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Abstract: The versatile oxidase enzyme laccase was immobilized on porous supports such 

as polymer membranes and cryogels with a view of using such biocatalysts in bioreactors 

aiming at the degradation of environmental pollutants in wastewater. Besides a large 

surface area for supporting the biocatalyst, the aforementioned porous systems also offer 

the possibility for simultaneous filtration applications in wastewater treatment. Herein a 

“green” water-based, initiator-free, and straightforward route to highly reactive membrane 

and cryogel-based bioreactors is presented, where laccase was immobilized onto the porous 

polymer supports using a water-based electron beam-initiated grafting reaction. In a second 

approach, the laccase redox mediators 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic 

acid) (ABTS) and syringaldehyde were cross-linked instead of the enzyme via electron 

irradiation in a frozen aqueous poly(acrylate) mixture in a one pot set-up, yielding a 

mechanical stable macroporous cryogel with interconnected pores ranging from 10 to 50 

µm in size. The membranes as well as the cryogels were characterized regarding their 

morphology, chemical composition, and catalytic activity. The reactivity towards waste- 

water pollutants was demonstrated by the degradation of the model compound bisphenol A 

(BPA). Both membrane- and cryogel-immobilized laccase remained highly active after 

electron beam irradiation. Apparent specific BPA removal rates were higher for cryogel- 

than for membrane-immobilized and free laccase, whereas membrane-immobilized laccase 
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was more stable with respect to maintenance of enzymatic activity and prevention of 

enzyme leakage from the carrier than cryogel-immobilized laccase. Cryogel-immobilized 

redox mediators remained functional in accelerating the laccase-catalyzed BPA 

degradation, and especially ABTS was found to act more efficiently in immobilized than in 

freely dissolved state. 

Keywords: cryogels; membranes; laccase immobilization; electron beam irradiation; 

bioreactor; degradation of pollutants; redox mediator immobilization 

 

1. Introduction 

An emerging issue of the 21st century is related to micro-pollutants increasingly detected in waters. 

Such compounds are typically found in the ng/L to the lower µg/L range and are often not or not 

sufficiently removed in conventional wastewater treatment plants. Micro-pollutants include diverse 

compounds of various origins and uses (e.g., industrial chemicals, pesticides, pharmaceuticals and 

personal care products), and may be emitted from diffuse as well as point sources [1–3]. For instance, 

anything from half to almost all of a pharmaceutical drug taken by a patient can pass through the body 

without being absorbed or metabolized and the original form of a drug can also be regenerated from 

excreted metabolites, together with incomplete elimination in wastewater treatment plants resulting in 

chronic contamination of the environment by drug residues [4,5]. Major concerns about micro-

pollutants in the environment are related to potentially hazardous, undesirable biological activities such 

as, e.g., endocrine disruption [1,6]. 

To eliminate critical contaminants from water, recent trends favor environmentally friendly 

technologies. The use of enzymes is environmentally benign, efficient, and more selective compared to 

chemical catalysts. For instance, enzymes enable milder reaction conditions, and may lead to higher 

reaction rates. The oxidoreductase laccase, which is prominent in fungi but also known from plants, 

bacteria, and insects, has been intensively studied for the purpose of oxidation-mediated degradation of 

pollutants, and to elucidate the involved oxidation mechanisms [7,8]. Laccase redox mediators, small 

molecules of synthetic or natural origin representing laccase substrates, are known to speed up the 

oxidation rates of various environmental pollutants and to expand laccase substrate ranges to 

compounds that cannot directly be attacked by laccases. Hence, such compounds are very attractive for 

environmental biotechnology, and have gained much attention. However, there are also major 

drawbacks related to certain laccase redox mediators such as sometimes high costs, losses caused by 

irreversible oxidation/degradation and hence comparatively high concentrations needed for efficient 

catalysis, losses from reaction systems in case of continuous operation, and sometimes toxic  

by-products [8,9].  

The use of free enzymes is limited due to their labile nature, which makes a reuse difficult. In 

contrast, immobilized enzymes may offer several advantages such as, e.g., an improved thermal and 

operational stability, an enhanced activity resulting from the stabilization of a hyperactivated form of 

the enzyme, and improvements with respect to enzyme specificity or selectivity [10–12]. By 

immobilizing enzymes on a support the system offers furthermore the advantage of easy separation of 
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the enzyme from the reaction mixture while the product will not be contaminated by the biocatalyst [13]. 

Laccase-based degradation processes can be efficiently applied using biocatalytic membrane reactors. 

These membrane reactors combine two tasks as the membrane serves as a support material for the 

biocatalyst and simultaneously separates the products by size exclusion. Different examples for 

immobilization of enzymes on polymer supports such as membranes, by adsorption, covalent coupling, 

cross-linking, and incorporation in the polymer bulk have been discussed previously [14–19]. Previous 

studies focused on the immobilization of laccase on polyethersulfone membranes by surface 

adsorption [20], or by covalently coupling a pre-functionalized hydrophilic polyvinylidene membrane 

(using hydrazine) with an aldehyde-derivatized laccase [21]. Furthermore, covalently coupling of 

laccase on a polyamide membrane was performed using glutaraldehyde (toxic) as coupling agent [22], 

or by immobilization (by surface adsorption or by glutaraldehyde coupling) of laccase onto TiO2 

nanoparticles followed by incorporation of these particles into the membrane polymer (mixing with the 

polymer solution used for membrane preparation) [23]. In the context of biocatalyst immobilization for 

pollutant degradation, we are not aware of attempts to immobilize laccase redox mediators (maybe 

instead of or along with the catalyzing enzyme). Provided that stable binding of redox mediators to 

suitable carriers together with the maintenance of their functionality could be achieved, this would 

provide a very attractive approach with the potential to circumvent known drawbacks of redox 

mediators related to losses from the reaction system as mentioned before.  

