and PNA. Similar results were obtained when comparing the fluorescence signal in the injection 

site and the contralateral inguinal lymph node. Although the lymphatic drainage makes lectins like 

PHA-L (SBR = 3.73) candidates for sentinel node imaging, the lower degree of lymphatic clearance of 

WGA and PNA makes these two compounds more suitable for nerve specific staining.  

2.4. Evaluation of Binding Mode 

Staining of a nerve by fluorescent labeled lectins is influenced by the availability and accessibility 

of PGs (See Table 1). Peripheral nerves, such as the sciatic nerve, are surrounded by a dense layer of 

connective tissue. This layer, the epineurium, encloses multiple nerve fascicles as well as fatty tissue 

and blood vessels. Smaller branches of these blood vessels penetrate into the perineurium, a protective 

sheath serving as blood-nerve barrier that surrounds the different fascicles. Within these fascicles, 

nerve fibers are bundled together. Each fiber is again surrounded by its own protective layer (the 

endoneurium; a thin layer of connective tissue) that encloses individual axons (Figure 5) [4,38]. 
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Figure 5. Schematic overview peripheral nerve wherein Cy5/ WGA lectin binds to PG’s 

located on the epineurium and extracellular matrix. 

 

To assess the binding mode of the individual lectins after local in vivo injection, the nerves were 

analyzed ex vivo using fluorescence confocal microscopy. This experiment demonstrated that in all 

cases, after intramuscular injection, a Cy5 signal could be detected at the location of the epineurium 

throughout the course of the nerve. The epineurium, which consists out of collagen type 1 (connective 

tissue), expresses the sugar moieties targeted by the different lectins (Table 1) [39,40]. 

For all lectins, the intensity of the staining was the highest at the distal side of the nerve (also 

representing the injection site, Figure 6A). While fluorescence could still be detected in the middle part 

(Figure 6B) and the proximal part of the nerve (Figure 6C), the intensity of the signal decreased at 

longer migration distances. The latter is in agreement with the findings shown in Figure 4, which 

illustrates a gradual decrease in signal along the course of the nerve. 
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Figure 6. Binding mode after in vivo local administration. The fluorescence signal in 

nerves from Thy-1 YFP mice (YFP in green and Cy5 in red) was traced from (A) the 

injection site to (B) the middle and (C) the proximal side of the nerve. In all cases, staining 

of the epineurium was observed with a decrease in signal when the distance from the 

injection site increased. 

 

To determine if the migration process influences the binding of the lectin-analogues, nerves were 

also stained ex vivo. To this end, excised nerves were placed in a solution containing (one of) the  

Cy5- labeled lectins. By doing so, exposure to the imaging agent may not be limited to the epineurium. 

This, however, resulted in a highly similar staining pattern compared to which is observed after in vivo 

incubation (Figure 7); Staining of the epineurium and not of other structures within the nerve (e.g., the 

axons) was observed. As staining of the epineurium will not affect the signal conduction within the 

nerve and the neurons itself, this feature can be considered favorable for in vivo use. This may also 

provide an advantage over neuronal tracing using neurotoxins [15]. 

Previous studies have shown that CSPG and HSPG are present on the endoneurium, epineurium and 

perineurium (Figure 5) of the peripheral nerves [41,42]. WGA the best binding lectin in this study was 

shown to have the highest affinity for HSPG, KSPG and HP [23–25,43]. However, the lectins PHA-L 

and LEL share its affinity for HSPG (see Table 1). For that reason, something other than the affinity 

for HSPG seems to drive the difference in migration. Most likely, the size of the lectin is a determining 

factor during the migration, where smaller molecules show increased migration speed. As shown in 

Table 1 and Figure 1, WGA is the smallest of the lectins evaluated; it only consists out of two subunits, 

while PHA-L and PNA consist out of four subunits (structure of LEL is unknown, see above).  



Molecules 2014, 19 9885 

 

 

Figure 7. Ex vivo incubation. Ex vivo incubation confirmed the in vivo localization of 

staining. (YFP in green and Cy5 in red)  

 

3. Experimental Section 

3.1. Experimental Equipment 

The fluorescent dye Cy5 was purified with an HPLC 1525 Pump and 2489 UV/Vis detector 

(Waters, Etten-Leur, The Netherlands), using a Reprosil-Pur 120 C18-AQ 10 µm column (Dr.Maisch 

GmbH, Ammerbuch-Entringen, Germany) using a 60 min gradient of H2O/MeCN (0.1% TFA)  

95:5 – 5:95. Reaction mixtures were filtered using 10K Amicon Ultra-0.5 mL Centrifugal Filters 

(Merck Millipore, Billerica, MA, USA). Centrifugation was performed with an Eppendorf 5415D 

centrifuge (Eppendorf Nederland B.V., Nijmegen, The Netherlands). Absorption was measured with a 

Nanodrop ND-1000 spectrophotometer (Thermo Scientific, Wilmington, DE, USA). Protein figures 

were made using SwissProt PDB viewer and Adobe Illustrator CS6 (Adobe Systems Inc., San Jose, CA, 

USA). The WGA, PNA, PHA-L lectins were purchased from Sigma Aldrich (St. Louis, MO, USA). 

