Next Issue
Volume 19, September
Previous Issue
Volume 19, July
 
 
molecules-logo

Journal Browser

Journal Browser

Molecules, Volume 19, Issue 8 (August 2014) – 120 articles , Pages 10670-12897

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:

Research

Jump to: Review

1544 KiB  
Article
A QSAR, Pharmacokinetic and Toxicological Study of New Artemisinin Compounds with Anticancer Activity
by Josinete B. Vieira, Francinaldo S. Braga, Cleison C. Lobato, César F. Santos, Josivan S. Costa, José Adolfo H. M. Bittencourt, Davi S. B. Brasil, Jocivânia O. Silva, Lorane I. S. Hage-Melim, Williams Jorge C. Macêdo, José Carlos T. Carvalho and Cleydson Breno R. Santos
Molecules 2014, 19(8), 10670-10697; https://doi.org/10.3390/molecules190810670 - 24 Jul 2014
Cited by 29 | Viewed by 10848
Abstract
The Density Functional Theory (DFT) method and the 6-31G** basis set were employed to calculate the molecular properties of artemisinin and 20 derivatives with different degrees of cytotoxicity against the human hepatocellular carcinoma HepG2 line. Principal component analysis (PCA) and hierarchical cluster analysis [...] Read more.
The Density Functional Theory (DFT) method and the 6-31G** basis set were employed to calculate the molecular properties of artemisinin and 20 derivatives with different degrees of cytotoxicity against the human hepatocellular carcinoma HepG2 line. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were employed to select the most important descriptors related to anticancer activity. The significant molecular descriptors related to the compounds with anticancer activity were the ALOGPS_log, Mor29m, IC5 and GAP energy. The Pearson correlation between activity and most important descriptors were used for the regression partial least squares (PLS) and principal component regression (PCR) models built. The regression PLS and PCR were very close, with variation between PLS and PCR of R2 = ±0.0106, R2ajust = ±0.0125, s = ±0.0234, F(4,11) = ±12.7802, Q2 = ±0.0088, SEV = ±0.0132, PRESS = ±0.4808 and SPRESS = ±0.0057. These models were used to predict the anticancer activity of eight new artemisinin compounds (test set) with unknown activity, and for these new compounds were predicted pharmacokinetic properties: human intestinal absorption (HIA), cellular permeability (PCaCO2), cell permeability Maden Darby Canine Kidney (PMDCK), skin permeability (PSkin), plasma protein binding (PPB) and penetration of the blood-brain barrier (CBrain/Blood), and toxicological: mutagenicity and carcinogenicity. The test set showed for two new artemisinin compounds satisfactory results for anticancer activity and pharmacokinetic and toxicological properties. Consequently, further studies need be done to evaluate the different proposals as well as their actions, toxicity, and potential use for treatment of cancers. Full article
Show Figures

Figure 1

773 KiB  
Article
Synthesis and Biological Activities of Some New (Nα-Dinicotinoyl)- bis-L-Leucyl Linear and Macrocyclic Peptides
by Suzan Khayyat and Abd El-Galil Amr
Molecules 2014, 19(8), 10698-10716; https://doi.org/10.3390/molecules190810698 - 24 Jul 2014
Cited by 16 | Viewed by 5189
Abstract
A series of linear and macrocyclic peptides 312 were synthesized using 3,5-pyridinedicarboxylic acid (1) as starting material and screened for their antimicrobial, anti-inflammatory and anticancer activities. Bis-ester 3 was prepared from 1 and L-leucine methyl ester. Hydrazinolysis and hydrolysis [...] Read more.
A series of linear and macrocyclic peptides 312 were synthesized using 3,5-pyridinedicarboxylic acid (1) as starting material and screened for their antimicrobial, anti-inflammatory and anticancer activities. Bis-ester 3 was prepared from 1 and L-leucine methyl ester. Hydrazinolysis and hydrolysis of dipeptide methyl ester 3 with hydrazine hydrate or 1 N sodium hydroxide afforded compounds 4 and 5, respectively. Cyclization of the dipeptide 5 with L-lysine methyl ester afforded cyclic pentapeptide ester 6. Compounds 79 were synthesized by reacting hydrazide 4 with phthalic anhydride, 1,8-naphthalene anhydride or acetophenone derivatives. Treatment of acid hydrazide 4 with aromatic aldehydes or tetraacid dianhydrides afforded the corresponding bis-dipeptide hydrazones 10ae and macrocyclic peptides 11 and 12, respectively. The structures of newly synthesized compounds were confirmed by IR, 1H-NMR, MS spectral data and elemental analysis. The detailed synthesis, spectroscopic data, biological and pharmacological activities of the synthesized compounds was reported. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

1167 KiB  
Article
Transcriptional Responses of the Bdtf1-Deletion Mutant to the Phytoalexin Brassinin in the Necrotrophic Fungus Alternaria brassicicola
by Yangrae Cho, Robin A. Ohm, Rakshit Devappa, Hyang Burm Lee, Igor V. Grigoriev, Bo Yeon Kim and Jong Seog Ahn
Molecules 2014, 19(8), 10717-10732; https://doi.org/10.3390/molecules190810717 - 24 Jul 2014
Cited by 11 | Viewed by 5672
Abstract
Brassica species produce the antifungal indolyl compounds brassinin and its derivatives, during microbial infection. The fungal pathogen Alternaria brassicicola detoxifies brassinin and possibly its derivatives. This ability is an important property for the successful infection of brassicaceous plants. Previously, we identified a transcription [...] Read more.
Brassica species produce the antifungal indolyl compounds brassinin and its derivatives, during microbial infection. The fungal pathogen Alternaria brassicicola detoxifies brassinin and possibly its derivatives. This ability is an important property for the successful infection of brassicaceous plants. Previously, we identified a transcription factor, Bdtf1, essential for the detoxification of brassinin and full virulence. To discover genes that encode putative brassinin-digesting enzymes, we compared gene expression profiles between a mutant strain of the transcription factor and wild-type A. brassicicola under two different experimental conditions. A total of 170 and 388 genes were expressed at higher levels in the mutants than the wild type during the infection of host plants and saprophytic growth in the presence of brassinin, respectively. In contrast, 93 and 560 genes were expressed, respectively, at lower levels in the mutant than the wild type under the two conditions. Fifteen of these genes were expressed at lower levels in the mutant than in the wild type under both conditions. These genes were assumed to be important for the detoxification of brassinin and included Bdtf1 and 10 putative enzymes. This list of genes provides a resource for the discovery of enzyme-coding genes important in the chemical modification of brassinin. Full article
(This article belongs to the Special Issue Phytoalexins: Current Progress and Future Prospects)
Show Figures

Figure 1

818 KiB  
Article
Effects of Single Amino Acid Substitution on the Biophysical Properties and Biological Activities of an Amphipathic α-Helical Antibacterial Peptide Against Gram-Negative Bacteria
by Juanjuan Tan, Jinfeng Huang, Yibing Huang and Yuxin Chen
Molecules 2014, 19(8), 10803-10817; https://doi.org/10.3390/molecules190810803 - 24 Jul 2014
Cited by 17 | Viewed by 7181
Abstract
An antimicrobial peptide, known as V13K, was utilized as the framework to study the effects of charge, hydrophobicity and helicity on the biophysical properties and biological activities of α-helical peptides. Six amino acids (Lys, Glu, Gly, Ser, Ala, and Leu) were individually used [...] Read more.
An antimicrobial peptide, known as V13K, was utilized as the framework to study the effects of charge, hydrophobicity and helicity on the biophysical properties and biological activities of α-helical peptides. Six amino acids (Lys, Glu, Gly, Ser, Ala, and Leu) were individually used to substitute the original hydrophobic valine at the selected sixteenth location on the non-polar face of V13K. The results showed that the single amino acid substitutions changed the hydrophobicity of peptide analogs as monitored by RP-HPLC, but did not cause significant changes on peptide secondary structures both in a benign buffer and in a hydrophobic environment. The biological activities of the analogs exhibited a hydrophobicity-dependent behavior. The mechanism of peptide interaction with the outer membrane and cytoplasmic membrane of Gram-negative bacteria was investigated. We demonstrated that this single amino acid substitution method has valuable potential for the rational design of antimicrobial peptides with enhanced activities. Full article
(This article belongs to the Special Issue Peptide Chemistry)
Show Figures

Figure 1

846 KiB  
Article
Cudarflavone B Provides Neuroprotection against Glutamate-Induced Mouse Hippocampal HT22 Cell Damage through the Nrf2 and PI3K/Akt Signaling Pathways
by Dong-Sung Lee, Wonmin Ko, Dong-Cheol Kim, Youn-Chul Kim and Gil-Saeng Jeong
Molecules 2014, 19(8), 10818-10831; https://doi.org/10.3390/molecules190810818 - 24 Jul 2014
Cited by 28 | Viewed by 8846
Abstract
Oxidative cell damage contributes to neuronal degeneration in many central nervous system (CNS) diseases such as Alzheimer’s disease, Parkinson’s disease, and ischemia. Nrf2 signaling-mediated heme oxygenase (HO)-1 expression acts against oxidants that are thought to play a key role in the pathogenesis of [...] Read more.
Oxidative cell damage contributes to neuronal degeneration in many central nervous system (CNS) diseases such as Alzheimer’s disease, Parkinson’s disease, and ischemia. Nrf2 signaling-mediated heme oxygenase (HO)-1 expression acts against oxidants that are thought to play a key role in the pathogenesis of neuronal diseases. Cudraflavone B is a prenylated flavone isolated from C. tricuspidata which has shown anti-proliferative activity, mouse brain monoamine oxidase (MAO) inhibitory effects, apoptotic actions in human gastric carcinoma cells and mouse melanoma cells, and hepatoprotective activity. In this study, cudraflavone B showed neuroprotective effects and reactive oxygen species (ROS) inhibition against glutamate-induced neurotoxicity by inducing the expression of HO-1 in mouse hippocampal HT22 cells. Furthermore, cudraflavone B caused the nuclear accumulation of nuclear factor-E2-related factor 2 (Nrf2) and increased the promoter activity of antioxidant response elements (ARE) in mouse hippocampal HT22 cells. In addition, we found that the Nrf2-midiated HO-1 expression by cudraflavone B is involved in the cell protective response and ROS reductions, and cudraflavone B-induced expression of HO-1 was mediated through the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in HT22 cells. Our results demonstrated the potential application of naturally occurring cudraflavone B as a therapeutic agent from neurodegenerative disease. Full article
Show Figures

Figure 1

2318 KiB  
Article
Synthesis, Characterization and in Vitro Antitumor Activity of Platinum(II) Oxalato Complexes Involving 7-Azaindole Derivatives as Coligands
by Pavel Štarha, Zdeněk Trávníček, Igor Popa and Zdeněk Dvořák
Molecules 2014, 19(8), 10832-10844; https://doi.org/10.3390/molecules190810832 - 25 Jul 2014
Cited by 27 | Viewed by 6548
Abstract
The platinum(II) oxalato complexes [Pt(ox)(naza)2] (13) were synthesized and characterized by elemental analysis (C, H, N), multinuclear NMR spectroscopy (1H, 13C, 15N, 195Pt) and electrospray ionization mass spectrometry (ESI-MS); n [...] Read more.
The platinum(II) oxalato complexes [Pt(ox)(naza)2] (13) were synthesized and characterized by elemental analysis (C, H, N), multinuclear NMR spectroscopy (1H, 13C, 15N, 195Pt) and electrospray ionization mass spectrometry (ESI-MS); naza = 4-chloro-7-azaindole (4Claza; 1), 3-bromo-7-azaindole (3Braza; 2) or 4-bromo-7-azaindole (4Braza; 3). The prepared substances were screened for their in vitro antitumor activity on the osteosarcoma (HOS) and breast adenocarcinoma (MCF7) human cancer cell lines, where 2 showed moderate antitumor effect (IC50 = 27.5 μM, and 18.3 μM, respectively). The complex 2 was further tested on a panel of six others human cancer cell lines, including the malignant melanoma (G361), cervix carcinoma (HeLa), ovarian carcinoma (A2780), cisplatin-resistant ovarian carcinoma (A2780R), lung carcinoma (A549) and prostate adenocarcinoma (LNCaP). This substance was found to be moderate antitumor effective against G361 (IC50 = 17.3 μM), HeLa (IC50 = 31.8 μM) and A2780 (IC50 = 19.2 μM) cell lines. The complex 2 was also studied by NMR for its solution stability and by ESI-MS experiments for its ability to interact with biomolecules, such as cysteine, glutathione or guanosine 5'-monophosphate. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

2765 KiB  
Article
Desorption of Water from Distinct Step Types on a Curved Silver Crystal
by Jakrapan Janlamool, Dima Bashlakov, Otto Berg, Piyasan Praserthdam, Bunjerd Jongsomjit and Ludo B. F. Juurlink
Molecules 2014, 19(8), 10845-10862; https://doi.org/10.3390/molecules190810845 - 25 Jul 2014
Cited by 19 | Viewed by 7648
Abstract
We have investigated the adsorption of H2O onto the A and B type steps on an Ag single crystal by temperature programmed desorption. For this study, we have used a curved crystal exposing a continuous range of surface structures ranging from [...] Read more.
We have investigated the adsorption of H2O onto the A and B type steps on an Ag single crystal by temperature programmed desorption. For this study, we have used a curved crystal exposing a continuous range of surface structures ranging from [5(111) × (100)] via (111) to [5(111) × (110)]. LEED and STM studies verify that the curvature of our sample results predominantly from monoatomic steps. The sample thus provides a continuous array of step densities for both step types. Desorption probed by spatially-resolved TPD of multilayers of H2O shows no dependence on the exact substrate structure and thus confirms the absence of thermal gradients during temperature ramps. In the submonolayer regime, we observe a small and linear dependence of the desorption temperature on the A and B step density. We argue that such small differences are only observable by means of a single curved crystal, which thus establishes new experimental benchmarks for theoretical calculation of chemically accurate binding energies. We propose an origin of the observed behavior based on a “two state” desorption model. Full article
(This article belongs to the Special Issue Surface Chemistry)
Show Figures

Figure 1

779 KiB  
Article
Characterization and Antitumor Activity of a Polysaccharide from Sarcodia ceylonensis
by Yijun Fan, Mengchuan Lin, Aoshuang Luo, Ze Chun and Aoxue Luo
Molecules 2014, 19(8), 10863-10876; https://doi.org/10.3390/molecules190810863 - 25 Jul 2014
Cited by 38 | Viewed by 6128
Abstract
A water-soluble polysaccharide from Sarcodia ceylonensis was obtained by using the method of water-extraction and ethanol-precipitation. The polysaccharide was further purified by chromatography on AB-8 and ADS-7 columns, yielding a pure polysaccharide termed SCP-60. The molecular weight (Mw) of SCP-60 was calculated to [...] Read more.
A water-soluble polysaccharide from Sarcodia ceylonensis was obtained by using the method of water-extraction and ethanol-precipitation. The polysaccharide was further purified by chromatography on AB-8 and ADS-7 columns, yielding a pure polysaccharide termed SCP-60. The molecular weight (Mw) of SCP-60 was calculated to be 50.0 kDa, based on the calibration curve obtained with a series of Dextran T standards. The results of FT-IR indicated that the polysaccharide contains the α-configuration of sugar units. GC-MS analysis revealed that SCP-60 was mainly composed of galactose and glucose. NMR spectroscopy revealed SCP-60 had the backbone consisting of →6)-α-Manp-(1→, α-d-Glcp-(1→, →6)-α-d-Glcp-(1→ and →6)-α-Galp-(1→. In order to evaluate the antitumor activity in vivo of the polysaccharide, a sarcoma 180 model was used. The results showed SCP-60 had strong antitumor ability, meanwhile, SCP-60 at a high dose (100 mg/kg) could significantly increase the thymic and splenic indices of S180 mice, and strongly promote the secretion of IL-2, TNF-α and IFN-γ, increase the SOD activities and reduce the concentrations of MDA in blood. Therefore the polysaccharide SCP-60 should be explored as a novel potential antitumor drug. Full article
Show Figures