Recently, we developed a new approach to covalently immobilize the enzyme trypsin on different 

commercial membranes (pore sizes: 0.22–0.45 µm) via electron beam (E-Beam) irradiation [24]. This 

approach combines surface activation of the matrix polymer and simultaneous immobilization of the 

enzyme by use of low-energy E-Beam in an aqueous system. The procedure neither requires any 

preceding surface functionalization, no prior functionalization of the enzyme, nor the use of catalysts 

or other toxic reagents.  

In the course of this publication we furthermore introduce a second in-situ E-Beam-based approach 

to immobilize enzymes using macroporous polymeric cryogels (MPC) as carrier. MPCs are 

characterized by a three-dimensional network of interconnected pores ranging from 1–100 µm in size 

and a high porosity of about 90%. Usually, a solution of organic precursors and initiators is dissolved 

in water, frozen, if appropriate initiated, and stored at temperatures about −20 °C to −30 °C during 

reaction [25]. By using high-energy electron radiation cryogels can be synthesized without additional 

initiators or cross-linkers within 10 min (excl. freezing time) as larger bulk materials allowing 

furthermore the simultaneous incorporation of macromolecules in a one-step process [26–28].  

Generally, the immobilization of biomolecules by high-energy radiation is combined with 

limitations. Radiolytic inactivation appears due to the fragmentation or the modification of amino acid 

side chains [29,30]. Several groups have studied the mechanism of radiolytic inactivation of proteins. 

Differences in the degradation behavior of proteins were observed in dependence on their physical 

state (aqueous solution, frozen aqueous solution or lyophilized) [31]. It was demonstrated that the 

radiation damage was decreased at lower temperatures [31,32]. In preliminary studies with trypsin as 

incorporated enzyme we could already prove that E-Beam at room temperature led to inactive 

enzymes, whereas the activity remains very high after irradiation at −15 °C [33]. 

In this study a commercially available laccase from the white-rot Trametes versicolor was used for 

immobilization on the two porous polymer systems (membrane and cryogel) to prepare bioreactors 
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using two different E-Beam-based techniques. In a second approach the two laccase redox mediators 

[syringealdehyde = Syr; 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) = ABTS] (Figure 1) 

were immobilized instead of the enzyme laccase, in order to evaluate the possibility of circumventing 

known drawbacks related to the use of freely dissolved redox mediators as mentioned before. Syr is a 

natural phenolic compound previously reported to act as a ‘true’ redox mediator, i.e., being re-reduced 

after oxidation by pollutants thus becoming again available for the catalytic cycle [34,35], whereas 

ABTS is a synthetic redox mediator partly being degraded during follow-up reactions of its  

laccase-oxidized form [36]. In both cases, a water-based “green” in-situ immobilization approach is 

used. For the immobilization on commercial polyvinylidene fluoride (PVDF) membranes low-energy 

E-Beam was applied. For cryogel synthesis we used high-energy E-Beam. One main advantage besides 

the abstinence of initiators/toxic cross-linkers, and the water-based approach is the evenly distribution 

of the enzyme/redox mediators through the entire cross-section of the porous polymer matrix. The 

membranes and cryogels were characterized regarding their morphology, chemical composition, and 

catalytic activity. The catalytic activity was investigated by using the endocrine disrupting compound 

bisphenol A (BPA), a widespread environmental contaminant applied in the production of epoxy  

resins [6,37], as a model pollutant in degradation experiments. 

Figure 1. Chemical structures of the membrane polymer PVDF, and the redox mediators 

Syr and ABTS. 
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2. Results and Discussion 

2.1. Membranes and Cryogels as Carrier Materials – Morphological and Physico-Chemical Properties 

For the immobilization of laccase on membranes we used an E-Beam-initiated grafting method. The 

E-Beam treatment results in the generation of a mixture of ions, excited molecules and free radicals as 

described for the radiolysis of water ensuring the activation of both the dissolved enzyme [24] as well 

as of the membranes [38–40]. The formed radicals/activated species can undergo various reactions, 

such as cross-linking or recombination reactions. This way, links between the polymer matrix and the 

enzyme or redox mediators can be formed (Figure 2).  

Since radicals are formed at the membrane polymer surface as well as at the dissolved enzyme 

simultaneously, chemical bonds can be formed by recombination of adjacent radicals (e.g., a polymer 

radical and an enzyme radical) in a nonspecific manner. It is worth emphasizing that the use of an 

aqueous system is a crucial requirement since different results were obtained in the dry state as also 

reported in the literature [41]. 
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Figure 2. Procedure for the coupling of laccase on a polymer membrane using E-Beam irradiation. 

 

This E-Beam immobilization method was compared with a common used physical adsorption 

immobilization method (coating without E-Beam) at the membrane surface. 

Figure 3. SEM images of the untreated reference membrane and of the membranes after 

immobilization of laccase, Syr, and ABTS using E-Beam treatment and by physical adsorption. 
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SEM analysis of the treated membranes indicates that no coating layer or pore blocking was 

obtained by laccase or by the redox mediators on the surface (Figure 3). Furthermore, the E-Beam 

treatment did not lead to any damages of the membrane e.g., cracks or hole formation. The PVDF 

membranes show a similar pore and surface structure after the different immobilization experiments 

using E-Beam irradiation (Figure 3, left side) compared to the non-irradiated membranes 

(immobilization by physical adsorption), respectively (Figure 3, right side). 

The successful immobilization of the different compounds (Figure 1) on the membrane surface was 

confirmed by XPS analysis (Table 1).When compared to the reference membrane it is obvious that the 

immobilization of laccase resulted in a surface with a significantly increased content of oxygen  

(E-Beam: 7.1%, physical adsorption: 3.9%) and nitrogen (E-Beam: 3.1%, physical adsorption: 2.2%). 

Since these two atoms are not present in the membrane polymer PVDF, they can be attributed to the 

immobilized enzyme on the membrane surface. Furthermore, the immobilization of laccase seems to 

be superior when treated by E-Beam compared to physical adsorption because both oxygen and 

nitrogen amount are higher when treated with E-Beam. 