The LEL lectin was purchased from Vector Laboratories Inc. (Burlingame, CA, USA). 

An IVIS Spectrum animal fluorescence scanner (Perkin Elmer, Waltham, MA, USA) was used for 

evaluation of in vivo migration. The acquired IVIS data was analyzed with Living Imaging Acquisition 

and Analysis software. Furthermore, for analysis of migration and intensity signals in the nerves, the 

raw IVIS data was analyzed with MATLAB software (Mathworks Inc., Torrance, CA, USA). An SP5 



Molecules 2014, 19 9886 

 

 

Confocal Microscope (Leica Microscopes B.V., Rijswijk, The Netherlands) was used for fluorescence 

confocal microscopy. Nerve tissue was placed on glass bottom dishes (Ø 35 mm dish, No. 1.5,  

Ø 14 mm glass surface, MatTek, Ashland, MA, USA) prior to imaging. Confocal images were 

acquired with Leica LAS AF software. Statistical analysis was performed with SPSS Statistics data 

analysis (Version 20, SPSS Inc., Chicago, IL, USA).  

3.2. Synthesis of Sulphonated Cy5-OSu 

Sulphonated Cy5 was synthesized according to previously described methods [44]. The OSu 

activation was performed in DMSO (800 μL), using HSPyU (5 eq) and DIPEA (10 eq). After 

completion of the reaction, water (0.1% TFA) was added (3.2 mL) and the mixture was purified by 

RP-HPLC. The collected fractions were lyophilized and a dark blue solid (Sulphonated Cy5-OSu) was 

obtained (28.1 mg, 46%). MS MALDI-TOF Calculated: m/z 860.0, found: m/z 862.8. Of this dark blue 

solid a stock solution was prepared (0.97 mM in DMSO). 

3.3. General Conjugation Procedure 

WGA (Figure 1A), PHA-L (Figure 1B) and PNA (Figure 1C), and LEL were each dissolved in 200 µL 

of 0.1 M phosphate buffer pH 8.4 and Cy5-OSu stock solution was added. The aim was to achieve a 

labeling ratio of 1–1.5 fluorophores per lectin. The necessary equivalents of dye per lectin were 

calculated using Equation (1) and the labeling ratios that were determined by a test-conjugation  

(Table 3). The test-conjugation was performed to determine how many equivalents of fluorophore were 

necessary to achieve the optimal labeling ratio. As a starting point, 5 equivalents of fluorophore were 

used and the ratios were calculated according to Equations (2)‒(4). The obtained ratios were inserted 

in formula 1 and the appropriate amounts of equivalents calculated. Note: the compounds obtained 

during the test-conjugations were not used for further experiments. The reaction was repeated with the 

calculated equivalents of fluorophore (Table 4) and the reaction mixture was gently stirred at room 

temperature for 2 h. Hereafter, the mixture was transferred to a 10KD cut-off filter (Amicon) and 

centrifuged at 14.000 G. Saline (400 µL) was added and the mixture was again centrifuged, this was 

repeated until the filtrate was colorless. Subsequently, the residue (blue liquid) was collected. 

Equation (1): Calculation of needed equivalents of fluorophore ݏݐ݈݊݁ܽݒ݅ݑݍܧ	݊݅ݐ݈ܿ݁/݁ݕ݀ = 	 ൬ ൰݊݋݅ݐܽ݃ݑ݆݊݋ܿ	ݐݏ݁ݐ	݉݋ݎ݂	݋݅ݐܽݎ	݈ܾ݃݊݅݁ܽܮ݋݅ݐܽݎ	݈ܾ݈݃݊݅݁ܽ	݀݁ݎ݅ݏ݁ܦ  ݏݐ݈݊݁ܽݒ݅ݑݍ݁	5	ݔ	
Table 3. Amounts used for final conjugation. 

 WGA PNA PHA-L LEL 

Labeling ratio from test-conjugation 1.08 1.25 0.75 1.48 
Amount of lectin (nmol) 27.8 9.1 4.2 14.1 

Amount of fluorophore (nmol) 191.8 54.6 35.3 70.5 
Equivalents of dye/lectin 6.9 6.0 9.9 5.0 

Equation (2): Fluorophore concentration ݊݋݅ݐܽݎݐ݊݁ܿ݊݋ܥ	݌݋ݎ݋ݑ݈݂ℎ݁ݎ݋ = ൬݀݁ݎݑݏܽ݁ܯ	250݊݋݅ݐ݌ݎ݋ݏܾܽ	000	 × 	0.1 ൰ × 100 
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Equation (3): Amount of fluorophore ݈ܶܽݐ݋	ݐ݊ݑ݋݉ܽ	݂݋	݌݋ݎ݋ݑ݈݂ℎ݁ݎ݋ = ݁ݎ݋ℎ݌݋ݎ݋ݑ݈݂	݊݋݅ݐܽݎݐ݊݁ܿ݊݋ܥ ×  ݁݉ݑ݈݋ݒ	݈݁݌݉ܽݏ	݈ܽݐ݋ܶ
Equation (4): Labeling ratio ݈ܾ݃݊݅݁ܽܮ	݋݅ݐܽݎ = ݊݅ݐ݈ܿ݁	݂݋	ݐ݊ݑ݋݉ܽ	݈ܽݐ݋ܶ݁ݎ݋ℎ݌݋ݎ݋ݑ݈݂	݂݋	ݐ݊ݑ݋݉ܽ	݈ܽݐ݋ܶ  

Table 4. Calculation data. 