Figure 1

3727 KiB  
Article
ROS-Dependent Antiproliferative Effect of Brassinin Derivative Homobrassinin in Human Colorectal Cancer Caco2 Cells
by Martin Kello, David Drutovic, Martina Chripkova, Martina Pilatova, Mariana Budovska, Lucia Kulikova, Peter Urdzik and Jan Mojzis
Molecules 2014, 19(8), 10877-10897; https://doi.org/10.3390/molecules190810877 - 25 Jul 2014
Cited by 41 | Viewed by 8894
Abstract
This study was designed to examine the in vitro antiproliferative effect of brassinin and its derivatives on human cancer cell lines. Among seven tested compounds, homobrassinin (K1; N-[2-(indol-3-yl)ethyl]-S-methyldithiocarbamate) exhibited the most potent activity with IC50 = 8.0 μM in human [...] Read more.
This study was designed to examine the in vitro antiproliferative effect of brassinin and its derivatives on human cancer cell lines. Among seven tested compounds, homobrassinin (K1; N-[2-(indol-3-yl)ethyl]-S-methyldithiocarbamate) exhibited the most potent activity with IC50 = 8.0 μM in human colorectal Caco2 cells and was selected for further studies. The flow cytometric analysis revealed a K1-induced increase in the G2/M phase associated with dysregulation of α-tubulin, α1-tubulin and β5-tubulin expression. These findings suggest that the inhibitory effect of K1 can be mediated via inhibition of microtubule formation. Furthermore, simultaneously with G2/M arrest, K1 also increased population of cells with sub-G1 DNA content which is considered to be a marker of apoptotic cell death. Apoptosis was also confirmed by annexin V/PI double staining, DNA fragmentation assay and chromatin condensation assay. The apoptosis was associated with the loss of mitochondrial membrane potential (MMP), caspase-3 activation as well as intracellular reactive oxygen species (ROS) production. Moreover, the antioxidant Trolox blocked ROS production, changes in MMP and decreased K1 cytotoxicity, which confirmed the important role of ROS in cell apoptosis. Taken together, our data demonstrate that K1 induces ROS-dependent apoptosis in Caco2 cells and provide the rationale for further in vivo anticancer investigation. Full article
(This article belongs to the Special Issue Phytoalexins: Current Progress and Future Prospects)
Show Figures

Figure 1

2483 KiB  
Article
Dereplication Guided Discovery of Secondary Metabolites of Mixed Biosynthetic Origin from Aspergillus aculeatus
by Lene M. Petersen, Casper Hoeck, Jens C. Frisvad, Charlotte H. Gotfredsen and Thomas O. Larsen
Molecules 2014, 19(8), 10898-10921; https://doi.org/10.3390/molecules190810898 - 25 Jul 2014
Cited by 37 | Viewed by 8085
Abstract
Investigation of the chemical profile of the industrially important black filamentous fungus Aspergillus aculeatus by UHPLC-DAD-HRMS and subsequent dereplication has led to the discovery of several novel compounds. Isolation and extensive 1D and 2D NMR spectroscopic analyses allowed for structural elucidation of a [...] Read more.
Investigation of the chemical profile of the industrially important black filamentous fungus Aspergillus aculeatus by UHPLC-DAD-HRMS and subsequent dereplication has led to the discovery of several novel compounds. Isolation and extensive 1D and 2D NMR spectroscopic analyses allowed for structural elucidation of a dioxomorpholine, a unique okaramine, an aflavinine and three novel structures of mixed biosynthetic origin, which we have named aculenes A–C. Moreover, known analogues of calbistrins, okaramines and secalonic acids were detected. All novel compounds were tested for antifungal activity against Candida albicans, however all showed only weak or no activity. Aspergillus aculeatus IBT 21030 was additionally shown to be capable of producing sclerotia. Examination of the sclerotia revealed a highly regulated production of metabolites in these morphological structures. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

780 KiB  
Article
Accumulation of Astragalosides and Related Gene Expression in Different Organs of Astragalus Membranaceus Bge. var Mongholicus (Bge.)
by Yeon Bok Kim, Aye Aye Thwe, Xiaohua Li, Pham Anh Tuan, Sanghyun Lee, Jong Won Lee, Mariadhas Valan Arasu, Naif Abdullah Al-Dhabi and Sang Un Park
Molecules 2014, 19(8), 10922-10935; https://doi.org/10.3390/molecules190810922 - 25 Jul 2014
Cited by 20 | Viewed by 8522
Abstract
Astragalus membranaceus is one of the most important traditional Korean and Chinese medicinal herbs because it contains triterpenoid saponins (astragaloside I, II, III, and IV), which have beneficial and pharmacological effects on health. In this study, we analyzed 10 mevalonate pathway genes that [...] Read more.
Astragalus membranaceus is one of the most important traditional Korean and Chinese medicinal herbs because it contains triterpenoid saponins (astragaloside I, II, III, and IV), which have beneficial and pharmacological effects on health. In this study, we analyzed 10 mevalonate pathway genes that are involved in astragaloside biosynthesis using the Illumina/Solexa HiSeq2000 platform. We determined the expression levels of the 10 genes using quantitative real-time PCR, and analyzed the accumulation of astragalosides in different organs using high-performance liquid chromatography. Genes related to the mevalonate pathway were expressed in different levels in different organs. Almost all genes showed high transcript levels in the stem and leaf, with the lowest transcript levels being recorded in the root. In contrast, most astragalosides accumulated in the root. In particular, the astragaloside IV content was distributed in the following order: root (0.58 mg/g DW) > flower (0.27 mg/g DW) > stem (0.23 mg/g DW) > leaf (0.04 mg/g DW). In the root, astragaloside II exhibited the highest content (2.09 mg/g DW) compared to astragaloside I, III, and IV. Notably, gene expression did not follow the same pattern as astragaloside accumulation. We suggest carefully that astragalosides are synthesized in the leaves and stem and then translocated to the root. This study contributes towards improving our understanding of astragaloside biosynthesis in A. membranaceus. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

1229 KiB  
Article
Anthocyanin Characterization, Total Phenolic Quantification and Antioxidant Features of Some Chilean Edible Berry Extracts
by Anghel Brito, Carlos Areche, Beatriz Sepúlveda, Edward J. Kennelly and Mario J. Simirgiotis
Molecules 2014, 19(8), 10936-10955; https://doi.org/10.3390/molecules190810936 - 28 Jul 2014
Cited by 110 | Viewed by 11165
Abstract
The anthocyanin composition and HPLC fingerprints of six small berries endemic of the VIII region of Chile were investigated using high resolution mass analysis for the first time (HR-ToF-ESI-MS). The antioxidant features of the six endemic species were compared, including a variety of [...] Read more.
The anthocyanin composition and HPLC fingerprints of six small berries endemic of the VIII region of Chile were investigated using high resolution mass analysis for the first time (HR-ToF-ESI-MS). The antioxidant features of the six endemic species were compared, including a variety of blueberries which is one of the most commercially significant berry crops in Chile. The anthocyanin fingerprints obtained for the fruits were compared and correlated with the antioxidant features measured by the bleaching of the DPPH radical, the ferric reducing antioxidant power (FRAP), the superoxide anion scavenging activity assay (SA), and total content of phenolics, flavonoids and anthocyanins measured by spectroscopic methods. Thirty one anthocyanins were identified, and the major ones were quantified by HPLC-DAD, mostly branched 3-O-glycosides of delphinidin, cyanidin, petunidin, peonidin and malvidin. Three phenolic acids (feruloylquinic acid, chlorogenic acid, and neochlorogenic acid) and five flavonols (hyperoside, isoquercitrin, quercetin, rutin, myricetin and isorhamnetin) were also identified. Calafate fruits showed the highest antioxidant activity (2.33 ± 0.21 μg/mL in the DPPH assay), followed by blueberry (3.32 ± 0.18 μg/mL), and arrayán (5.88 ± 0.21), respectively. Full article
(This article belongs to the Special Issue Anthocyanins)
Show Figures

Graphical abstract

804 KiB  
Article
The Validation of an Analytical Method for Sulfentrazone Residue Determination in Soil Using Liquid Chromatography and a Comparison of Chromatographic Sensitivity to Millet as a Bioindicator Species
by Marcelo Antonio De Oliveira, Fábio Ribeiro Pires, Mariana Ferraço and Alessandra Ferreira Belo
Molecules 2014, 19(8), 10982-10997; https://doi.org/10.3390/molecules190810982 - 28 Jul 2014
Cited by 9 | Viewed by 6413
Abstract
Commonly used herbicides, such as sulfentrazone, pose the risk of soil contamination due to their persistence, bioaccumulation and toxicity. Phytoremediation by green manure species has been tested using biomarkers, but analytical data are now required to confirm the extraction of sulfentrazone from soil. [...] Read more.
Commonly used herbicides, such as sulfentrazone, pose the risk of soil contamination due to their persistence, bioaccumulation and toxicity. Phytoremediation by green manure species has been tested using biomarkers, but analytical data are now required to confirm the extraction of sulfentrazone from soil. Thus, the present work was carried out to analyze sulfentrazone residues in soil based on liquid chromatography with a comparison of these values to the sensitivity of the bioindicator Pennisetum glaucum. The soil samples were obtained after cultivation of Crotalaria juncea and Canavalia ensiformis at four seeding densities and with three doses of sulfentrazone. The seedlings were collected into pots, at two different depths, after 75 days of phytoremediator sowing and then were used to determine the herbicide persistence in the soil. A bioassay with P. glaucum was carried out in the same pot. High-performance liquid chromatography (HPLC), using UV-diode array detection (HPLC/UV-DAD), was used to determine the herbicide residues. The HPLC determination was optimized and validated according to the parameters of precision, accuracy, linearity, limit of detection and quantification, robustness and specificity. The bioindicator P. glaucum was more sensitive to sulfentrazone than residue determination by HPLC. Changes in sulfentrazone concentration caused by green manure phytoremediation were accurately identified by the bioindicator. However, a true correlation between the size of the species and the analyte content was not identified. Full article
(This article belongs to the Section Molecular Diversity)
Show Figures

Figure 1

4174 KiB  
Article
Calculating Distortions of Short DNA Duplexes with Base Pairing Between an Oxidatively Damaged Guanine and a Guanine
by Masayo Suzuki, Katsuhito Kino, Masayuki Morikawa, Takanobu Kobayashi and Hiroshi Miyazawa
Molecules 2014, 19(8), 11030-11044; https://doi.org/10.3390/molecules190811030 - 28 Jul 2014
Cited by 6 | Viewed by 6080
Abstract
DNA is constantly being oxidized, and oxidized DNA is prone to mutation; moreover, guanine is highly sensitive to several oxidative stressors. Several oxidatively damaged forms of guanine—including 2,2,4-triamino-5(2H)-oxazolone (Oz), iminoallantoin (Ia), and spiroiminodihydantoin (Sp)—can be paired with guanine, and cause G:C-C:G [...] Read more.
DNA is constantly being oxidized, and oxidized DNA is prone to mutation; moreover, guanine is highly sensitive to several oxidative stressors. Several oxidatively damaged forms of guanine—including 2,2,4-triamino-5(2H)-oxazolone (Oz), iminoallantoin (Ia), and spiroiminodihydantoin (Sp)—can be paired with guanine, and cause G:C-C:G transversions. Previous findings indicate that guanine is incorporated more efficiently opposite Oz than opposite Ia or Sp, and that these differences in efficiency cannot be explained by differences in the stabilities of G:Oz, G:Ia, and G:Sp base pairs calculated ab initio. Here, to explain previous experimental result, we used a 3-base-pair model DNA duplex to calculate the difference in the stability and the distortion of DNA containing a G:Oz, G:Ia, or G:Sp base pair. We found that the stability of the structure containing 5ꞌ and 3ꞌ base pairs adjacent to G:Oz was more stable than that containing the respective base pairs adjacent to G:Ia or G:Sp. Moreover, the distortion of the structure in the DNA model duplex that contained a G:Oz was smaller than that containing a G:Ia or G:Sp. Therefore, our discussion can explain the previous results involving translesion synthesis past an oxidatively damaged guanine. Full article
(This article belongs to the Special Issue ECSOC-17)
Show Figures

Figure 1

828 KiB  
Article
Polyphenols with Anti-Proliferative Activities from Penthorum Chinense Pursh
by Doudou Huang, Yun Jiang, Wansheng Chen, Fengyan Yao and Lianna Sun
Molecules 2014, 19(8), 11045-11055; https://doi.org/10.3390/molecules190811045 - 29 Jul 2014
Cited by 33 | Viewed by 5672
Abstract
Two new polyphenols, penthorumin C (1) and 2,6-dihydroxyacetophenone-4-O- [4ꞌ,6ꞌ-(S)-hexahydroxydiphenoyl]-β-D-glucose (2), along with four known polyphenolic acids, pinocembrin-7-O-[4ꞌꞌ,6ꞌꞌ-hexahydroxydiphenoyl]-β-D-glucose(3), pinocembrin-7-O-[3ꞌꞌ-O- galloyl- 4ꞌꞌ,6ꞌꞌ-hexahydroxydiphenoyl]-β-D-glucose (4), thonningianin A (5), and [...] Read more.
Two new polyphenols, penthorumin C (1) and 2,6-dihydroxyacetophenone-4-O- [4ꞌ,6ꞌ-(S)-hexahydroxydiphenoyl]-β-D-glucose (2), along with four known polyphenolic acids, pinocembrin-7-O-[4ꞌꞌ,6ꞌꞌ-hexahydroxydiphenoyl]-β-D-glucose(3), pinocembrin-7-O-[3ꞌꞌ-O- galloyl- 4ꞌꞌ,6ꞌꞌ-hexahydroxydiphenoyl]-β-D-glucose (4), thonningianin A (5), and thonningianin B (6) were isolated from Penthourm chinense. All compounds were evaluated for their anti-proliferative activity in HSC-T6 cells, and 2 and 5 showed significant activity, with IC50 values of 12.7 and 19.2 μM, respectively. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