Table 1. Atomic composition at the surface of the membranes after immobilization of 

laccase, syringaldehyde, and ABTS using E-Beam treatment and physical adsorption, 

respectively, as determined by XPS analysis. 

 
Elemental ratio  

(relative atom %) 

Label F O N C 

Mem_Ref 51.0 0.8 - 48.2 
Mem_Lac_EB 36.7 7.1 3.1 53.1 
Mem_Lac_ads 42.9 3.9 2.2 50.1 
Mem_Syr_EB 48.1 1.9 0.1 49.9 
Mem_Syr_ads 48.7 1.9 - 49.5 

Mem_ABTS_EB 50.1 1.0 0.2 48.7 
Mem_ABTS_ads 49.0 1.0 0.2 49.9 

These results could be confirmed by the BCA test for determination of the laccase amount that was 

immobilized to the membrane: in the case of E-Beam treatment 7.7 µg laccase/mg membrane was 

found, physical adsorption resulted in 6.9 µg laccase/mg membrane. Since both methods were 

conducted using a similar laccase concentration and similar treatment time, this can be explained with 

the fact that E-Beam treatment leads to covalent attachment of the enzyme to the membrane surface 

while laccase that was physically adsorbed to the membrane surface can be re-extracted during the 

washing steps after the immobilization procedure. Compared to the large enzyme molecule the two 

redox mediators could not be detected with the same high quantities, however, in both cases an 

increased amount of oxygen (syringaldehyde: 1.9%, ABTS: 1.0%) was found compared to the untreated 

membrane (Mem_Ref). 

In a second approach laccase and two different redox mediators were incorporated in a porous 

cryogel during the cryogel synthesis, respectively. Macroporous polymeric cryogels with incorporated 

laccase, syringaldehyde and ABTS were successfully synthesized by E-Beam initiated cross-linking 

and yielded mechanical stable porous gels with a sponge-like morphology and pore sizes in the range 
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of 50 µm (Figure 4). The irradiation time was no longer than 10 min. The crosslinking reaction leading 

to the macroporous material is initiated by secondary electrons which were created by a pulsed 

electron beam in the semi-frozen medium. As a consequence radicals or radical ions are formed which 

starts the reaction or form cross-linkable active sites. While the reaction mechanism of  

electron-initiated curing of acrylate and methacrylate bearing molecules is well understood, it needs to 

be investigated for enzymes or other functional molecules [42]. In a previous study we investigated the 

reaction mechanism of the grafting of poly(allyl amine) to polymeric monoliths by quantum chemical 

calculation [43]. The study revealed that poly(allyl amine) reacts with the radical species in course of 

an addition reaction and becomes grafted to the monolith’s surface.  

Figure 4. SEM images of the morphology of the standard cryogel, and of the cryogels with 

immobilized laccase, ABTS, syringaldehyde. 

 

The influence of the immobilized laccase and redox mediators on the morphology and thermal 

stability was low. The thermal degradation of the gels started at 200 °C in all cases. This may be due to 

the fact that the bioactive substances are not directly incorporated in the cryogel matrix but grafted to 

side and end chains of the cross-linked polyacrylate matrix. 

The gravimetric gel content was examined from the ratio of the weight of the dry cryogel and the 

educt weight. As presented in Figure 5 the gel content decreased with increasing concentration of  

co-monomer. This might be caused by inhibition of the reaction due to the low molecular weight 

molecules. This effect was already described for the immobilization of different molecular weight 

polyethylene glycols [28]. The swelling ratio of MPC_St was in the order of 7.0 ± 0.4. The XPS 
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analysis of the cryogel composition is hampered by the highly porous shape of the cryogels and the 

low sampling depth of the method (<10 nm). The examined atomic concentrations of sulfur and 

nitrogen for MPC_Lac and MPC_ABTS were close to the detection limit of the method (<1 atom %). 

Figure 5. Gel content of a standard cryogel as well as with immobilized laccase, ABTS, 

and syringaldehyde. 

 

2.2. Activity and Stability of Membrane- and Cryogel-Based Bioreactors 

Laccase could be successfully immobilized on the membranes, yielding recoveries of about 10 and 

7% of the initially applied activity after immobilization using E-Beam and physical adsorption, 

respectively (Table 2). However, since the enzyme immobilization is accomplished by simultaneous 

coating with laccase solution and irradiation of the membrane (see also Section 2.1 and Figure 2) it is 

not expected that every enzyme molecule will be close to the membrane surface at the event of 

irradiation to form a covalent bond. Nevertheless, higher activity yields would likely also be achieved 

upon optimization of the immobilization procedures applied within the present study. Similar total 

laccase activities recovered after immobilization (calculated as the sum of laccase activity recovered 

from the washing solution and the immobilized laccase on the basis of the data shown in Table 2, 

respectively) of 65 (E-Beam) and 69% (physical adsorption) indicate an inactivation of the enzyme 

during the immobilization procedures. However, the activation loss seems not to be caused by the  

E-Beam treatment since the washing solutions of both experiments (immobilization by E-Beam and 

physical adsorption) resulted in comparable activities. Probably the contact of the enzyme with the 

polymer surface leads to denaturation of the enzyme to a certain extent as has been already discussed 

in previous studies [24]. The apparent activities of the immobilized laccase towards ABTS as a 

substrate corresponded to approximately 0.17 and 0.11 U/mg dry mass for irradiated and non-irradiated 

membranes, respectively. Together with a slightly higher recovery of laccase activity in the washing 

solution of the non-irradiated than in that of the irradiated membranes (Table 2), these results are in 

line with a more efficient binding of the enzyme upon E-Beam irradiation than by physical adsorption 
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as already observed by XPS analysis (Table 1) and by the BCA test for determination of the 

immobilized laccase concentration (Section 2.1). Moreover, an apparent specific laccase activity of 

about 22.1 U/mg laccase deduced for E-Beam immobilized laccase on membranes (calculated from 

values of 0.17 U/mg membrane as above and 7.7 µg laccase/mg membrane, see Section 2.1) vs. an 

apparent specific activity of about 15.9 U/mg laccase for physical adsorbed laccase on membranes 

(calculated from values of 0.11 U/mg membrane as above and 6.9 µg laccase/mg membrane, see 

Section 2.1) points to an activity-stabilizing effect of the E-Beam irradiation. Such an effect may have 

been caused by a stabilization of the active conformation of the enzyme by E-Beam-induced covalent 

binding of the enzyme protein to the membrane surface. Similarly, activity-stabilizing effects of 

covalent binding have been reported for laccase immobilization via cross-linking techniques [44,45].  