 WGA PNA PHA-L LEL 

Measured absorption 0.068 0.019 0.008 0.028 

Fluorophore concentration (nmol/μL) 0.272 0.076 0.032 0.112 

Total sample volume (µL) 139 139 128 150 

Total amount of fluorophore (nmoL) 37.81 10.56 4.10 16.80 

Total amount of lectin (nmoL) 27.80 9.10 4.15 14.10 

3.4. Labeling Ratio Analysis 

The samples were diluted 100× and 2 µL of each sample was used for the absorption spectroscopy 

measurement (Nanodrop). The labeling ratio was calculated according to the following equations, 

using and/or generating the data in Table 3. 

3.5. In Vivo Distribution 

To study the in vivo distribution of the lectins, Thy1-YFP mice were used (n = 12). In these genetically 

modified mice, neurons are fluorescently labeled with YFP. The YFP signal can be used as an internal 

control regarding the location of (peripheral) nerves. Per animal, 20 μL (32 μM lectin-Cy5) was injected in 

the thigh muscle and the injection was aimed for the sciatic nerve (Figure 1A). All animals tolerated the 

lectin injections without evidence for systemic toxicity, this is in concordance with previous literature 

where lectins were injected in the fore limb [17]. Animal experiments were conducted according to Dutch 

law and after approval was obtained from the institutional animal ethics committee. 

Twenty four hours after injection, the animal was sacrificed, whereafter fluorescence imaging with 

IVIS was performed to visualize the distribution of the lectins throughout the sciatic nerve. The 

contralateral side was taken as a negative control. Fluorescence images were acquired with Cy5 filter 

settings (λ ex max, 640 nm; λ em max, 680 nm), while the YFP signal was measured at λ ex max, 465 nm 

and λ em max, 520 nm. To depict the staining sites and locations, the nerves in mice were imaged 

three times with the IVIS, first with intact skin, second with the skin removed and last with the muscle 

structures surrounding the nerve removed. Both the injection site nerve and the control nerve were 

collected from the mice for ex vivo imaging. The fluorescence signal in the inguinal lymph nodes was 

analyzed to study the migration of the lectins through the lymphatic system (Figure 3A). Both the 

ipsilateral and the contralateral inguinal lymph nodes were removed for analysis. 

The measured intensities (photons/s/cm2/sr) were quantified by Living Imaging Acquisition and 

Analysis software. The total flux (photons/s/cm2/sr) in the nerves was measured by drawing a region of 

interest around both nerves. The signal to background ratios were measured by: a) dividing the signal 
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of the injection site nerve by the control nerve and b) dividing the signal of the injection site nerve by 

the signal in the surrounding muscle tissue on the contralateral side. 

MATLAB software was used to generate a signal profile along the sciatic nerve (injection site and 

control), based on the raw IVIS data. A virtual pixel-wide line was drawn along the ex vivo sciatic 

nerve to measure the signal intensity. The counts measured and generated by the software were 

converted into a normalized curve for all the experiments. The maximum of these curves was 

determined as the site of injection and the normalization was done by setting the peak corresponding to 

the Cy5 fluorescent signal along the injection nerve, at y = 1. From punctum maximum (y = 1), the 

length of the curve over the x-axis was measured in pixels, and thereafter converted into centimeters. 

A signal (curve) higher than the control nerve signal was designated as fluorescent signal in the nerve 

(Figure 4). With this technique, the migration of the x-axis in number of pixels (0.0268 cm per pixel) 

was calculated. The average migration distance of all lectins were compared using a Kruskal Wallis 

test, a p-value of < 0.05 is accepted as statistical significance. 

3.6. Ex Vivo Incubation and Fluorescence Confocal Microscopy 

The location of the signal was analyzed using fluorescence confocal imaging. Nerves were assessed 

after local injection and the control nerves were used for ex vivo incubation (1 h) experiments. For 

analysis with confocal microscopy, the nerves were washed with PBS after the incubation and placed 

on glass bottom dishes, which were mounted on the confocal microscope. YFP was excited with a 488 nm 

laser and emission was detected between 520 nm and 550 nm. Cy5 was excited with a 633 nm laser 

and emission was detected between 650 nm and 700 nm. The location of the lectin was assessed with 

the Cy5 signal in/on the nerve. 

4. Conclusions 

Fluorescent lectins were shown to be potential candidates for in vivo visualization of the peripheral 

nerves. Using local administration, WGA was shown to have the best properties of the four different 

lectins tested. Since all four lectins only showed staining in the nerve epineurium, the chance of 

inducing systemic toxic side effects after administration of these agents will be limited.  
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