800 KiB  
Article
Bifunctionalized Allenes. Part XV. Synthesis of 2,5-dihydro-1,2-oxaphospholes by Electrophilic Cyclization Reaction of Phosphorylated α-Hydroxyallenes
by Ismail E. Ismailov, Ivaylo K. Ivanov and Valerij Ch. Christov
Molecules 2014, 19(8), 11056-11076; https://doi.org/10.3390/molecules190811056 - 29 Jul 2014
Cited by 17 | Viewed by 5007
Abstract
This paper discusses a reaction of phosphorylated α-hydroxyallenes with protected or unprotected hydroxy groups involving 5-endo-trig cyclizations. Various electrophilic reagents such as sulfuryl chloride, bromine, benzenesulfenyl and benzeneselenenyl chlorides have been applied. The paper describes the reaction of 1-hydroxyalkyl-1,2-dienephosphonates with electrophiles that [...] Read more.
This paper discusses a reaction of phosphorylated α-hydroxyallenes with protected or unprotected hydroxy groups involving 5-endo-trig cyclizations. Various electrophilic reagents such as sulfuryl chloride, bromine, benzenesulfenyl and benzeneselenenyl chlorides have been applied. The paper describes the reaction of 1-hydroxyalkyl-1,2-dienephosphonates with electrophiles that produces 2-methoxy-2-oxo-2,5-dihydro-1,2-oxaphospholes due to the participation of the phosphonate neighbouring group in the cyclization. On the other hand, (1E)-alk-1-en-1-yl phosphine oxides were prepared as mixtures with 2,5-dihydro-1,2-oxaphosphol-2-ium halides in a ratio of about 1:2 by chemo-, regio, and stereoselective electrophilic addition to the C2-C3-double bond in the allene moiety and subsequent concurrent attack of the external (halide anion) and internal (phosphine oxide group) nucleophiles. The paper proposes a possible mechanism that involves cyclization and additional reactions of the phosphorylated α-hydroxyallenes. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

881 KiB  
Article
Activity of Antifungal Organobismuth(III) Compounds Derived from Alkyl Aryl Ketones against S. cerevisiae: Comparison with a Heterocyclic Bismuth Scaffold Consisting of a Diphenyl Sulfone
by Toshihiro Murafuji, Mai Tomura, Katsuya Ishiguro and Isamu Miyakawa
Molecules 2014, 19(8), 11077-11095; https://doi.org/10.3390/molecules190811077 - 29 Jul 2014
Cited by 15 | Viewed by 7097
Abstract
A series of hypervalent organobismuth(III) compounds derived from alkyl aryl ketones [XBi(5-R'C6H3-2-COR)(Ar)] was synthesized to investigate the effect of the compounds’ structural features on their antifungal activity against the yeast Saccharomyces cerevisiae. In contrast to bismuth heterocycles [XBi(5-RC [...] Read more.
A series of hypervalent organobismuth(III) compounds derived from alkyl aryl ketones [XBi(5-R'C6H3-2-COR)(Ar)] was synthesized to investigate the effect of the compounds’ structural features on their antifungal activity against the yeast Saccharomyces cerevisiae. In contrast to bismuth heterocycles [XBi(5-RC6H3-2-SO2C6H4-1'-)] derived from diphenyl sulfones, a systematic quantitative structure-activity relationship study was possible. The activity depended on the Ar group and increased for heavier X atoms, whereas lengthening the alkyl chain (R) or introducing a substituent (R') reduced the activity. IBi(C6H4-2-COCH3)(4-FC6H4) was the most active. Its activity was superior to that of the related acyclic analogues ClBi[C6H4-2-CH2N(CH3)2](Ar) and ClBi(C6H4-2-SO2 tert-Bu)(Ar) and also comparable to that of heterocyclic ClBi(C6H4-2-SO2C6H4-1'-), which was the most active compound in our previous studies. Density function theory calculations suggested that hypervalent bismuthanes undergo nucleophilic addition with a biomolecule at the bismuth atom to give an intermediate ate complex. For higher antifungal activity, adjusting the lipophilicity-hydrophilicity balance, modeling the three-dimensional molecular structure around the bismuth atom, and stabilizing the ate complex appear to be more important than tuning the Lewis acidity at the bismuth atom. Full article
(This article belongs to the Special Issue Heterocyclic and Medicinal Chemistry)
Show Figures

Graphical abstract

3686 KiB  
Article
Photobleaching Kinetics and Time-Integrated Emission of Fluorescent Probes in Cellular Membranes
by Daniel Wüstner, Tanja Christensen, Lukasz M. Solanko and Daniel Sage
Molecules 2014, 19(8), 11096-11130; https://doi.org/10.3390/molecules190811096 - 29 Jul 2014
Cited by 32 | Viewed by 8891
Abstract
Since the pioneering work of Hirschfeld, it is known that time-integrated emission (TiEm) of a fluorophore is independent of fluorescence quantum yield and illumination intensity. Practical implementation of this important result for determining exact probe distribution in living cells is often hampered by [...] Read more.
Since the pioneering work of Hirschfeld, it is known that time-integrated emission (TiEm) of a fluorophore is independent of fluorescence quantum yield and illumination intensity. Practical implementation of this important result for determining exact probe distribution in living cells is often hampered by the presence of autofluorescence. Using kinetic modelling of photobleaching combined with pixel-wise bleach rate fitting of decay models with an updated plugin to the ImageJ program, it is shown that the TiEm of a fluorophore in living cells can be determined exactly from the product of bleaching amplitude and time constant. This applies to mono-exponential bleaching from the first excited singlet and/or triplet state and to multi-exponential combinations of such processes. The TiEm can be used to correct for illumination shading and background autofluorescence without the need for fluorescent test layers or separate imaging of non-stained cells. We apply the method to simulated images and to images of cells, whose membranes were labelled with fluorescent sterols and sphingolipids. Our bleaching model can be extended to include a probability density function (PDF) of intrinsic bleach rate constants with a memory kernel. This approach results in a time-dependent bleach rate coefficient and is exemplified for fluorescent sterols in restricted intracellular environments, like lipid droplets. We show that for small deviations from the classical exponential bleaching, the TiEm of decay functions with rate coefficients remains largely independent of fluorescence lifetime and illumination, and thereby represents a faithful measure of probe distribution. Full article
(This article belongs to the Special Issue Fluorescent Probes)
Show Figures

Figure 1

990 KiB  
Article
Mixed Culture Fermentation and Media Optimization by Response Surface Model: Streptomyces and Brachybacterium Species in Bioflocculant Production
by Uchechukwu U. Nwodo and Anthony I. Okoh
Molecules 2014, 19(8), 11131-11144; https://doi.org/10.3390/molecules190811131 - 29 Jul 2014
Cited by 8 | Viewed by 5376
Abstract
The biofloculant production potential of a consortium of Streptomyces and Brachybacterium species were evaluated. Optimum bioflocculant yields (g/L) and flocculation activities (%) were observed for the following preferred nutritional sources: glucose (56%; 2.78 ± 0.15 g/L), (NH4)2NO3 (53%; [...] Read more.
The biofloculant production potential of a consortium of Streptomyces and Brachybacterium species were evaluated. Optimum bioflocculant yields (g/L) and flocculation activities (%) were observed for the following preferred nutritional sources: glucose (56%; 2.78 ± 0.15 g/L), (NH4)2NO3 (53%; 2.81 ± 0.37 g/L) and CaSO4·H2O (47%; 2.19 ± 0.13 g/L). A Plackett-Burman design revealed the critical fermentation media components. The concentrations of these components were optimized [glucose; 16.0, (NH4)2NO3; 0.5 and CaSO4·H2O; 1.2 (g/L)] through a central composite design with optimum bioflocculant yield of 3.02 g/L and flocculation activity of 63.7%. The regression coefficient (R2 = 0.6569) indicates a weak estimation of the model’s adequacy and a high lack-of-fit value (34.1%). Lack of synergy in the consortium may have been responsible for the model inadequacy observed. FTIR spectrometry showed the bioflocculant to be a heteropolysaccharide, while SEM imaging revealed an amorphous loosely arranged fluffy structure with interstial spacing of less than 1 µm. Full article
Show Figures

Figure 1

1261 KiB  
Article
Effects of Tatariside G Isolated from Fagopyrum tataricum Roots on Apoptosis in Human Cervical Cancer HeLa Cells
by Yuan Li, Su-Juan Wang, Wei Xia, Khalid Rahman, Yan Zhang, Hao Peng, Hong Zhang and Lu-Ping Qin
Molecules 2014, 19(8), 11145-11159; https://doi.org/10.3390/molecules190811145 - 29 Jul 2014
Cited by 11 | Viewed by 6157
Abstract
Cervical cancer is the second most common female carcinoma. Current therapies are often unsatisfactory, especially for advanced stage patients. The aim of this study was to explore the effects of tatariside G (TG) on apoptosis in human cervical cancer HeLa cells and the [...] Read more.
Cervical cancer is the second most common female carcinoma. Current therapies are often unsatisfactory, especially for advanced stage patients. The aim of this study was to explore the effects of tatariside G (TG) on apoptosis in human cervical cancer HeLa cells and the possible mechanism of action involved. An MTT assay was employed to evaluate cell viability. Hoechst 33258 staining and flow cytometry (FCM) assays were used to detect cell apoptosis. The protein expression of phosphorylated JNK, P38, ERK and Akt and cleaved caspase-3 and caspase-9 was evaluated by western blot analysis. Additionally, the mRNA expression of caspase-3 and caspase-9 was measured by fluorescent quantitative reverse transcription-PCR (FQ-RT-PCR). TG notably inhibited cell viability, enhanced the percentage of apoptotic cells, facilitated the phosphorylation of p38 MAPK and JNK proteins and caspase-3 and caspase-9 cracking, downregulated the phosphorylation level of Akt, and increased the loss of MMP and the mRNA expression of caspase-3 and caspase-9. TG-induced apoptosis is associated with activation of the mitochondrial death pathway. TG may be an effective candidate for chemotherapy against cervical cancer. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

1784 KiB  
Article
Stable Hemiaminals with a Cyano Group and a Triazole Ring
by Anna Kwiecień, Maciej Barys and Zbigniew Ciunik
Molecules 2014, 19(8), 11160-11177; https://doi.org/10.3390/molecules190811160 - 30 Jul 2014
Cited by 15 | Viewed by 7444
Abstract
Under neutral conditions the reactions between 4-amino-1,2,4-triazole and cyano-substituted benzaldehyde derivatives yield stable hemiaminals. Addition of small amounts of acid catalyst promotes further step of dehydration resulting in formation of Schiff bases. Four new hemiaminals and the corresponding imines have been obtained. The [...] Read more.
Under neutral conditions the reactions between 4-amino-1,2,4-triazole and cyano-substituted benzaldehyde derivatives yield stable hemiaminals. Addition of small amounts of acid catalyst promotes further step of dehydration resulting in formation of Schiff bases. Four new hemiaminals and the corresponding imines have been obtained. The molecular stability of the hemiaminal intermediates results from both the 1,2,4-triazole moiety and electron withdrawing substituents on the phenyl ring, so no further stabilisation by intramolecular interaction is required. Hemiaminal molecules possess stereogenic centres on carbon and nitrogen atoms. The chirality of these centres is strongly correlated with the conformation of the molecules due to heteroatom hyperconjugation effects. Full article
(This article belongs to the Section Molecular Diversity)
Show Figures

Graphical abstract

1398 KiB  
Article
Effects of Subacute Hypothyroidism on Metabolism and Growth-Related Molecules
by Yen-Jui Chang, Chii-Min Hwu, Chii-Chang Yeh, Paulus S. Wang and Shyi-Wu Wang
Molecules 2014, 19(8), 11178-11195; https://doi.org/10.3390/molecules190811178 - 30 Jul 2014
Cited by 23 | Viewed by 6179
Abstract
Thyroid hormones are crucial hormones that primarily regulate the metabolism of entire body cells. In this study, Sprague-Dawley rats were grouped into sham thyroidectomy (Sham Tx), thyroidectomy (Tx), Tx with thyroxine replacement (Tx + T4), and PTU injection (PTU) groups. Metabolic parameters were [...] Read more.
Thyroid hormones are crucial hormones that primarily regulate the metabolism of entire body cells. In this study, Sprague-Dawley rats were grouped into sham thyroidectomy (Sham Tx), thyroidectomy (Tx), Tx with thyroxine replacement (Tx + T4), and PTU injection (PTU) groups. Metabolic parameters were measured by means of metabolic cages for 14 days. After 14 days, the rats were sacrificed while the levels of plasma or serum TSH and growth-related molecules, such as active and total ghrelin, GH, and IGF-1, were assayed. The results revealed that hypothyroid rats tended to eat less food and experienced substantial body weight gain, whereas the rats with T4 replacement tended to eat more food while continuing to lose weight. In hypothyroid rats, the growth-related molecules, such as active ghrelin and total ghrelin secretion, were enhanced, and the ghrelin receptors were also up-regulated. However, circulating GH levels were not elevated and IGF-1 secretion was inhibited in hypothyroid rats. In the Tx + T4 group, the changes of active ghrelin, total ghrelin, GHS-R expression, and IGF-1 were reversed, whereas the GH secretion was higher than that of the Sham Tx group and hypothyroid groups. This study resulted in the novel finding that the ghrelin/GHS-R axis and GH/IGF-1 axis are interrupted in hypothyroid rats. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

3462 KiB  
Article
Neuroprotective Effects of Rhynchophylline Against Ischemic Brain Injury via Regulation of the Akt/mTOR and TLRs Signaling Pathways
by Houcai Huang, Rongling Zhong, Zhi Xia, Jie Song and Liang Feng
Molecules 2014, 19(8), 11196-11210; https://doi.org/10.3390/molecules190811196 - 30 Jul 2014
Cited by 59 | Viewed by 10161
Abstract
Rhynchophylline (Rhy) is an alkaloid isolated from Uncaria which has long been recommended for the treatment of central nervous diseases. In our study, the neuroprotective effect of Rhy was investigated in a stroke model, namely permanent middle cerebral artery occlusion (pMCAO). Rats were [...] Read more.
Rhynchophylline (Rhy) is an alkaloid isolated from Uncaria which has long been recommended for the treatment of central nervous diseases. In our study, the neuroprotective effect of Rhy was investigated in a stroke model, namely permanent middle cerebral artery occlusion (pMCAO). Rats were injected intraperitoneally once daily for four consecutive days before surgery and then received one more injection after surgery. The protein and mRNA levels of p-Akt, p-mTOR, apoptosis-related proteins (p-BAD and cleaved caspase-3), TLR2/4/9, NF-κB, MyD88, BDNF and claudin-5 were examined. Following pMCAO, Rhy treatment not only ameliorated neurological deficits, infarct volume and brain edema, but also increased claudin-5 and BDNF expressions (p < 0.05). Moreover, Rhy could activate PI3K/Akt/mTOR signaling while inhibiting TLRs/NF-κB pathway. Wortmannin, a selective PI3K inhibitor, could abolish the neuroprotective effect of Rhy and reverse the increment in p-Akt, p-mTOR and p-BAD levels. In conclusion, we hypothesize that Rhy protected against ischemic damage, probably via regulating the Akt/mTOR pathway. Full article
Show Figures