Table 2. Distribution of laccase activity within different fractions resulting from laccase 

immobilization on membranes by E-Beam and physical adsorption. 

 
Fraction 

Activity * 
(U [% recovery of activity] **) 

Mem_Lac_EB Mem_Lac_ads 

Primary solution 8.85 ± 0.11 (100) 8.85 ± 0.11 (100) 
Washing solution *** 4.88 ± 0.43 (55) 5.47 ± 0.47 (62) 
Immobilized laccase 0.92 ± 0.02 (10) 0.59 ± 0.01 (7) 

* Data represent means ± standard deviations for triplicate determinations. ** % of initial 

activity in the primary solution used for immobilization. *** Total laccase activity 

recovered from the washing steps applied after immobilization (please refer to the 

experimental section for details). 

Laccase was also successfully immobilized in cryogels using E-Beam treatment and physical 

adsorption, where recoveries of about 3% and 11% of the initially applied activity for cryogels 

containing E-Beam-immobilized and physically adsorbed laccase, respectively (Table 3), were 

obtained. The cryogel-based bioreactors are synthesized in a straightforward one-pot approach. The 

laccase will be immobilized at the surface of the pore walls as well as within the bulk phase, and 

therefore, not all laccase is available at the surface of the cryogel for reaction. This explains the low 

recovery of the initially applied activity from cryogels (Table 3). The activity might also be reduced by 

radiation-induced degradation effects. However, as proven in previous studies the loss in activity is not 

higher than 15% [32]. Despite the relatively low amount of accessible active laccase, the high activity 

of the porous cryogel reactors will be presented in the following. As for the membrane immobilization, 

higher activity yields may be achieved by optimization of the immobilization parameters as already 

successfully demonstrated previously [44], e.g., by E-Beam grafting of laccase to preformed cryogels. 

The relatively low amount of physically adsorbed laccase is caused by the inhibition of unspecific 

protein adsorption due to the hydrophilic character of the cryogel. The activities of cryogel-immobilized 

laccase corresponded to approximately 0.013 and 0.026 U/mg dry mass for E-Beam immobilized 

laccase cryogels and cryogels with adsorbed laccase, respectively; thus exhibiting considerably lower 

enzyme loads (in terms of activity) per unit of carrier dry mass than was observed with membrane 

immobilization (see above). Total laccase activities recovered after cryogel immobilization (calculated 

as the sum of laccase activity recovered from the washing solution and the immobilized laccase on the 
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basis of the data shown in Table 3, respectively) of 14 (E-Beam immobilized cryogels) and 65% 

(physical laccase adsorption, Table 3) indicate that the majority of the enzyme might be immobilized 

inside the polymer bulk.  

Table 3. Distribution of laccase activity within different fractions resulting from laccase 

immobilization using cryogels. 

 
Fraction 

Activity * 
(U [% recovery of activity] **) 

MPC_Lac_EB MPC_Lac_ads 

Primary solution *** 3.58 ± 0.07 (100) 2.30 ± 0.15 (100) 
Washing solution **** 0.39 ± 0.05 (11) 1.25 ± 0.12 (54) 

Immobilized laccase 0.12 ± 0.02 (3) 0.24 ± 0.09 (11) 

* Data represent means ± standard deviations for triplicate determinations. ** % of initial 

activity in the primary solution used for immobilization. *** Cryogel reaction formulation 

for E-Beam-supported laccase immobilization, pure laccase solution in PBS for unspecific 

laccase adsorption; **** Total laccase activity recovered from the washing steps applied 

after immobilization (please refer to the experimental section for details). 

Figure 6. Time courses of BPA concentrations in degradation experiments employing 

irradiated laccase-containing membranes (Mem_Lac_EB), and in control experiments 

where freely suspended (non-immobilized), heat-inactivated laccase was applied (please 

refer to the Experimental Section for details). Data represent means ± standard deviations 

for triplicate experiments. 

 

Irradiated laccase-containing membranes were used to demonstrate the capability of the 

immobilized biocatalyst to degrade the endocrine disruptor BPA, which was almost completely 

removed within 48 h (Figure 6). Adsorption or degradation effects originating by the membrane 

material itself could be excluded because no BPA removal was observed with heat-inactivated, free 

laccase. Furthermore, sorptive BPA removal observed with enzyme-free membranes did not exceed 

15% of the initially applied concentration within 48 h (data not shown). Applying modelling according 
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to first-order kinetics to experiments with laccase-containing membranes, an apparent BPA removal 

rate of about 20.0 µM/h was obtained (R2 > 0.98), corresponding to an apparent specific removal rate 

(i.e., based on the laccase activity present in the reaction system, expressed as units according to the 

routine ABTS assay = U; please refer to points 3.5. and 3.6. of the experimental section) of 

approximately 21.7 µM/h/U. A comparison with the specific BPA removal rate observed with free 

laccase (about 18.0 µM/h corresponding to 25.3 µM/h/U, R2 > 0.97; the time course of BPA 

concentrations in corresponding experiments is shown in the context of BPA degradation experiments 

using cryogel-immobilized laccase below; Figure 7) indicates an efficiency of the immobilized enzyme 

in removing BPA being slightly less of that of the free enzyme. A potential reason could be related to 

an alteration of the apparent affinity (Km value) of the immobilized biocatalyst for this particular 

substrate, which may result from a diminished substrate availability due to steric hindrance [45] caused 

by the E-Beam-generated network of new covalent bonds. 

Figure 7. Time courses of BPA concentrations in degradation experiments with cryogels 

containing E-Beam-immobilized laccase (MPC_Lac_EB) and cryogels containing 

unspecifically adsorbed laccase (MPC_Lac_ads). BPA concentrations in control experiments 

employing freely suspended, heat-inactivated laccase are also shown (please refer to the 

Experimental Section for details). Data always represent means ± standard deviations for 

triplicate experiments. 

 

The capability to degrade BPA was also tested with both, cryogels containing E-Beam-immobilized 

laccase and those containing physically adsorbed laccase (Figure 7). Non-immobilized laccase was 

used for comparison, and had almost completely removed BPA within 48 h. Control experiments 

involved heat-inactivated free laccase, where no BPA removal was observed. Sorptive BPA removal 

observed with enzyme-free cryogel did not exceed 30% of the initially applied concentration within  

48 h (data not shown). Upon modelling according to first-order kinetics, apparent BPA removal rates 

of about 7.4 (R2 > 0.99) and 10.4 µM/h (R2 > 0.99) were obtained for cryogels containing  

E-Beam-immobilized (MPC_Lac_EB) and physically adsorbed laccase (MPC_Lac_ads), respectively. 

These values correspond to apparent specific removal rates (i.e., based on the laccase activity present 
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in the reaction system, expressed as units according to the routine ABTS assay = U) of approximately 

61.3 and 43.5 µM/h/U for MPC_Lac_EB and MPC_Lac_ads, respectively. Compared to the apparent 

specific BPA removal rate of free laccase (derived from the primary solution subsequently used for  

E-Beam-supported laccase immobilization, Figure 7) of approximately 25.3 µM/h/U as already mentioned 

before in the context of membrane immobilization approaches, these results suggest an increase in 

laccase activity and/or stability caused by immobilization as already previously reported [42], which is 

particularly pronounced in case of the E-Beam-induced enzyme cross-linking. An increase in the 

activity and affinity for certain substrates of cross-linked laccase was previously observed upon the 

formation of conjugates with the polymer chitosan, where enzyme hyperactivation by the formation of 

covalent bonds between laccase and chitosan was suggested [46,47]. With respect to the present work, 

details regarding the laccase and carrier moieties involved in the E-Beam-induced formation of 

potentially activity-enhancing new covalent bonds, as well as the nature of such bonds remain to be 

elucidated. At first glance, random processes would have to be considered for the radical coupling of 

the enzyme and the carrier as caused by E-Beam irradiation. Clearly higher specific BPA removal rates 

observed with cryogels than with membranes (see above) regardless of whether E-Beam irradiation 

was applied or not further may reflect a better availability of BPA to cryogel-immobilized laccase than 

to membrane-immobilized laccase. 

After incubation of laccase-containing irradiated membranes under conditions also applied for BPA 

degradation experiments (except that BPA was omitted to prevent potential interference; please also 

refer to point 3.8. of the experimental section for details) for 48 h, 96.1% ± 19.5% (mean ± standard 

deviation for triplicate experiments) of the initially applied enzyme activity could be recovered from 

the enzyme-containing membranes. At the same time, only 0.94% ± 0.54% of the initial laccase 

activity was found to be released into supernatants of corresponding incubation mixtures. In 

concomitant tests involving freely suspended laccase, 8.1% ± 1.0% of the initial activity could be 

recovered after 48 h. Altogether these results indicate an efficient prevention from enzyme leakage 

along with a highly stabilizing effect on laccase activity of the applied membrane immobilization 

procedure, as also known from other enzyme cross-linking approaches [44,45].  

Like laccase-containing irradiated membranes, laccase-containing cryogels were evaluated 

regarding their stability of enzymatic activity. After 48 h of incubation under the operation  

conditions mentioned before, 57.2% ± 27.3% (mean ± standard deviation for triplicate experiments) of 

the initial enzyme activity were recovered from cryogels containing E-Beam-immobilized laccase.  

By contrast, cryogels containing unspecifically adsorbed laccase had lost all of their enzymatic activity 

after this time. From supernatants of the corresponding incubation mixtures 22.9 ± 24.8  

(E-Beam immobilization) and 6.7% ± 5.8% of the initial enzyme activity (laccase adsorption) were 

recovered. Also considering related effects observed with E-Beam-irradiated membranes, these results 

clearly indicate: 

(i) an activity-stabilizing effect of the E-Beam-induced enzyme cross-linking, as has also been 

described for other enzyme cross-linking techniques [44,45], and 

(ii) that more stable bioreactors with respect to enzymatic activity and leakage from the carrier were 

obtained with membranes than with cryogels.  
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Neither the application of membrane-immobilized ABTS nor of syringaldehyde led to a substantial 

increase in BPA removal rates. This was observed during degradation experiments employing E-Beam 

immobilization as well as physical adsorption of ABTS and syringaldehyde on membranes together 

with freely suspended laccase, where control experiments involving BPA and free laccase, but no 

redox mediator-containing membranes were conducted for comparison (data not shown). By contrast, 

the presence of freely dissolved redox mediators clearly increased BPA removal catalyzed by free 

laccase (compare Figure 8). These results may indicate that the redox mediators may have lost their 

functionality during membrane immobilization, and/or that the immobilized amounts may not have 

been sufficiently high enough to cause effects. The later assumption is supported by the respective 

XPS studies (see Section 2.1 and Table 1). Since the E-Beam immobilization is clearly increased when 

the to-be-immobilized compound is adsorbed to the membrane surface during irradiation, the redox 

mediators were probably not suitable for this immobilization technique using membranes. 