Figure 1

2664 KiB  
Article
Antioxidant and Functional Properties of Collagen Hydrolysates from Spanish Mackerel Skin as Influenced by Average Molecular Weight
by Chang-Feng Chi, Zi-Hao Cao, Bin Wang, Fa-Yuan Hu, Zhong-Rui Li and Bin Zhang
Molecules 2014, 19(8), 11211-11230; https://doi.org/10.3390/molecules190811211 - 31 Jul 2014
Cited by 167 | Viewed by 14537
Abstract
In the current study, the relationships between functional properties and average molecular weight (AMW) of collagen hydrolysates from Spanish mackerel (Scomberomorous niphonius) skin were researched. Seven hydrolysate fractions (5.04 ≤ AMW ≤ 47.82 kDa) from collagen of Spanish mackerel skin were [...] Read more.
In the current study, the relationships between functional properties and average molecular weight (AMW) of collagen hydrolysates from Spanish mackerel (Scomberomorous niphonius) skin were researched. Seven hydrolysate fractions (5.04 ≤ AMW ≤ 47.82 kDa) from collagen of Spanish mackerel skin were obtained through the processes of acid extraction, proteolysis, and fractionation using gel filtration chromatography. The physicochemical properties of the collagen hydrolysate fractions were studied by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), gel filtration chromatography, scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The results indicated that there was an inverse relationship between the antioxidant activities and the logarithm of the AMW of the hydrolysate fractions in the tested AMW range. However, the reduction of AMW significantly enhanced the solubility of the hydrolysate fractions, and a similar AMW decrease of the hydrolysate fractions negatively affected the emulsifying and foaming capacities. This presented as a positive correlation between the logarithm of AMW and emulsion stability index, emulsifying activity index, foam stability, and foam capacity. Therefore, these collagen hydrolysates with excellent antioxidant activities or good functionalities as emulsifiers could be obtained by controlling the effect of the digestion process on the AMW of the resultant hydrolysates. Full article
Show Figures

Figure 1

936 KiB  
Article
Nucleoside 2'-Deoxyribosyltransferase from Psychrophilic Bacterium Bacillus psychrosaccharolyticus — Preparation of an Immobilized Biocatalyst for the Enzymatic Synthesis of Therapeutic Nucleosides
by Alba Fresco-Taboada, Immacolata Serra, Jesús Fernández-Lucas, Carmen Acebal, Miguel Arroyo, Marco Terreni and Isabel De la Mata
Molecules 2014, 19(8), 11231-11249; https://doi.org/10.3390/molecules190811231 - 31 Jul 2014
Cited by 23 | Viewed by 7190
Abstract
Nucleoside 2'-deoxyribosyltransferase (NDT) from the psychrophilic bacterium Bacillus psychrosaccharolyticus CECT 4074 has been cloned and produced for the first time. A preliminary characterization of the recombinant protein indicates that the enzyme is an NDT type II since it catalyzes the transfer of 2'-deoxyribose [...] Read more.
Nucleoside 2'-deoxyribosyltransferase (NDT) from the psychrophilic bacterium Bacillus psychrosaccharolyticus CECT 4074 has been cloned and produced for the first time. A preliminary characterization of the recombinant protein indicates that the enzyme is an NDT type II since it catalyzes the transfer of 2'-deoxyribose between purines and pyrimidines. The enzyme (BpNDT) displays a high activity and stability in a broad range of pH and temperature. In addition, different approaches for the immobilization of BpNDT onto several supports have been studied in order to prepare a suitable biocatalyst for the one-step industrial enzymatic synthesis of different therapeutic nucleosides. Best results were obtained by adsorbing the enzyme on PEI-functionalized agarose and subsequent cross-linking with aldehyde-dextran (20 kDa and 70% oxidation degree). The immobilized enzyme could be recycled for at least 30 consecutive cycles in the synthesis of 2'-deoxyadenosine from 2'-deoxyuridine and adenine at 37 °C and pH 8.0, with a 25% loss of activity. High conversion yield of trifluridine (64.4%) was achieved in 2 h when 20 mM of 2'-deoxyuridine and 10 mM 5-trifluorothymine were employed in the transglycosylation reaction catalyzed by immobilized BpNDT at 37 °C and pH 7.5. Full article
(This article belongs to the Special Issue Enzyme Immobilization)
Show Figures

Figure 1

1202 KiB  
Article
Molecular Characterization of Carotenoid Biosynthetic Genes and Carotenoid Accumulation in Lycium chinense
by Shicheng Zhao, Pham Anh Tuan, Jae Kwang Kim, Woo Tae Park, Yeon Bok Kim, Mariadhas Valan Arasu, Naif Abdullah Al-Dhabi, Jingli Yang, Cheng Hao Li and Sang Un Park
Molecules 2014, 19(8), 11250-11262; https://doi.org/10.3390/molecules190811250 - 31 Jul 2014
Cited by 11 | Viewed by 13214
Abstract
Lycium chinense is a shrub that has health benefits and is used as a source of medicines in Asia. In this study, a full-length cDNA clone encoding β-ring carotene hydroxylase (LcCHXB) and partial-length cDNA clones encoding phytoene synthase (LcPSY), phytoene desaturase (LcPDS), ξ-carotene [...] Read more.
Lycium chinense is a shrub that has health benefits and is used as a source of medicines in Asia. In this study, a full-length cDNA clone encoding β-ring carotene hydroxylase (LcCHXB) and partial-length cDNA clones encoding phytoene synthase (LcPSY), phytoene desaturase (LcPDS), ξ-carotene desaturase (LcZDS), lycopene β-cyclase (LcLCYB), lycopene ε-cyclase (LcLCYE), ε-ring carotene hydroxylase (LcCHXE), zeaxanthin epoxidase (LcZEP), carotenoid cleavage dioxygenase (LcCCD1), and 9-cis epoxycarotenoid dioxygenase (LcNCED) were identified in L. chinense. The transcripts were constitutively expressed at high levels in leaves, flowers and red fruits, where the carotenoids are mostly distributed. In contrast, most of the carotenoid biosynthetic genes were weakly expressed in the roots and stems, which contained only small amounts of carotenoids. The level of LcLCYE transcripts was very high in leaves and correlated with the abundance of lutein in this plant tissue. During maturation, the levels of lutein and zeaxanthin in L. chinense fruits dramatically increased, concomitant with a rise in the level of β-cryptoxanthin. LcPSY, LcPDS, LcZDS, LcLCYB, and LcCHXE were highly expressed in red fruits, leading to their substantially higher total carotenoid content compared to that in green fruits. Total carotenoid content was high in both the leaves and red fruits of L. chinense. Our findings on the biosynthesis of carotenoids in L. chinense provide insights into the molecular mechanisms involved in carotenoid biosynthesis and may facilitate the optimization of carotenoid production in L. chinense. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

2612 KiB  
Article
Synthesis of Stabilized Myrrh-Capped Hydrocolloidal Magnetite Nanoparticles
by Ayman M. Atta, Hamad A. Al-Lohedan and Sami A. Al-Hussain
Molecules 2014, 19(8), 11263-11278; https://doi.org/10.3390/molecules190811263 - 31 Jul 2014
Cited by 47 | Viewed by 9399
Abstract
Herein we report a new method for synthesizing stabilized magnetic nanoparticle (MNP) colloids. A new class of monodisperse water-soluble magnetite nano-particles was prepared by a simple and inexpensive co-precipitation method. Iron ions and iodine were prepared by the reaction between ferric chloride and [...] Read more.
Herein we report a new method for synthesizing stabilized magnetic nanoparticle (MNP) colloids. A new class of monodisperse water-soluble magnetite nano-particles was prepared by a simple and inexpensive co-precipitation method. Iron ions and iodine were prepared by the reaction between ferric chloride and potassium iodide. The ferrous and ferric ions were hydrolyzed at low temperature at pH 9 in the presence of iodine to produce iron oxide nanoparticles. The natural product myrrh gum was used as capping agent to produce highly dispersed coated magnetite nanoparticles. The structure and morphology of the magnetic nanogel was characterized by Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM), and X-ray diffraction (XRD) was used to examine the crystal structure of the produced magnetite nanoparticles. Full article
(This article belongs to the Section Molecular Diversity)
Show Figures

Figure 1

737 KiB  
Article
Studies on the Anticonvulsant Activity and Influence on GABA-ergic Neurotransmission of 1,2,4-Triazole-3-thione- Based Compounds
by Tomasz Plech, Barbara Kaproń, Jarogniew J. Łuszczki, Monika Wujec, Agata Paneth, Agata Siwek, Marcin Kołaczkowski, Maria Żołnierek and Gabriel Nowak
Molecules 2014, 19(8), 11279-11299; https://doi.org/10.3390/molecules190811279 - 31 Jul 2014
Cited by 41 | Viewed by 5894
Abstract
The anticonvulsant activity of several 1,2,4-triazole-3-thione derivatives on mouse maximal electroshock-induced seizures was tested in this study. Characteristic features of all active compounds were rapid onset of action and long lasting effect. Structure-activity observations showed that the probability of obtaining compounds exerting anticonvulsant [...] Read more.
The anticonvulsant activity of several 1,2,4-triazole-3-thione derivatives on mouse maximal electroshock-induced seizures was tested in this study. Characteristic features of all active compounds were rapid onset of action and long lasting effect. Structure-activity observations showed that the probability of obtaining compounds exerting anticonvulsant activity was much higher when at least one of the phenyl rings attached to 1,2,4-triazole nucleus had a substituent at the para position. The obtained results, moreover, permit us to conclude that despite the structural similarity of loreclezole (second-generation anticonvulsant drug) and the titled compounds, their anticonvulsant activity is achieved via completely different molecular mechanisms. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

799 KiB  
Article
Semi-Automatic Synthesis, Antiproliferative Activity and DNA-Binding Properties of New Netropsin and bis-Netropsin Analogues
by Jakub Szerszenowicz and Danuta Drozdowska
Molecules 2014, 19(8), 11300-11315; https://doi.org/10.3390/molecules190811300 - 31 Jul 2014
Cited by 8 | Viewed by 4792
Abstract
A general route for the semi-automatic synthesis of some new potential minor groove binders was established. Six four-numbered sub-libraries of new netropsin and bis-netropsin analogues have been synthesized using a Syncore Reactor. The structures of the all new substances prepared in this investigation [...] Read more.
A general route for the semi-automatic synthesis of some new potential minor groove binders was established. Six four-numbered sub-libraries of new netropsin and bis-netropsin analogues have been synthesized using a Syncore Reactor. The structures of the all new substances prepared in this investigation were fully characterized by NMR (1H, 13C), HPLC and LC-MS. The antiproliferative activity of the obtained compounds was tested on MCF-7 breast cancer cells. The ethidium displacement assay using pBR322 confirmed the DNA-binding properties of the new analogues of netropsin and bis-netropsin. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

2047 KiB  
Article
Redox-Dependent Conformational Switching of Diphenylacetylenes
by Ian M. Jones, Peter C. Knipe, Thoe Michaelos, Sam Thompson and Andrew D. Hamilton
Molecules 2014, 19(8), 11316-11332; https://doi.org/10.3390/molecules190811316 - 31 Jul 2014
Cited by 10 | Viewed by 8875
Abstract
Herein we describe the design and synthesis of a redox-dependent single-molecule switch. Appending a ferrocene unit to a diphenylacetylene scaffold gives a redox-sensitive handle, which undergoes reversible one-electron oxidation, as demonstrated by cyclic voltammetry analysis. 1H-NMR spectroscopy of the partially oxidized switch [...] Read more.
Herein we describe the design and synthesis of a redox-dependent single-molecule switch. Appending a ferrocene unit to a diphenylacetylene scaffold gives a redox-sensitive handle, which undergoes reversible one-electron oxidation, as demonstrated by cyclic voltammetry analysis. 1H-NMR spectroscopy of the partially oxidized switch and control compounds suggests that oxidation to the ferrocenium cation induces a change in hydrogen bonding interactions that results in a conformational switch. Full article
(This article belongs to the Special Issue Intramolecular Hydrogen Bonding)
Show Figures

Graphical abstract

806 KiB  
Article
Synthesis and Antifungal Activity of Novel Triazole Compounds Containing Piperazine Moiety
by Yanwei Wang, Kehan Xu, Guojing Bai, Lei Huang, Qiuye Wu, Weihua Pan and Shichong Yu
Molecules 2014, 19(8), 11333-11340; https://doi.org/10.3390/molecules190811333 - 31 Jul 2014
Cited by 31 | Viewed by 9004
Abstract
Design and synthesis of triazole library antifungal agents having piperazine side chains, analogues to fluconazole were documented. The synthesis highlighted utilization of the click chemistry on the basis of the active site of the cytochrome P450 14α-demethylase (CYP51). Their structures were characterized by [...] Read more.
Design and synthesis of triazole library antifungal agents having piperazine side chains, analogues to fluconazole were documented. The synthesis highlighted utilization of the click chemistry on the basis of the active site of the cytochrome P450 14α-demethylase (CYP51). Their structures were characterized by 1H-NMR, 13C-NMR, MS and IR. The influences of piperazine moiety on in vitro antifungal activities of all the target compounds were evaluated against eight human pathogenic fungi. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

706 KiB  
Article
Two New Acylated Flavonol Glycosides from the Seeds of Lepidium sativum
by Qing-Lu Fan, Yin-Di Zhu, Wen-Hua Huang, Yun Qi and Bao-Lin Guo
Molecules 2014, 19(8), 11341-11349; https://doi.org/10.3390/molecules190811341 - 31 Jul 2014
Cited by 13 | Viewed by 5101
Abstract
Two new acylated flavonol glycosides named kaempferol-3-O-(2-O-sinapoyl)-β-D-galactopyranosyl-(1→2)-β-D-glucopyranoside-7-O-α-L-rhamnopyranoside (1) and quercetin-3-O-(6-O-benzoyl)-β-D-glucopyranosyl-(1→3)-β-D-galactopyranoside-7-O-α-L-rhamnopyranoside (2), were isolated together with six known compounds from the seeds of L. sativum. Their [...] Read more.
Two new acylated flavonol glycosides named kaempferol-3-O-(2-O-sinapoyl)-β-D-galactopyranosyl-(1→2)-β-D-glucopyranoside-7-O-α-L-rhamnopyranoside (1) and quercetin-3-O-(6-O-benzoyl)-β-D-glucopyranosyl-(1→3)-β-D-galactopyranoside-7-O-α-L-rhamnopyranoside (2), were isolated together with six known compounds from the seeds of L. sativum. Their structures were elucidated on the basis of spectroscopic analysis and chemical methods. In vitro 1 and 2 inhibited nitric oxide production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells, with IC50 values of 25.36 and 25.08 µM, respectively. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