Contrary to the results observed with redox mediator immobilization onto membranes, E-Beam-

supported immobilization of ABTS and syringaldehyde in cryogels and the application of such 

cryogels in degradation experiments additionally involving free laccase resulted in a considerable 

increase in the initial BPA removal rates, as compared to experiments only employing free laccase but 

omitting the redox mediator-containing cryogels (Figure 8). As expected, freely dissolved redox 

mediators used for comparison also clearly increased BPA removal catalyzed by free laccase. 

Altogether these results clearly indicate that the functionality of the redox mediators was maintained 

and even improved during cryogel immobilization. This results suggests a different reaction 

mechanism during the immobilization of redox mediators in cryogels and on membranes. Notably, 

immobilized redox mediators were found to act more efficiently than in freely dissolved state 

(especially pronounced for ABTS with a complete BPA removal after 24 h). This could be deduced 

from a comparison of the time courses of BPA removal in experiments employing free laccase together 

with immobilized redox mediators, and in those where both laccase and redox mediators were applied 

in non-immobilized state (Figure 8). The reason might well be related to an accelerated catalytic redox 

cycle due to the immobilization of redox mediators, potentially preventing their loss from the reaction 

system. Detailed investigations of such phenomena will be the scope of future work. An increase in the 

efficiency of the removal of the micro-pollutants BPA, nonylphenol, and triclosan caused by the 

presence of freely dissolved redox mediators in reaction systems containing immobilized laccase in the 

form of cross-linked enzyme aggregates (CLEAS) was demonstrated before [48]. However, we are not 

aware of reports describing the successful application of immobilized redox mediators. It remains to be 

elucidated inasmuch the immobilization resulted in a stable binding of the redox mediators and 

whether (and to which extent) they may be released from the cryogels over time.  

Also, it needs to be clarified why BPA degradation in reaction mixtures containing cryogel-immobilized 

syringaldehyde discontinued after a reaction time of 4 h (Figure 8). Furthermore, sorptive binding of 

BPA to cryogels is indicated by the time course of BPA concentrations in experiments with redox 

mediator-containing cryogels in the absence of laccase, where redox mediator autoxidation additionally 

may have contributed to the observed BPA removal especially in case of ABTS (Figure 8). The amounts 

of incorporated laccase or redox mediators did not exceed 2 wt %, and resulted in highly active 

enzyme reactors. It is assumed that the costs can be further reduced by decreasing laccase and redox 

mediator amounts whilst maintaining a high activity. 
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Figure 8. Time courses of BPA concentrations in degradation experiments employing 

freely suspended laccase (Lac) together with cryogels containing E-Beam-immobilized 

ABTS (MPC_ABTS_EB, upper figure) and Syr (MPC_Syr_EB, lower figure). 

Experiments employing freely suspended laccase but no cryogels, and experiments 

employing ABTS and Syr-supplemented cryogels but no laccase served as controls. 

Additional experiments involving freely dissolved redox mediators together with free 

laccase were also conducted for comparison (please refer to the Experimental Section for 

details). Data always represent means ± standard deviations for triplicate experiments. 
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3. Experimental Section  

3.1. Chemicals and Materials 

Poly(vinylidene fluoride) membranes (hydrophobic, pore size 0.45 µm, thickness 125 µm) were 

purchased from Carl Roth GmbH & Co. (Karlsruhe, Germany). Poly(ethylene glycol) methacrylate 

(PEGMA, Mn = 360 g/mol, purity > 99.0%), tetraethylene glycol diacrylate (TEGDA, purity > 99.5%), 

Laccase from Trametes versicolor (Lac; ≥10 U/mg), syringaldehyde (Syr; purity: 98%), 2,2'-azino-

bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS; purity ≥ 98%), bisphenol A 

(BPA; purity > 95%), and phosphate buffered saline (PBS, pH 7.4) were purchased from Sigma-Aldrich 

(Steinheim, Germany). Bicinchoninic acid (BCA) protein assay reagent A + B was provided by Pierce 

(Rockford, IL, USA). Tween® 80 for synthesis was obtained from Merck Millipore (Hohenbrunn, 

Germany). If not otherwise stated Millipore® grade water was used. All chemicals were of analytical 

grade and used without further purification.  

3.2. Preparation of Membrane Bioreactors 

Prior to enzyme immobilization membrane samples (ϕ 47 mm) were prepared by immersing the 

membranes for 5 min into ethanol, then the samples were washed 3 × 5 min with water. Now, the 

membranes were immersed for 5 min in an aqueous buffer solution (PBS, pH 7.0) of laccase at room 

temperature followed by E-Beam irradiation. We applied doses in the range from 100–200 kGy since 

previous studies have shown that most radicals are formed on the membrane polymer under these 

conditions [38–40].  

The control experiment for physical adsorption of laccase at the membrane surface was performed 

by similar treatment (immersing for 5 min in the laccase solution) without subsequent irradiation. 

Concentrations and doses are listed in Table 4. Irradiation was performed in an N2 atmosphere with  

O2 quantities < 10 ppm using a home-made electron accelerator [49]. The voltage and the current  

were set to 160 kV and 10 mA, respectively. The absorbed dose was adjusted by the speed of  

the sample transporter. The modified membrane was rinsed three times per 10 min with buffer  

solution (referred to as washing solution in the results and discussion section) and afterwards used for 

further investigations. 

Table 4. Membrane modification parameters. 

Label Immobilized Compound Concentration [wt %] Dose [kGy] 

Mem_Ref - - - 
Mem_Lac_EB laccase 0.5 150 
Mem_Lac_ads laccase 0.5 - 
Mem_Syr_EB syringaldehyde 2.0 100 
Mem_Syr_ads syringaldehyde 2.0 - 

Mem_ABTS_EB ABTS 1.0 200 
Mem_ABTS_ads ABTS 1.0 - 
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3.3. Preparation of Cryogel Bioreactors 

The synthesis of the cryogels was performed as described previously [26]. The reference cryogel 

used in the studies was a well-characterized standard cryogel [26–28] (MPC_St) synthesized from a 

solution consisting of 5 wt % PEGMA and 5 wt % TEGDA in PBS, pH 7.4. Briefly, cryogel 

formulations containing different amounts of laccase, syringaldehyde (treated at 50 °C for 30 min for 

complete dissolution) and ABTS were weighted in centrifuge tubes according to Table 5, homogenized 

by gentle shaking and degased by 5 min flushing with nitrogen and 5 min ultrasonification (except for 

the laccase solutions) at room temperature. 100 mg of each mixture were transferred to 10 mL 

centrifuge tubes, hermetically sealed, frozen at −20 °C in a cryostat (Lauda, Königshofen, Germany) 

for 90 min and irradiated with a dose of 12 kGy (supplied in 3 kGy) dose steps by E-Beam of a  

10 MeV linear accelerator (Toriy Company, Moscow, Russia) in a home built cooling chamber. It 

became apparent in previous investigations that a dose of 12 kGy is sufficient for cryogel formation [26]. 

Further increase of doses did not result in different material properties. Also higher doses could 

promote polymer degradation. The reaction mixture remains frozen during irradiation. The obtained 

product is brought to room temperature, transferred to new tubes, and subsequently washed 10× with 

250 µL PBS (referred to as washing solution in the results and discussion section). The eluates are 

collected for the determination of non-bound enzyme or redox mediators. Some cryogels were dried in 

vacuum at 37 °C for the characterization of the morphology and chemical composition. 

Table 5. Composition of the cryogel mixtures (in PBS buffer). 

 
Laccase/Syringaldehyde/A

BTS (wt %) 
Standard 

Formulation (wt %) 

MPC_St - 100 
MPC_Lac 0.25 99.75 
MPC_Syr 0.50 99.50 

MPC_ABTS 2.00 98.00 

In order to determine the amount of non-specific adsorbed (e.g., by electrostatic or hydrophobic 

interactions) laccase or redoxmediators in each case 5 standard cryogels were incubated for 30 min 

with 90 mg of 0.25 wt % laccase, 0.5 wt % syringaldehyde and 2 wt % ABTS in PBS followed by 10x 

times washing with 250 µLPBS (MPC_Lac_ads; MPC_Syr_ads; MPC_ ABTS_ads). 

3.4. Polymer Characterization 

The morphology of the porous materials was studied by scanning electron microscopy (SEM, Ultra 55, 

Carl Zeiss SMT, Jena, Germany). In order to prevent charging the sample was sputtered with a thin gold 

layer. Chemical composition was analyzed with X-ray photoelectron spectroscopy (AXIS Ultra, Kratos 

Analytical, Manchester, England). The kinetic energy of the electrons was analyzed with a pass energy 

of 160 eV for the survey spectra and 40 eV for the energy resolved spectra, respectively. Thermal 

stability of the MPCs was examined by thermogravimetric analysis (TGA 7, Perkin Elmer, Waltham, 

MA, USA).The reaction yield (gel content) was determined as follows: the freshly prepared and 
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washed cryogels were dried in vacuum (T = 37 °C) to constant mass. The gel content GC was 

calculated using Equation (1): 

%100⋅=
educts

dry

m

m
GC  (1)  

where mdry is the mass of the final dried cryogels and meducts the mass of the educts. The equilibrium 

swelling degree SD of the standard cryogels was determined after 30 min swelling in PBS. Access 

water was removed by wiping on a wet tissue paper, weighted (mswollen) and the SD calculated  

as follows: 

dry

dryswollen

m

mm
SD

)( −
=  (2)  

In all cases at least three independent samples were investigated. Laccase concentrations on the 

membranes were investigated using the bicinchoninic acid kit [50]. The beforehand modified 

membranes, stored in the buffer solution were shaken for 1 h at room temperature. Afterwards, the 

samples were washed three times with 1 mL of PBS buffer solution (pH 7.0). Then, the BCA reagent 

was added to the membrane samples and the plate was incubated for 25 min at 37 °C. The plate was 

then shaken for 5 min at room temperature, the solution was transferred to a new microtiter plate and 

light adsorption at 562 nm was measured using a microtiter plate reader (Infinite M200, Tecan, 

Crailsheim, Germany). For calibration, seven laccase concentrations of 5.00, 2.50, 1.25, 0.63, 0.31, 

0.16 and 0.00 µg/mL were used. 

3.5. Laccase Activity Assays 

The activity of freely suspended laccase in primary and washing solutions was determined by 

spectrophotometry by monitoring the oxidation of 2 mM 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic 

acid) (ABTS) at pH 4.0, using a microplate reader operated at 420 nm as previously described [51]. 

One unit of laccase activity corresponds to 1 μmol product formed per min. For activity determination 

of laccase immobilized by E-Beam treatment and by physical adsorption on membranes and cryogels, 

a discontinuous assay based on recording of the oxidation of ABTS was applied. Membranes and 

cryogels containing immobilized laccase were incubated in 10 mL of McIlvaine buffer [52] (pH 4.0) 

additionally containing 2 mM ABTS, under agitation at 120 r.p.m. The enzymatic ABTS oxidation 

was determined by taking an aliquot sample from the supernatant every minute, and recording the 

absorbance at 420 nm with a microplate reader as mentioned before. Data points yielding maximal 

slopes of ABTS oxidation were used to calculate the enzyme activity.  

3.6. Degradation of BPA by Immobilized Laccase 

All degradation experiments of BPA were conducted in 22-mL clear glass vials. The corresponding 

reaction mixtures always contained 250 µM BPA in 4 mL McIlvaine buffer (pH 4.0). BPA was 

aseptically added from a 25 mM stock solution in methanol containing 10% (m/v) Tween 80 in 

addition to improve the solubility, yielding a final concentration of 250 μM BPA (corresponding to 1% 

[v/v] methanol and 0.1% [m/v] Tween 80) [53] Immobilized and freely suspended laccase were 
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included in degradation experiments as described in more detail below. Incubation was always carried 

out at room temperature (22 ± 2 °C) and agitation at 120 r.p.m. for 48 h. Samples were taken before 

adding the respective enzyme preparation, and at the time points indicated in the text. Degradation 

experiments employing laccase-containing irradiated membranes contained 0.92 U immobilized 

laccase (Mem_Lac_EB in Figure 6). Controls were prepared by firstly heat-inactivating 0.95 U freely 

suspended laccase for 1 h at 95 °C, which was then applied in corresponding reaction mixtures.  