5575 KiB  
Article
Cordycepin Induces S Phase Arrest and Apoptosis in Human Gallbladder Cancer Cells
by Xu-An Wang, Shan-Shan Xiang, Huai-Feng Li, Xiang-Song Wu, Mao-Lan Li, Yi-Jun Shu, Fei Zhang, Yang Cao, Yuan-Yuan Ye, Run-Fa Bao, Hao Weng, Wen-Guang Wu, Jia-Sheng Mu, Yun-Ping Hu, Lin Jiang, Zhu-Jun Tan, Wei Lu, Ping Wang and Ying-Bin Liu
Molecules 2014, 19(8), 11350-11365; https://doi.org/10.3390/molecules190811350 - 31 Jul 2014
Cited by 42 | Viewed by 8296
Abstract
Gallbladder cancer is the most common malignant tumor of the biliary tract, and this condition has a rather dismal prognosis, with an extremely low five-year survival rate. To improve the outcome of unresectable and recurrent gallbladder cancer, it is necessary to develop new [...] Read more.
Gallbladder cancer is the most common malignant tumor of the biliary tract, and this condition has a rather dismal prognosis, with an extremely low five-year survival rate. To improve the outcome of unresectable and recurrent gallbladder cancer, it is necessary to develop new effective treatments and drugs. The purpose of the present study was to evaluate the effects of cordycepin on human gallbladder cells and uncover the molecular mechanisms responsible for these effects. The Cell Counting Kit-8 (CCK-8) and colony formation assays revealed that cordycepin affected the viability and proliferation of human gallbladder cancer cells in a dose- and time-dependent manner. Flow cytometric analysis showed that cordycepin induced S phase arrest in human gallbladder cancer cell lines(NOZ and GBC-SD cells). Cordycepin-induced apoptosis was observed using an Annexin V/propidium iodide (PI) double-staining assay, and the mitochondrial membrane potential (ΔΨm) decreased in a dose-dependent manner. Additionally, western blot analysis revealed the upregulation of cleaved-caspase-3, cleaved-caspase-9, cleaved-PARP and Bax and the downregulation of Bcl-2, cyclin A and Cdk-2 in cordycepin-treated cells. Moreover, cordycepin inhibited tumor growth in nude mice bearing NOZ tumors. Our results indicate that this drug may represent an effective treatment for gallbladder carcinoma. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

926 KiB  
Article
Hypoglycemic and Hypotensive Activity of a Root Extract of Smilax aristolochiifolia, Standardized on N-trans-Feruloyl-Tyramine
by Carol Arely Botello Amaro, Manasés González-Cortazar, Maribel Herrera-Ruiz, Rubén Román-Ramos, Lucia Aguilar-Santamaría, Jaime Tortoriello and Enrique Jiménez-Ferrer
Molecules 2014, 19(8), 11366-11384; https://doi.org/10.3390/molecules190811366 - 31 Jul 2014
Cited by 42 | Viewed by 7166
Abstract
The metabolic syndrome (MS) is a condition consisting of various metabolic abnormalities that are risk factors for developing kidney failure, cardiovascular, vascular and cerebrovascular diseases, among others. The prevalence of this syndrome shows a marked increase. The aim of this study was to [...] Read more.
The metabolic syndrome (MS) is a condition consisting of various metabolic abnormalities that are risk factors for developing kidney failure, cardiovascular, vascular and cerebrovascular diseases, among others. The prevalence of this syndrome shows a marked increase. The aim of this study was to investigate the pharmacological effect of Smilax aristolochiifolia root on some components of MS and obtain some of the active principle using chromatographic techniques. The compound isolated was N-trans-feruloyl tyramine NTF (1), and its structure was determined by spectroscopic and spectrometric analyses. The whole extract and the standardized fractions were able to control the weight gain around 30%; the fraction rich in NTF was able to decrease the hypertriglyceridemia by 60%. The insulin resistance decreased by approximately 40%; the same happened with blood pressure, since the values of systolic and diastolic pressure fell on average 31% and 37% respectively, to levels comparable to normal value. The treatment also had an immunomodulatory effect on the low-grade inflammation associated with obesity, since it significantly decreased the relative production of pro-inflammatory cytokines regarding anti-inflammatory cytokines, both kidney and adipose tissue. Therefore it can be concluded that the extract and fractions of Smilax aristolochiifolia root with NTF are useful to counteract some symptoms of MS in animal models. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

3788 KiB  
Article
Anti-Inflammatory and Antiplatelet Activities of Plasma Are Conserved Across Twelve Mammalian Species
by Sagheer Ahmed, Saima Gul, Fazean Idris, Abrar Hussain, Muhammad Zia-Ul-Haq, Hawa Z. E. Jaafar and Marius Moga
Molecules 2014, 19(8), 11385-11394; https://doi.org/10.3390/molecules190811385 - 31 Jul 2014
Cited by 4 | Viewed by 5652
Abstract
Human plasma inhibits arachidonic acid metabolism and platelet aggregation. This helps human form a haemostatic control system that prevents the progress of certain aggregatory or inflammatory reactions. Whether this property of plasma is unique to human or extends to other species is not [...] Read more.
Human plasma inhibits arachidonic acid metabolism and platelet aggregation. This helps human form a haemostatic control system that prevents the progress of certain aggregatory or inflammatory reactions. Whether this property of plasma is unique to human or extends to other species is not well known. It is speculated that this protective ability of plasma remains evolutionarily conserved in different mammals. In order to confirm this, the effect of plasma from 12 different mammalian species was investigated for its inhibitory potential against arachidonic acid metabolism and platelet aggregation. Metabolism of arachidonic acid by cyclooxygenase and lipoxygenase pathways was studies using radio-immuno assay and thin layer chromatography while platelet aggregation in the plasma of various mammals was monitored following turbedmetric method in a dual channel aggregometer. Results indicate that inhibition of AA metabolism and platelet aggregation is a common feature of plasma obtained from different mammalian species, although there exists large interspecies variation. This shows that besides human, other mammals also possess general protective mechanisms against various aggregatory and inflammatory conditions and this anti-inflammatory property of the plasma is evolutionarily conserved in mammalian species. The most likely candidates responsible for these properties of plasma include haptoglobin, albumin and lipoproteins. Full article
Show Figures

Graphical abstract

1619 KiB  
Article
Size Control of Magnetite Nanoparticles in Excess Ligands as a Function of Reaction Temperature and Time
by Masafumi Nakaya, Ryo Nishida and Atsushi Muramatsu
Molecules 2014, 19(8), 11395-11403; https://doi.org/10.3390/molecules190811395 - 04 Aug 2014
Cited by 17 | Viewed by 6943
Abstract
The novel synthesis of monodisperse magnetite Fe3O4 nanoparticles of varying sizes using a solventless synthetic method was developed. Iron salt was treated in excess oleylamine and oleic acid as ligands. The effect of the reaction temperature and time on the [...] Read more.
The novel synthesis of monodisperse magnetite Fe3O4 nanoparticles of varying sizes using a solventless synthetic method was developed. Iron salt was treated in excess oleylamine and oleic acid as ligands. The effect of the reaction temperature and time on the particle size was investigated and the particle sizes were easily tuned from 5.3 to 20.4 nm by changing the reaction temperature and time. Full article
(This article belongs to the Special Issue Bio and Nanomaterials Based on Fe3O4)
Show Figures

Graphical abstract

3475 KiB  
Article
Analysis on Blast Fungus-Responsive Characters of a Flavonoid Phytoalexin Sakuranetin; Accumulation in Infected Rice Leaves, Antifungal Activity and Detoxification by Fungus
by Morifumi Hasegawa, Ichiro Mitsuhara, Shigemi Seo, Kazunori Okada, Hisakazu Yamane, Takayoshi Iwai and Yuko Ohashi
Molecules 2014, 19(8), 11404-11418; https://doi.org/10.3390/molecules190811404 - 04 Aug 2014
Cited by 66 | Viewed by 8995
Abstract
To understand the role of the rice flavonoid phytoalexin (PA) sakuranetin for blast resistance, the fungus-responsive characteristics were studied. Young rice leaves in a resistant line exhibited hypersensitive reaction (HR) within 3 days post inoculation (dpi) of a spore suspension, and an increase [...] Read more.
To understand the role of the rice flavonoid phytoalexin (PA) sakuranetin for blast resistance, the fungus-responsive characteristics were studied. Young rice leaves in a resistant line exhibited hypersensitive reaction (HR) within 3 days post inoculation (dpi) of a spore suspension, and an increase in sakuranetin was detected at 3 dpi, increasing to 4-fold at 4 dpi. In the susceptible line, increased sakuranetin was detected at 4 dpi, but not at 3 dpi, by which a large fungus mass has accumulated without HR. Induced expression of a PA biosynthesis gene OsNOMT for naringenin 7-O-methyltransferase was found before accumulation of sakuranetin in both cultivars. The antifungal activity of sakuranetin was considerably higher than that of the major rice diterpenoid PA momilactone A in vitro and in vivo under similar experimental conditions. The decrease and detoxification of sakuranetin were detected in both solid and liquid mycelium cultures, and they took place slower than those of momilactone A. Estimated local concentration of sakuranetin at HR lesions was thought to be effective for fungus restriction, while that at enlarged lesions in susceptible rice was insufficient. These results indicate possible involvement of sakuranetin in blast resistance and its specific relation to blast fungus. Full article
(This article belongs to the Special Issue Phytoalexins: Current Progress and Future Prospects)
Show Figures

Figure 1

1249 KiB  
Article
Biocatalytic Behaviour of Immobilized Rhizopus oryzae Lipase in the 1,3-Selective Ethanolysis of Sunflower Oil to Obtain a Biofuel Similar to Biodiesel
by Carlos Luna, Cristóbal Verdugo, Enrique D. Sancho, Diego Luna, Juan Calero, Alejandro Posadillo, Felipa M. Bautista and Antonio A. Romero
Molecules 2014, 19(8), 11419-11439; https://doi.org/10.3390/molecules190811419 - 04 Aug 2014
Cited by 23 | Viewed by 8776
Abstract
A new biofuel similar to biodiesel was obtained in the 1,3-selective transesterification reaction of sunflower oil with ethanol using as biocatalyst a Rhizopus oryzae lipase (ROL) immobilized on Sepiolite, an inorganic support. The studied lipase was a low cost powdered enzyme preparation, Biolipase-R, [...] Read more.
A new biofuel similar to biodiesel was obtained in the 1,3-selective transesterification reaction of sunflower oil with ethanol using as biocatalyst a Rhizopus oryzae lipase (ROL) immobilized on Sepiolite, an inorganic support. The studied lipase was a low cost powdered enzyme preparation, Biolipase-R, from Biocon-Spain, a multipurpose additive used in food industry. In this respect, it is developed a study to optimize the immobilization procedure of these lipases on Sepiolite. Covalent immobilization was achieved by the development of an inorganic-organic hybrid linker formed by a functionalized hydrocarbon chain with a pendant benzaldehyde, bonded to the AlPO4 support surface. Thus, the covalent immobilization of lipases on amorphous AlPO4/sepiolite (20/80 wt %) support was evaluated by using two different linkers (p-hydroxybenzaldehyde and benzylamine-terephthalic aldehyde, respectively). Besides, the catalytic behavior of lipases after physical adsorption on the demineralized sepiolite was also evaluated. Obtained results indicated that covalent immobilization with the p-hydroxybenzaldehyde linker gave the best biocatalytic behavior. Thus, this covalently immobilized lipase showed a remarkable stability as well as an excellent capacity of reutilization (more than five successive reuses) without a significant loss of its initial catalytic activity. This could allow a more efficient fabrication of biodiesel minimizing the glycerol waste production. Full article
(This article belongs to the Special Issue Enzyme Immobilization)
Show Figures

Graphical abstract

1567 KiB  
Article
Roles of Intramolecular and Intermolecular Hydrogen Bonding in a Three-Water-Assisted Mechanism of Succinimide Formation from Aspartic Acid Residues
by Ohgi Takahashi, Ryota Kirikoshi and Noriyoshi Manabe
Molecules 2014, 19(8), 11440-11452; https://doi.org/10.3390/molecules190811440 - 04 Aug 2014
Cited by 28 | Viewed by 9465
Abstract
Aspartic acid (Asp) residues in peptides and proteins are prone to isomerization to the β-form and racemization via a five-membered succinimide intermediate. These nonenzymatic reactions have relevance to aging and age-related diseases. In this paper, we report a three water molecule-assisted, six-step mechanism [...] Read more.
Aspartic acid (Asp) residues in peptides and proteins are prone to isomerization to the β-form and racemization via a five-membered succinimide intermediate. These nonenzymatic reactions have relevance to aging and age-related diseases. In this paper, we report a three water molecule-assisted, six-step mechanism for the formation of succinimide from Asp residues found by density functional theory calculations. The first two steps constitute a stepwise iminolization of the C-terminal amide group. This iminolization involves a quintuple proton transfer along intramolecular and intermolecular hydrogen bonds formed by the C-terminal amide group, the side-chain carboxyl group, and the three water molecules. After a conformational change (which breaks the intramolecular hydrogen bond involving the iminol nitrogen) and a reorganization of water molecules, the iminol nitrogen nucleophilically attacks the carboxyl carbon of the Asp side chain to form a five-membered ring. This cyclization is accompanied by a triple proton transfer involving two water molecules, so that a gem-diol tetrahedral intermediate is formed. The last step is dehydration of the gem-diol group catalyzed by one water molecule, and this is the rate-determining step. The calculated overall activation barrier (26.7 kcal mol−1) agrees well with an experimental activation energy. Full article
(This article belongs to the Special Issue Intramolecular Hydrogen Bonding)
Show Figures

Figure 1

776 KiB  
Article
An Unusual Piceatannol Dimer from Rheum austral D. Don with Antioxidant Activity
by Lin Hu, Na-Na Chen, Qun Hu, Cui Yang, Qing-Song Yang and Fang-Fang Wang
Molecules 2014, 19(8), 11453-11464; https://doi.org/10.3390/molecules190811453 - 04 Aug 2014
Cited by 26 | Viewed by 6714
Abstract
A novel dimer of piceatannol glycoside, named rheumaustralin (1) was isolated from the underground parts of the ethnomedicinal plant Rheum austral (Polygonaceae) collected from Tibet together with 17 known compounds, including rheumin (2), 2,5-dimethyl-7-hydroxychromone (3), 2,5-dimethylchromone-7-O [...] Read more.
A novel dimer of piceatannol glycoside, named rheumaustralin (1) was isolated from the underground parts of the ethnomedicinal plant Rheum austral (Polygonaceae) collected from Tibet together with 17 known compounds, including rheumin (2), 2,5-dimethyl-7-hydroxychromone (3), 2,5-dimethylchromone-7-O-β-d-glucopyranoside (4), 7-hydroxy-2-(2'-hydroxypropyl)-5-methylchromone (5), torachrysone (6) torachrysone-8-O-β-d-glucopyranoside (7), 4-(4'-hydroxyphenyl)-2-butanone-4'-O-β-d-glucopyranoside (8), amabiloside (9), N-trans-feruloyl tyramine (10), chrysophanol (11), aloe-emodin (12), emodin (13), physcion (14), physcion-1-O-β-d-glucopyranoside (15), emodin-8-O-β-d-glucopyranoside (16), d-catechin (17) and gallic acid (18). Their structures were determined by combined spectroscopic methods and by comparison of their spectral data with those reported in literature. Compounds 110 were tested for their ability to scavenge 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

838 KiB  
Article
Influence of Vinegar and Wine Processing on the Alkaloid Content and Composition of the Traditional Chinese Medicine Corydalis Rhizoma (Yanhusuo)
by Hongwei Wu, Katharina Waldbauer, Liying Tang, Lianwu Xie, Ruxandra McKinnon, Martin Zehl, Hongjun Yang, Haiyu Xu and Brigitte Kopp
Molecules 2014, 19(8), 11487-11504; https://doi.org/10.3390/molecules190811487 - 04 Aug 2014
Cited by 51 | Viewed by 9317
Abstract
Corydalis Rhizoma is the dried tuber of Corydalis yanhusuo W.T. Wang which is used in traditional Chinese medicine for pain relief and blood activation. Before being used in the clinics, C. yanhusuo is traditionally processed through dry-frying or frying with vinegar, wine or [...] Read more.
Corydalis Rhizoma is the dried tuber of Corydalis yanhusuo W.T. Wang which is used in traditional Chinese medicine for pain relief and blood activation. Before being used in the clinics, C. yanhusuo is traditionally processed through dry-frying or frying with vinegar, wine or salt. In this study, eleven alkaloids from Corydalis Rhizoma, namely protopine (1), α-allocryptopine (2), tetrahydrocolumbamine (3), coptisine (4), palmatine (5), berberine (6), dehydrocorydaline (7), d,l-tetrahydropalmatine (8), tetrahydroberberine (9), corydaline (10) and tetrahydrocoptisine (11) were simultaneously quantified using a newly developed high performance liquid chromatography-diode array detector (HPLC-DAD) method. The influence of vinegar and wine processing on the content of the main alkaloids of Corydalis Rhizoma was investigated. For this purpose, two common formulations with clinical application, namely the water decoction of Corydalis Rhizoma and its formula Jin Ling Zi San (combination of Corydalis Rhizoma and Toosendan Fructus) were studied. In the two water decoctions, wine and vinegar processing increased the amount of tertiary alkaloids. The differences were more pronounced for Jin Ling Zi San, in which case the content of all tertiary alkaloids (compounds 1, 2, 3, 8, 9, 10, 11) was increased by wine processing. Full article
Show Figures

Graphical abstract

763 KiB  
Article
Synthesis of Functionalized Arylaziridines as Potential Antimicrobial Agents
by Arianna Giovine, Marilena Muraglia, Marco Antonio Florio, Antonio Rosato, Filomena Corbo, Carlo Franchini, Biagia Musio, Leonardo Degennaro and Renzo Luisi
Molecules 2014, 19(8), 11505-11519; https://doi.org/10.3390/molecules190811505 - 04 Aug 2014
Cited by 16 | Viewed by 5371
Abstract
By using the Suzuki-Miyaura protocol, a simple straightforward synthesis of functionalized 2-arylaziridines has been developed. By means of this synthetic strategy from readily available ortho-, meta- and para-bromophenylaziridines and aryl- or heteroarylboronic acids, new aziridines could be obtained. The cross-coupling [...] Read more.
By using the Suzuki-Miyaura protocol, a simple straightforward synthesis of functionalized 2-arylaziridines has been developed. By means of this synthetic strategy from readily available ortho-, meta- and para-bromophenylaziridines and aryl- or heteroarylboronic acids, new aziridines could be obtained. The cross-coupling reactions occurred without ring opening of the three membered ring. Preliminary results on the antimicrobial activity of the heterosubstituted biaryl compounds have been also included. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

1552 KiB  
Article
New Thiosemicarbazides and 1,2,4-Triazolethiones Derived from 2-(Ethylsulfanyl) Benzohydrazide as Potent Antioxidants
by Nafal Nazarbahjat, Nurdiana Nordin, Zanariah Abdullah, Mahmood Ameen Abdulla, Wageeh A. Yehye, Siti Nadiah Abdul Halim, Chin Hui Kee and Azhar Ariffin
Molecules 2014, 19(8), 11520-11537; https://doi.org/10.3390/molecules190811520 - 04 Aug 2014
Cited by 16 | Viewed by 5756
Abstract
New thiosemicarbazide derivatives 26 were synthesised by reacting 2-(ethylsulfanyl)benzohydrazide with various aryl isothiocyanates. The cyclisation of compounds 26 under reflux conditions in a basic medium (aqueous NaOH, 4 N) yielded compounds 711 that contain a 1,2,4-triazole ring. [...] Read more.
New thiosemicarbazide derivatives 26 were synthesised by reacting 2-(ethylsulfanyl)benzohydrazide with various aryl isothiocyanates. The cyclisation of compounds 26 under reflux conditions in a basic medium (aqueous NaOH, 4 N) yielded compounds 711 that contain a 1,2,4-triazole ring. All of the synthesised compounds were screened for their antioxidant activities. Compounds 2, 3, and 7 showed better radical scavenging in a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, with IC50 values of 1.08, 0.22, and 0.74 µg/mL, respectively, compared to gallic acid (IC50, 1.2 µg/mL). Compound 3 also showed superior results in a ferric reducing antioxidant power (FRAP) assay (3054 µM/100 g) compared to those of ascorbic acid (1207 µM/100 g). Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

772 KiB  
Article
Active Components with Inhibitory Activities on IFN-γ/STAT1 and IL-6/STAT3 Signaling Pathways from Caulis Trachelospermi
by Xiao-Ting Liu, Zhe-Xing Wang, Yu Yang, Lin Wang, Ruo-Feng Sun, Yi-Min Zhao and Neng-Jiang Yu
Molecules 2014, 19(8), 11560-11571; https://doi.org/10.3390/molecules190811560 - 05 Aug 2014
Cited by 16 | Viewed by 6910
Abstract
Initial investigation for new active herbal extract with inhibiting activity on JAK/STAT signaling pathway revealed that the extract of Caulis Trachelospermi, which was separated by 80% alcohol extraction and subsequent HP-20 macroporous resin column chromatography, was founded to strongly inhibit IFN-γ-induced STAT1-responsive luciferase [...] Read more.
Initial investigation for new active herbal extract with inhibiting activity on JAK/STAT signaling pathway revealed that the extract of Caulis Trachelospermi, which was separated by 80% alcohol extraction and subsequent HP-20 macroporous resin column chromatography, was founded to strongly inhibit IFN-γ-induced STAT1-responsive luciferase activity (IFN-γ/STAT1) with IC50 value of 2.43 μg/mL as well as inhibiting IL-6-induced STAT3-responsive luciferase activity (IL-6/STAT3) with IC50 value of 1.38 μg/mL. Subsequent study on its active components led to the isolation and identification of two new dibenzylbutyrolactone lignans named 4-demethyltraxillaside (1) and nortrachelogenin 4-O-β-d-glucopyranoside (2), together with six known compounds. The lignan compounds 14 together with other lignan compounds isolated in previous study were tested the activities on IFN-γ/STAT1 and IL-6/STAT3 pathways. The following result showed that the main components trachelogenin and arctigenin had corresponding activities on IFN-γ/STAT1 pathway with IC50 values of 3.14 μM and 9.46 μM as well as trachelogenin, arctigenin and matairesinol strongly inhibiting IL-6/STAT3 pathway with IC50 values of 3.63 μM, 6.47 μM and 2.92 μM, respectively. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

777 KiB  
Article
Synthesis and in Vitro Antimicrobial Evaluation of New N-Heterocyclic Diquaternary Pyridinium Compounds
by Bianca Furdui, Georgiana Parfene, Ioana Otilia Ghinea, Rodica Mihaela Dinica, Gabriela Bahrim and Martine Demeunynck
Molecules 2014, 19(8), 11572-11585; https://doi.org/10.3390/molecules190811572 - 05 Aug 2014
Cited by 17 | Viewed by 5684
Abstract
A series of bis-pyridinium quaternary ammonium salts (bis-PyQAs) with different aryl and heteroaryl moieties were synthesized and their antimicrobial activity investigated. The inhibition effect of the compounds was evaluated against bacteria, molds and yeasts; the activities were expressed as the minimum inhibitory concentrations [...] Read more.
A series of bis-pyridinium quaternary ammonium salts (bis-PyQAs) with different aryl and heteroaryl moieties were synthesized and their antimicrobial activity investigated. The inhibition effect of the compounds was evaluated against bacteria, molds and yeasts; the activities were expressed as the minimum inhibitory concentrations (MIC). The relationships between the structure descriptors (logP, polarizability, polar surface area (2D), van der Waals area (3D)) and the biological activity of the tested bis-PyQAs are discussed. Full article
(This article belongs to the Special Issue Heterocyclic and Medicinal Chemistry)
Show Figures

Graphical abstract

768 KiB  
Communication
Expression Profile and Clinical Significance of MicroRNAs in Papillary Thyroid Carcinoma
by You Peng, Chen Li, Ding-Cun Luo, Jin-Wang Ding, Wo Zhang and Gang Pan
Molecules 2014, 19(8), 11586-11599; https://doi.org/10.3390/molecules190811586 - 05 Aug 2014
Cited by 64 | Viewed by 6952
Abstract
This study screened microRNAs (miRNAs) that are abnormally expressed in papillary thyroid carcinoma (PTC) tissues to identify PTC and nodular goiter and the degree of PTC malignancy. A total of 51 thyroid tumor tissue specimens paired with adjacent normal thyroid tissues were obtained [...] Read more.
This study screened microRNAs (miRNAs) that are abnormally expressed in papillary thyroid carcinoma (PTC) tissues to identify PTC and nodular goiter and the degree of PTC malignancy. A total of 51 thyroid tumor tissue specimens paired with adjacent normal thyroid tissues were obtained from the Department of Surgical Oncology of Hangzhou First People’s Hospital from June-December 2011. miRNA expression profiles were examined by microarrays and validated by quantitative real-time PCR (qRT-PCR). Expression levels of the miRNAs were analyzed to assess if they were associated with selected clinicopathological features. Eleven miRNAs were significantly differentially expressed between nodular goiter and PTC and between highly invasive and low invasive PTC. miR-199b-5p and miR-30a-3p were significantly differentially expressed among the three groups. miR-30a-3p, miR-122-5p, miR-136-5p, miR-146b-5p and miR-199b-5p were selected for further study by qRT-PCR and miR-146b-5p, miR-199b-5p and miR-30a-3p were different between the PTC and nodular goiter groups. miR-199b-5p was over-expressed in PTC patients with extrathyroidal invasion and cervical lymph node metastasis. In conclusion miR-146b-5p, miR-30a-3p, and miR-199b-5p may serve as biomarkers for the diagnosis of PTC and miR-199b-5p is associated with PTC invasiveness. Full article
(This article belongs to the Special Issue miRNAs as Probes to Monitor Cancer and Neurodegenerative Disorders)
Show Figures

Figure 1

1952 KiB  
Article
68Ga-Labeled Cyclic NGR Peptide for MicroPET Imaging of CD13 Receptor Expression
by Yahui Shao, Wansheng Liang, Fei Kang, Weidong Yang, Xiaowei Ma, Guiyu Li, Shu Zong, Kai Chen and Jing Wang
Molecules 2014, 19(8), 11600-11612; https://doi.org/10.3390/molecules190811600 - 05 Aug 2014
Cited by 27 | Viewed by 7305
Abstract
Peptides containing the asparagines-glycine-arginine (NGR) motif have been identified as specific ligands binding to CD13/aminopeptidase N (APN) receptor, a tumor neovascular biomarker. In this study, we synthesized a novel NGR-containing peptide (NOTA-G3-NGR), and labeled NOTA-G3-NGR with 68Ga (t [...] Read more.
Peptides containing the asparagines-glycine-arginine (NGR) motif have been identified as specific ligands binding to CD13/aminopeptidase N (APN) receptor, a tumor neovascular biomarker. In this study, we synthesized a novel NGR-containing peptide (NOTA-G3-NGR), and labeled NOTA-G3-NGR with 68Ga (t1/2 = 67.7 min). The resulting 68Ga-NOTA-G3-NGR peptide was subject to in vitro and in vivo characterization. The microPET imaging results revealed that the 68Ga-NOTA-G3-NGR peptide exhibits rapid and specific tumor uptake, and high tumor-to-background contrast in a subcutaneous HT-1080 fibrosarcoma mouse model. We concluded that the 68Ga-NOTA-G3-NGR peptide has potential in the diagnosis of CD13-targeted tumor angiogenesis. Full article
Show Figures

Graphical abstract

1204 KiB  
Article
Roles of the Amino Group of Purine Bases in the Thermodynamic Stability of DNA Base Pairing
by Shu-ichi Nakano and Naoki Sugimoto
Molecules 2014, 19(8), 11613-11627; https://doi.org/10.3390/molecules190811613 - 05 Aug 2014
Cited by 10 | Viewed by 7854
Abstract
The energetic aspects of hydrogen-bonded base-pair interactions are important for the design of functional nucleotide analogs and for practical applications of oligonucleotides. The present study investigated the contribution of the 2-amino group of DNA purine bases to the thermodynamic stability of oligonucleotide duplexes [...] Read more.
The energetic aspects of hydrogen-bonded base-pair interactions are important for the design of functional nucleotide analogs and for practical applications of oligonucleotides. The present study investigated the contribution of the 2-amino group of DNA purine bases to the thermodynamic stability of oligonucleotide duplexes under different salt and solvent conditions, using 2'-deoxyriboinosine (I) and 2'-deoxyribo-2,6-diaminopurine (D) as non-canonical nucleotides. The stability of DNA duplexes was changed by substitution of a single base pair in the following order: G•C > D•T ≈ I•C > A•T > G•T > I•T. The apparent stabilization energy due to the presence of the 2-amino group of G and D varied depending on the salt concentration, and decreased in the water-ethanol mixed solvent. The effects of salt concentration on the thermodynamics of DNA duplexes were found to be partially sequence-dependent, and the 2-amino group of the purine bases might have an influence on the binding of ions to DNA through the formation of a stable base-paired structure. Our results also showed that physiological salt conditions were energetically favorable for complementary base recognition, and conversely, low salt concentration media and ethanol-containing solvents were effective for low stringency oligonucleotide hybridization, in the context of conditions employed in this study. Full article
Show Figures

Graphical abstract

3539 KiB  
Article
Aconitum pseudo-laeve var. erectum Inhibits Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Osteoclastogenesis via the c-Fos/nuclear Factor of Activated T-Cells, Cytoplasmic 1 Signaling Pathway and Prevents Lipopolysaccharide-Induced Bone Loss in Mice
by Jong Min Baek, Ju-Young Kim, Yoon-Hee Cheon, Sun-Hyang Park, Sung-Jun Ahn, Kwon-Ha Yoon, Jaemin Oh and Myeung Su Lee
Molecules 2014, 19(8), 11628-11644; https://doi.org/10.3390/molecules190811628 - 05 Aug 2014
Cited by 11 | Viewed by 7367
Abstract
Aconitum pseudo-laeve var. erectum (APE) has been widely shown in herbal medicine to have a therapeutic effect on inflammatory conditions. However, there has been no evidence on whether the extract of APE is involved in the biological bone metabolism process, particularly osteoclast-mediated bone [...] Read more.
Aconitum pseudo-laeve var. erectum (APE) has been widely shown in herbal medicine to have a therapeutic effect on inflammatory conditions. However, there has been no evidence on whether the extract of APE is involved in the biological bone metabolism process, particularly osteoclast-mediated bone resorption. In this study, we confirmed that the administration of APE could restore normal skeletal conditions in a murine model of lipopolysaccharide (LPS)-induced bone loss via a decrease in the receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG) ratio and osteoclast number. We then investigated the effect of APE on the RANKL-induced formation and function of osteoclasts to elucidate its underlying molecular mechanisms. APE suppressed the formation of tartrate-resistant acid phosphatase (TRAP)-positive cells, as well as the bone-resorbing activity of mature osteoclasts. Furthermore, APE attenuated nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) and c-Fos without affecting any early signal pathway of osteoclastogenesis. Subsequently, APE significantly downregulated the expression of various genes exclusively expressed in osteoclasts. These results demonstrate that APE restores LPS-induced bone loss through a decrease of the serum RANKL/OPG ratio, and inhibits osteoclast differentiation and function, suggesting the promise of APE as a potential cure for various osteoclast-associated bone diseases. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