Degradation experiments with cryogels containing E-Beam-immobilized (MPC_Lac_EB in Figure 7) 

and unspecifically adsorbed laccase (MPC_Lac_ads in Figure 7) involved 0.12 and 0.24 U 

immobilized laccase, respectively. In corresponding experiments with freely suspended laccase, 0.71 U 

laccase derived from the primary solution subsequently used for E-Beam-supported immobilization 

was applied. Heat-inactivated controls were prepared from 0.475 U freely suspended laccase, under 

conditions already described above. 

For calculation of apparent BPA removal rates as based on application of first-order kinetics, the 

exponential fitting function of Microsoft Excel (2010) was applied to BPA concentration vs. time 

plots. The apparent first-order rate constants for BPA removal and the initial BPA concentrations thus 

obtained were used to calculate the apparent BPA removal rates. 

3.7. BPA Removal in the Presence of Immobilized Redox Mediators 

BPA degradation experiments employing redox mediators were carried out under the conditions 

already described above (Section 3.6.), with the following modifications: In experiments involving 

freely suspended laccase together with immobilized redox mediators, laccase was included at 0.95 U, 

and redox mediators were applied as follows: 8.4 mg (dry mass) of cryogel containing E-Beam-

immobilized syringaldehyde (corresponding to a 2% syringaldehyde solution used for cryogel 

production), 8.4 mg (dry mass) of cryogel containing E-Beam-immobilized ABTS (corresponding to a 

2% ABTS solution used for cryogel formation). In experiments employing freely suspended laccase 

(applied as above) and freely dissolved redox mediators, the latter (derived from primary solutions 

subsequently used for the production of redox mediator-containing cryogels) were applied at 180 µM 

(ABTS) and 545 µM (syringaldehyde). Additional experiments involved free laccase (applied as 

above) only, and cryogel-immobilized redox mediators (amounts as above) but omitting laccase.  

3.8. Stability Testing of the Immobilized Laccase 

In order to evaluate the catalytic stability, immobilized and freely suspended laccase was incubated 

under the conditions already described in Section 3.6. (except that BPA was omitted). Stability tests 

employing laccase-containing irradiated membranes initially contained 0.13 U immobilized laccase. 

Stability tests with cryogels containing E-Beam-immobilized and unspecifically adsorbed laccase 

initially involved 0.12 and 0.10 U immobilized laccase, respectively. Freely suspended laccase was 

initially applied at 0.11 U in additional tests. The enzyme activity as determined after 48 h was 

compared with that initially applied, respectively. For activity determinations the routine ABTS assay 

described in Section 3.5. was applied to both immobilized laccase and supernatants of the corresponding 

incubation mixtures, in order to monitor the potential enzyme release from membranes/cryogels.  
  



Molecules 2014, 19 11878 

 

 

3.9. Analysis of BPA by Ultra Performance Liquid Chromatography (UPLC)  

Aqueous samples (0.5 mL) were placed in 1.5-mL Eppendorf tubes, supplemented with 0.5 mL 

methanol, thoroughly mixed, and stored at −20 °C until further use. Before analysis, samples were 

centrifuged at 14.000 rpm and 4 °C for 15 min (Eppendorf centrifuge 5804R; rotor type 16 F24-11; 

Eppendorf, Hamburg, Germany). After centrifugation, supernatants (900 μL) were transferred into 

1.5-mL HPLC/UHPLC vials, which were then tightly closed with screw caps containing silicone/PTFE 

septa. Aliquots from samples (3.3 μL) were directly subjected to an AcqutityTM UPLC system 

comprising of a Binary Solvent Manager (BSM), a Sample Manager (SM), and a PDA eλ photo diode 

array detector, and equipped with an AcquityTM UPLC BEH C18 column (1.7 μm particle size;  

2.1 × 50 mm; Waters, Eschborn, Germany) operated at a column temperature of 40 °C. The following 

solvents served as mobile phases: solvent A - 10% methanol (gradient grade, Th. Geyer, Renningen, 

Germany) in deionized water (Q-Gard 2, Millipore, Schwalbach, Germany); solvent B - 100% 

methanol. The following elution profile was applied: isocratic elution at 20% B for 0.14 min; linear 

increase to 100% B until 2.8 min; isocratic elution at 100% B until 3.2 min; linear decrease to 20% B 

until 3.25 min; isocratic elution at 20% B until 3.5 min (0.5 mL/min flow rate). A wavelength range 

from 220 to 400 nm was recorded (detection wavelength: 278 nm). Calibration of the method was 

carried out using external BPA standards. 

4. Conclusions  

Novel porous membrane and cryogel-based bioreactors with the covalently immobilized enzyme 

laccase, and the two redox mediators 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) and 

syringaldehyde were successfully accomplished using E-Beam irradiation in a water-based one-step 

approach. It was demonstrated that the resulting bioreactors possess high enzymatic activity and 

efficiently degraded bisphenol A as model pollutant to completion in less than 48 h. Furthermore, we 

studied for the first time the immobilization of redox mediators which resulted in bioreactors with 

higher activity compared the non-immobilized approaches. The increased surface area of the porous 

structure enhances the accessibility of the reactive binding sites of the immobilized laccase or redox 

mediators. This new immobilization technique provides a directed, fast, and environmentally friendly 

method for enzyme immobilization on various polymer substrates and allows for the repeated use of 

the bioreactor. 
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