1217 KiB  
Article
Synthesis and Docking Studies of 2,4,6-Trihydroxy-3-Geranylacetophenone Analogs as Potential Lipoxygenase Inhibitor
by Chean Hui Ng, Kamal Rullah, Mohd Fadhlizil Fasihi Mohd Aluwi, Faridah Abas, Kok Wai Lam, Intan Safinar Ismail, Radhakrishnan Narayanaswamy, Fadzureena Jamaludin and Khozirah Shaari
Molecules 2014, 19(8), 11645-11659; https://doi.org/10.3390/molecules190811645 - 05 Aug 2014
Cited by 22 | Viewed by 8650
Abstract
The natural product molecule 2,4,6-trihydroxy-3-geranyl-acetophenone (tHGA) isolated from the medicinal plant Melicope ptelefolia was shown to exhibit potent lipoxygenase (LOX) inhibitory activity. It is known that LOX plays an important role in inflammatory response as it catalyzes the oxidation of unsaturated fatty [...] Read more.
The natural product molecule 2,4,6-trihydroxy-3-geranyl-acetophenone (tHGA) isolated from the medicinal plant Melicope ptelefolia was shown to exhibit potent lipoxygenase (LOX) inhibitory activity. It is known that LOX plays an important role in inflammatory response as it catalyzes the oxidation of unsaturated fatty acids, such as linoleic acid to form hydroperoxides. The search for selective LOX inhibitors may provide new therapeutic approach for inflammatory diseases. Herein, we report the synthesis of tHGA analogs using simple Friedel-Craft acylation and alkylation reactions with the aim of obtaining a better insight into the structure-activity relationships of the compounds. All the synthesized analogs showed potent soybean 15-LOX inhibitory activity in a dose-dependent manner (IC50 = 10.31–27.61 μM) where compound 3e was two-fold more active than tHGA. Molecular docking was then applied to reveal the important binding interactions of compound 3e in soybean 15-LOX binding site. The findings suggest that the presence of longer acyl bearing aliphatic chain (5Cs) and aromatic groups could significantly affect the enzymatic activity. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

750 KiB  
Article
Synthesis of Novel Bisindolylmethane Schiff bases and Their Antibacterial Activity
by Syahrul Imran, Muhammad Taha, Nor Hadiani Ismail, Khalid Mohammed Khan, Farzana Naz, Memona Hussain and Saima Tauseef
Molecules 2014, 19(8), 11722-11740; https://doi.org/10.3390/molecules190811722 - 06 Aug 2014
Cited by 75 | Viewed by 7557
Abstract
In an effort to develop new antibacterial drugs, some novel bisindolylmethane derivatives containing Schiff base moieties were prepared and screened for their antibacterial activity. The synthesis of the bisindolylmethane Schiff base derivatives 326 was carried out in three steps. First, the [...] Read more.
In an effort to develop new antibacterial drugs, some novel bisindolylmethane derivatives containing Schiff base moieties were prepared and screened for their antibacterial activity. The synthesis of the bisindolylmethane Schiff base derivatives 326 was carried out in three steps. First, the nitro group of 3,3'-((4-nitrophenyl)-methylene)bis(1H-indole) (1) was reduced to give the amino substituted bisindolylmethane 2 without affecting the unsaturation of the bisindolylmethane moiety using nickel boride in situ generated. Reduction of compound 1 using various catalysts showed that combination of sodium borohydride and nickel acetate provides the highest yield for compound 2. Bisindolylmethane Schiff base derivatives were synthesized by coupling various benzaldehydes with amino substituted bisindolylmethane 2. All synthesized compounds were characterized by various spectroscopic methods. The bisindolylmethane Schiff base derivatives were evaluated against selected Gram-positive and Gram-negative bacterial strains. Derivatives having halogen and nitro substituent display weak to moderate antibacterial activity against Salmonella typhi, S. paratyphi A and S. paratyphi B. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

737 KiB  
Article
New Eco-Friendly 1-Alkyl-3-(4-phenoxybutyl) Imidazolium-Based Ionic Liquids Derivatives: A Green Ultrasound-Assisted Synthesis, Characterization, Antibacterial Activity and POM Analyses
by Mouslim Messali, Mohamed R. Aouad, Wael S. El-Sayed, Adeeb Al-Sheikh Ali, Taibi Ben Hadda and Belkheir Hammouti
Molecules 2014, 19(8), 11741-11759; https://doi.org/10.3390/molecules190811741 - 07 Aug 2014
Cited by 26 | Viewed by 8756
Abstract
In view of the emerging importance of the ILs as “green” materials with wide applications and our general interests in green processes, a series of a twenty five new 1-alkyl-3-(4-phenoxybutyl) imidazolium-based ionic liquids (ILs) derivatives is synthesized using a facile and green ultrasound-assisted [...] Read more.
In view of the emerging importance of the ILs as “green” materials with wide applications and our general interests in green processes, a series of a twenty five new 1-alkyl-3-(4-phenoxybutyl) imidazolium-based ionic liquids (ILs) derivatives is synthesized using a facile and green ultrasound-assisted procedure. Their structures were characterized by FT-IR, 1H-NMR, 13C-NMR, 11B, 19F, 31P, and mass spectrometry. Antimicrobial screens of some selected ILs were conducted against a panel of Gram-positive and Gram-negative bacteria. The antimicrobial activity of each compound was measured by determination of the minimal inhibitory concentration (MIC) yielding very interesting and promising results. Their antibacterial activities are reported, and, on the basis of the experimental and virtual POM screening data available, attempt is also made to elucidate the structure activity relationship. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

915 KiB  
Article
Comprehensive Phenolic Profiling of Cyclopia genistoides (L.) Vent. by LC-DAD-MS and -MS/MS Reveals Novel Xanthone and Benzophenone Constituents
by Theresa Beelders, Dalene De Beer, Maria A. Stander and Elizabeth Joubert
Molecules 2014, 19(8), 11760-11790; https://doi.org/10.3390/molecules190811760 - 07 Aug 2014
Cited by 92 | Viewed by 20169
Abstract
A high-performance liquid chromatographic (HPLC) method coupled with diode-array detection (DAD) was optimized for the qualitative analysis of aqueous extracts of Cyclopia genistoides. Comprehensive insight into the phenolic profile of unfermented and fermented sample extracts was achieved with the identification of ten [...] Read more.
A high-performance liquid chromatographic (HPLC) method coupled with diode-array detection (DAD) was optimized for the qualitative analysis of aqueous extracts of Cyclopia genistoides. Comprehensive insight into the phenolic profile of unfermented and fermented sample extracts was achieved with the identification of ten compounds based on comparison with authentic reference standards and the tentative identification of 30 additional compounds by means of electrospray ionization mass spectrometry (ESI-MS) and tandem MS detection. Three iriflophenone-di-O,C-hexoside isomers, three xanthone-dihydrochalcone derivatives and one dihydrochalcone are herein tentatively identified for the first time in C. genistoides. Of special interest is one iriflophenone-di-O,C-hexoside present in large amounts. New compounds (tentatively) identified for the first time in this species, and also in the genus Cyclopia, include two aromatic amino acids, one flavone, an iriflophenone-di-C-hexoside, a maclurin-di-O,C-hexoside, two tetrahydroxyxanthone-C-hexoside isomers, a tetrahydroxyxanthone-di-O,C-hexoside, two symmetric tetrahydroxyxanthone-C-hexoside dimers, nine glycosylated flavanone derivatives and five glycosylated phenolic acid derivatives. The presence of new compound subclasses in Cyclopia, namely aromatic amino acids and glycosylated phenolic acids, was demonstrated. The HPLC-DAD method was successfully validated and applied to the quantitative analysis of the paired sample extracts. In-depth analysis of the chemical composition of C. genistoides hot water extracts gave a better understanding of the chemistry of this species that will guide further research into its medicinal properties and potential uses. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

919 KiB  
Article
Synthesis and Characterization of Some New 4-Hydroxy-coumarin Derivatives
by Yasameen K. Al-Majedy, Abdul Amir H. Kadhum, Ahmed A. Al-Amiery and Abu Bakar Mohamad
Molecules 2014, 19(8), 11791-11799; https://doi.org/10.3390/molecules190811791 - 07 Aug 2014
Cited by 25 | Viewed by 6520
Abstract
Some novel coumarins were synthesized starting from 4-hydroxycoumarin and methyl bromoacetate. The structures of the newly obtained compounds were confirmed by elemental analysis, mass, IR and NMR spectra. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

3126 KiB  
Article
Immobilization of Brassica oleracea Chlorophyllase 1 (BoCLH1) and Candida rugosa Lipase (CRL) in Magnetic Alginate Beads: An Enzymatic Evaluation in the Corresponding Proteins
by Chih-Hui Yang, Chih-Chung Yen, Jen-Jyun Jheng, Chih-Yu Wang, Sheau-Shyang Chen, Pei-Yu Huang, Keng-Shiang Huang and Jei-Fu Shaw
Molecules 2014, 19(8), 11800-11815; https://doi.org/10.3390/molecules190811800 - 07 Aug 2014
Cited by 19 | Viewed by 8378 | Correction
Abstract
Enzymes have a wide variety of applications in diverse biotechnological fields, and the immobilization of enzymes plays a key role in academic research or industrialization due to the stabilization and recyclability it confers. In this study, we immobilized the Brassica oleracea chlorophyllase 1 [...] Read more.
Enzymes have a wide variety of applications in diverse biotechnological fields, and the immobilization of enzymes plays a key role in academic research or industrialization due to the stabilization and recyclability it confers. In this study, we immobilized the Brassica oleracea chlorophyllase 1 (BoCLH1) or Candida rugosa lipase (CRL) in magnetic iron oxide nanoparticles-loaded alginate composite beads. The catalytic activity and specific activity of the BoCLH1 and CRL entrapped in magnetic alginate composite beads were evaluated. Results show that the activity of immobilized BoCLH1 in magnetic alginate composite beads (3.36 ± 0.469 U/g gel) was higher than that of immobilized BoCLH1 in alginate beads (2.96 ± 0.264 U/g gel). In addition, the specific activity of BoCLH1 beads (10.90 ± 1.521 U/mg protein) was higher than that immobilized BoCLH1 in alginate beads (8.52 ± 0.758 U/mg protein). In contrast, the immobilized CRL in magnetic alginate composite beads exhibited a lower enzyme activity (11.81 ± 0.618) than CRL immobilized in alginate beads (94.83 ± 7.929), and the specific activity of immobilized CRL entrapped in magnetic alginate composite beads (1.99 ± 0.104) was lower than immobilized lipase in alginate beads (15.01 ± 1.255). A study of the degradation of magnetic alginate composite beads immersed in acidic solution (pH 3) shows that the magnetic alginate composite beads remain intact in acidic solution for at least 6 h, indicating the maintenance of the enzyme catalytic effect in low-pH environment. Finally, the enzyme immobilized magnetic alginate composite beads could be collected by an external magnet and reused for at least six cycles. Full article
(This article belongs to the Special Issue Bio and Nanomaterials Based on Fe3O4)
Show Figures

Figure 1

5237 KiB  
Article
Potent Effects of Flavonoid-Rich Extract from Rosa laevigata Michx Fruit against Hydrogen Peroxide-Induced Damage in PC12 Cells via Attenuation of Oxidative Stress, Inflammation and Apoptosis
by Min Liu, Youwei Xu, Xu Han, Chen Liang, Lianhong Yin, Lina Xu, Yan Qi, Yanyan Zhao, Jinyong Peng and Changkai Sun
Molecules 2014, 19(8), 11816-11832; https://doi.org/10.3390/molecules190811816 - 07 Aug 2014
Cited by 48 | Viewed by 11502 | Correction
Abstract
Oxidative stress-induced neuronal death has an important role in the pathogenesis of neurodegenerative disorders. The effects and mechanisms of action of the total flavonoids (TFs) from Rosa laevigata Michx fruit against hydrogen peroxide (H2O2)-induced oxidative injury in PC12 cells [...] Read more.
Oxidative stress-induced neuronal death has an important role in the pathogenesis of neurodegenerative disorders. The effects and mechanisms of action of the total flavonoids (TFs) from Rosa laevigata Michx fruit against hydrogen peroxide (H2O2)-induced oxidative injury in PC12 cells were investigated in this study. The results demonstrated that the TFs protected against cell apoptosis, DNA and mitochondrial damage caused by H2O2 based on single cell gel electrophoresis, in situ terminal deoxynucleotidyltransferase dUTP nick end labeling (TUNEL), flow cytometry and transmission electron microscope (TEM) assays. In addition, the TFs notably decreased cytochrome C release from mitochondria into the cytosol and intracellular Ca2+ levels, and diminished intracellular generation of reactive oxygen species (ROS). Furthermore, the TFs inhibited the phosphorylation levels of JNK, ERK and p38 MAPK as well as down-regulated the expressions of IL-1, IL-6, TNF-α, Fas, FasL, CYP2E1, Bak, caspase-3, caspase-9, p53, COX-2, NF-κB, AP-1, and up-regulated the expressions of Bcl-2 and Bcl-xl. In conclusion, these results suggest that the TFs from R. laevigata Michx fruit show good effects against H2O2-induced oxidative injury in PC12 cells by adjusting oxidative stress, and suppression of apoptosis and inflammation, and could be developed as a potential candidate to prevent oxidative stress in the future. Full article
Show Figures

Figure 1

857 KiB  
Article
Hepatoprotective Effects of Met-enkephalin on Acetaminophen-Induced Liver Lesions in Male CBA Mice
by Roko Martinić, Hrvoje Šošić, Petra Turčić, Paško Konjevoda, Aleksandra Fučić, Ranko Stojković, Gorana Aralica, Mario Gabričević, Tin Weitner and Nikola Štambuk
Molecules 2014, 19(8), 11833-11845; https://doi.org/10.3390/molecules190811833 - 07 Aug 2014
Cited by 5 | Viewed by 8765
Abstract
Recent histopathological investigations in patients with hepatitis suggested possible involvement of Met-enkephalin and its receptors in the pathophysiology of hepatitis. Consequently, we evaluated the potential hepatoprotective effects of this endogenous opioid pentapeptide in the experimental model of acetaminophen induced hepatotoxicity in male CBA [...] Read more.
Recent histopathological investigations in patients with hepatitis suggested possible involvement of Met-enkephalin and its receptors in the pathophysiology of hepatitis. Consequently, we evaluated the potential hepatoprotective effects of this endogenous opioid pentapeptide in the experimental model of acetaminophen induced hepatotoxicity in male CBA mice. Met-enkephalin exhibited strong hepatoprotective effects in a dose of 7.5 mg/kg, which corresponds to the protective dose reported for several different animal disease models. In this group plasma alanine aminotransferase and aspartate aminotransferase enzyme activities, as well as liver necrosis score were significantly reduced in comparison to control animals treated with physiological saline (p > 0.01). The specificity of the peptide hepatoprotection was investigated from the standpoint of the receptor and peptide blockade. It was concluded that Met-enkephalin effects on the liver were mediated via δ and ζ opioid receptors. Genotoxic testing of Met-enkephalin confirmed the safety of the peptide. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

870 KiB  
Article
Antiproliferative Effect of the Isoquinoline Alkaloid Papaverine in Hepatocarcinoma HepG-2 Cells — Inhibition of Telomerase and Induction of Senescence
by Sakineh Kazemi Noureini and Michael Wink
Molecules 2014, 19(8), 11846-11859; https://doi.org/10.3390/molecules190811846 - 08 Aug 2014
Cited by 29 | Viewed by 7530
Abstract
Cancer cells are often immortal through up-regulation of the hTERT gene, which encodes the catalytic subunit of a special reverse transcriptase to overcome end-replication problem of chromosomes. This study demonstrates that papaverine, an isoquinoline alkaloid from the Papaveraceae, can overcome telomerase dependent immortality [...] Read more.
Cancer cells are often immortal through up-regulation of the hTERT gene, which encodes the catalytic subunit of a special reverse transcriptase to overcome end-replication problem of chromosomes. This study demonstrates that papaverine, an isoquinoline alkaloid from the Papaveraceae, can overcome telomerase dependent immortality of HepG-2 cells that was used as a model of hepatocarcinoma. Although this alkaloid does not directly interact with telomeric sequences, papaverine inhibits telomerase through down-regulation of hTERT, which was analysed using thermal FRET and qRT-PCR, respectively. The IC50 values for the reduction of both telomerase activity and hTERT expression was 60 µM, while IC50 for cytotoxicity was 120 µM. Repeated treatments of the cells with very low non-toxic concentrations of papaverine resulted in growth arrest and strong reduction of population doublings after 40 days. This treatment induced senescent morphology in HepG-2 cells, which was evaluated by beta-galactosidase staining. Altogether, papaverine can be regarded as a promising model compound for drug design targeting cancer development. Full article
Show Figures

Graphical abstract

1409 KiB  
Article
Electron Beam-Induced Immobilization of Laccase on Porous Supports for Waste Water Treatment Applications
by Elham Jahangiri, Senta Reichelt, Isabell Thomas, Kristin Hausmann, Dietmar Schlosser and Agnes Schulze
Molecules 2014, 19(8), 11860-11882; https://doi.org/10.3390/molecules190811860 - 08 Aug 2014
Cited by 44 | Viewed by 7673
Abstract
The versatile oxidase enzyme laccase was immobilized on porous supports such as polymer membranes and cryogels with a view of using such biocatalysts in bioreactors aiming at the degradation of environmental pollutants in wastewater. Besides a large surface area for supporting the biocatalyst, [...] Read more.
The versatile oxidase enzyme laccase was immobilized on porous supports such as polymer membranes and cryogels with a view of using such biocatalysts in bioreactors aiming at the degradation of environmental pollutants in wastewater. Besides a large surface area for supporting the biocatalyst, the aforementioned porous systems also offer the possibility for simultaneous filtration applications in wastewater treatment. Herein a “green” water-based, initiator-free, and straightforward route to highly reactive membrane and cryogel-based bioreactors is presented, where laccase was immobilized onto the porous polymer supports using a water-based electron beam-initiated grafting reaction. In a second approach, the laccase redox mediators 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and syringaldehyde were cross-linked instead of the enzyme via electron irradiation in a frozen aqueous poly(acrylate) mixture in a one pot set-up, yielding a mechanical stable macroporous cryogel with interconnected pores ranging from 10 to 50 µm in size. The membranes as well as the cryogels were characterized regarding their morphology, chemical composition, and catalytic activity. The reactivity towards waste- water pollutants was demonstrated by the degradation of the model compound bisphenol A (BPA). Both membrane- and cryogel-immobilized laccase remained highly active after electron beam irradiation. Apparent specific BPA removal rates were higher for cryogel- than for membrane-immobilized and free laccase, whereas membrane-immobilized laccase was more stable with respect to maintenance of enzymatic activity and prevention of enzyme leakage from the carrier than cryogel-immobilized laccase. Cryogel-immobilized redox mediators remained functional in accelerating the laccase-catalyzed BPA degradation, and especially ABTS was found to act more efficiently in immobilized than in freely dissolved state. Full article
(This article belongs to the Section Molecular Diversity)
Show Figures

Figure 1

1765 KiB  
Article
Synephrine Inhibits Eotaxin-1 Expression via the STAT6 Signaling Pathway
by Kyung-Baeg Roh, Il-Hyun Kim, Young-Soo Kim, Myungjae Lee, Jung-A Lee, Eunsun Jung and Deokhoon Park
Molecules 2014, 19(8), 11883-11895; https://doi.org/10.3390/molecules190811883 - 08 Aug 2014
Cited by 12 | Viewed by 8175
Abstract
Citrus contain various flavonoids and alkaloids that have multiple biological activities. It is known that the immature Citrus contains larger amounts of bioactive components, than do the mature plants. Although Citrus flavonoids are well known for their biological activities, Citrus alkaloids have not [...] Read more.
Citrus contain various flavonoids and alkaloids that have multiple biological activities. It is known that the immature Citrus contains larger amounts of bioactive components, than do the mature plants. Although Citrus flavonoids are well known for their biological activities, Citrus alkaloids have not previously been assessed. In this study, we identified synephrine alkaloids as an active compound from immature Citrus unshiu, and investigated the effect of synephrine on eotaxin-1 expression. Eotaxin-1 is a potent chemoattractant for eosinophils, and a critical mediator, during the development of eosinophilic inflammation. We found that synephrine significantly inhibited IL-4-induced eotaxin-1 expression. This synephrine effect was mediated through the inhibition of STAT6 phosphorylation in JAK/STAT signaling. We also found that eosinophil recruitment induced by eotaxin-1 overexpression was inhibited by synephrine. Taken together, these findings indicate that inhibiting IL-4-induced eotaxin-1 expression by synephrine occurs primarily through the suppression of eosinophil recruitment, which is mediated by inhibiting STAT6 phosphorylation. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

2158 KiB  
Article
α-Solanine Inhibits Invasion of Human Prostate Cancer Cell by Suppressing Epithelial-Mesenchymal Transition and MMPs Expression
by Kun-Hung Shen, Alex Chien-Hwa Liao, Jui-Hsiang Hung, Wei-Jiunn Lee, Kai-Chieh Hu, Pin-Tsen Lin, Ruei-Fang Liao and Pin-Shern Chen
Molecules 2014, 19(8), 11896-11914; https://doi.org/10.3390/molecules190811896 - 11 Aug 2014
Cited by 75 | Viewed by 12186
Abstract
α-Solanine, a naturally occurring steroidal glycoalkaloid found in nightshade (Solanum nigrum Linn.), was found to inhibit proliferation and induce apoptosis of tumor cells. However, the mechanism involved in suppression of cancer cell metastasis by α-solanine remains unclear. This study investigates the suppression mechanism [...] Read more.
α-Solanine, a naturally occurring steroidal glycoalkaloid found in nightshade (Solanum nigrum Linn.), was found to inhibit proliferation and induce apoptosis of tumor cells. However, the mechanism involved in suppression of cancer cell metastasis by α-solanine remains unclear. This study investigates the suppression mechanism of α-solanine on motility of the human prostate cancer cell PC-3. Results show that α-solanine reduces the viability of PC-3 cells. When treated with non-toxic doses of α-solanine, cell invasion is markedly suppressed by α-solanine. α-Solanine also significantly elevates epithelial marker E-cadherin expression, while it concomitantly decreases mesenchymal marker vimentin expression, suggesting it suppresses epithelial-mesenchymal transition (EMT). α-Solanine reduces the mRNA level of matrix metalloproteinase-2 (MMP-2), MMP-9 and extracellular inducer of matrix metalloproteinase (EMMPRIN), but increases the expression of reversion-inducing cysteine-rich protein with kazal motifs (RECK), and tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2. Immunoblotting assays indicate α-solanine is effective in suppressing the phosphorylation of phosphatidylinositide-3 kinase (PI3K), Akt and ERK. Moreover, α-solanine downregulates oncogenic microRNA-21 (miR-21) and upregulates tumor suppressor miR-138 expression. Taken together, the results suggest that inhibition of PC-3 cell invasion by α-solanine may be, at least in part, through blocking EMT and MMPs expression. α-Solanine also reduces ERK and PI3K/Akt signaling pathways and regulates expression of miR-21 and miR-138. These findings suggest an attractive therapeutic potential of α-solanine for suppressing invasion of prostate cancer cell. Full article
(This article belongs to the Special Issue Alkaloids: Novel Therapeutic Perspectives)
Show Figures

Figure 1

2473 KiB  
Article
Self-Assembled Micelles Composed of Doxorubicin Conjugated Y-Shaped PEG-Poly(glutamic acid)2 Copolymers via Hydrazone Linkers
by Bowen Sui, Hui Xu, Jian Jin, Jingxin Gou, Jingshuo Liu, Xing Tang, Yu Zhang, Jinghua Xu, Hongfeng Zhang and Xiangqun Jin
Molecules 2014, 19(8), 11915-11932; https://doi.org/10.3390/molecules190811915 - 11 Aug 2014
Cited by 22 | Viewed by 8251
Abstract
In this work, micelles composed of doxorubicin-conjugated Y-shaped copolymers (YMs) linked via an acid-labile linker were constructed. Y-shaped copolymers of mPEG-b-poly(glutamate-hydrazone-doxorubicin)2 and linear copolymers of mPEG-b-poly(glutamate-hydrazone-doxorubicin) were synthesized and characterized. Particle size, size distribution, morphology, drug loading content (DLC) and [...] Read more.
In this work, micelles composed of doxorubicin-conjugated Y-shaped copolymers (YMs) linked via an acid-labile linker were constructed. Y-shaped copolymers of mPEG-b-poly(glutamate-hydrazone-doxorubicin)2 and linear copolymers of mPEG-b-poly(glutamate-hydrazone-doxorubicin) were synthesized and characterized. Particle size, size distribution, morphology, drug loading content (DLC) and drug release of the micelles were determined. Alterations in size and DLC of the micelles could be achieved by varying the hydrophobic block lengths. Moreover, at fixed DLCs, YMs showed a smaller diameter than micelles composed of linear copolymers (LMs). Also, all prepared micelles showed sustained release behaviors under physiological conditions over 72 h. DOX loaded in YMs was released more completely, with 30% more drug released in acid. The anti-tumor efficacy of the micelles against HeLa cells was evaluated by MTT assays, and YMs exhibited stronger cytotoxic effects than LMs in a dose- and time-dependent manner. Cellular uptake studied by CLSM indicated that YMs and LMs were readily taken up by HeLa cells. According to the results of this study, doxorubicin-conjugated Y-shaped PEG-(polypeptide)2 copolymers showed advantages over linear copolymers, like assembling into smaller nanoparticles, faster drug release in acid, which may correspond to higher cellular uptake and enhanced extracellular/intracellular drug release, indicating their potential in constructing nano-sized drug delivery systems. Full article
Show Figures

Figure 1

1196 KiB  
Article
Synthesis, Immobilization and Catalytic Activity of a Copper(II) Complex with a Chiral Bis(oxazoline)
by Liliana Carneiro, Ana R. Silva, Peter S. Shuttleworth, Vitaly Budarin and James H. Clark
Molecules 2014, 19(8), 11988-11998; https://doi.org/10.3390/molecules190811988 - 11 Aug 2014
Cited by 11 | Viewed by 5592
Abstract
A chiral bis(oxazoline) bearing CH2OH groups was synthesized from a commercial bis(oxazoline) and characterized by 1H- and 13C-NMR, high resolution ESI-mass spectrometry and FTIR. The corresponding copper(II) complex was immobilized onto the surface of a mesoporous carbonaceous material (Starbon [...] Read more.
A chiral bis(oxazoline) bearing CH2OH groups was synthesized from a commercial bis(oxazoline) and characterized by 1H- and 13C-NMR, high resolution ESI-mass spectrometry and FTIR. The corresponding copper(II) complex was immobilized onto the surface of a mesoporous carbonaceous material (Starbon® 700) in which the double bonds had been activated via conventional bromination. The materials were characterized by elemental analysis, ICP-OES, XPS, thermogravimetry and nitrogen adsorption at 77 K. The new copper(II) bis(oxazoline) was tested both in the homogeneous phase and once immobilized onto a carbonaceous support for the kinetic resolution of hydrobenzoin. Both were active, enantioselective and selective in the mono-benzoylation of hydrobenzoin, but better enantioselectivities were obtained in the homogeneous phase. The heterogeneous catalyst could be separated from the reaction media at the end of the reaction and reused in another catalytic cycle, but with loss of product yield and enantioselectivity. Full article
(This article belongs to the Special Issue Practical Applications of Metal Complexes)
Show Figures

Graphical abstract

728 KiB  
Article
Dissociative Electron Transfer to Diphenyl-Substituted Bicyclic Endoperoxides: The Effect of Molecular Structure on the Reactivity of Distonic Radical Anions and Determination of Thermochemical Parameters
by David C. Magri and Mark S. Workentin
Molecules 2014, 19(8), 11999-12010; https://doi.org/10.3390/molecules190811999 - 11 Aug 2014
Cited by 5 | Viewed by 6301
Abstract
The heterogeneous electron transfer reduction of the bicyclic endoperoxide 1,4-diphenyl-2,3-dioxabicyclo[2.2.1]hept-5-ene (4) was investigated in N,N-dimethylformamide at a glassy carbon electrode. The endoperoxide reacts by a concerted dissociative ET mechanism resulting in reduction of the O-O bond with an [...] Read more.
The heterogeneous electron transfer reduction of the bicyclic endoperoxide 1,4-diphenyl-2,3-dioxabicyclo[2.2.1]hept-5-ene (4) was investigated in N,N-dimethylformamide at a glassy carbon electrode. The endoperoxide reacts by a concerted dissociative ET mechanism resulting in reduction of the O-O bond with an observed peak potential of −1.4 V at 0.2 V s−1. The major product (90% yield) resulting from the heterogeneous bulk electrolysis of 4 at −1.4 V with a rotating disk glassy carbon electrode is 1,4-diphenyl-cyclopent-2-ene-cis-1,3-diol with a consumption of 1.73 electrons per mole. In contrast, 1,4-diphenyl-2,3-dioxabicyclo[2.2.2]oct-5-ene (1), undergoes a two-electron reduction mechanism in quantitative yield. This difference in product yield between 1 and 4 is suggestive of a radical-anion mechanism, as observed with 1,4-diphenyl-2,3-dioxabicyclo-[2.2.2] octane (2) and 1,4-diphenyl-2,3-dioxabicyclo[2.2.1]heptane (3). Convolution potential sweep voltammetry is used to determine unknown thermochemical parameters of 4, including the O-O bond dissociation energy and the standard reduction potential and a comparison is made to the previously studied bicyclic endoperoxides 13 with respect to the effect of molecular structure on the reactivity of distonic radical anions. Full article
(This article belongs to the Special Issue Free Radicals and Radical Ions)
Show Figures

Graphical abstract

3346 KiB  
Article
Bioevaluation of Novel Anti-Biofilm Coatings Based on PVP/Fe3O4 Nanostructures and 2-((4-Ethylphenoxy)methyl)-N- (arylcarbamothioyl)benzamides
by Carmen Limban, Alexandru Vasile Missir, Alexandru Mihai Grumezescu, Alexandra Elena Oprea, Valentina Grumezescu, Bogdan Ștefan Vasile, Gabriel Socol, Roxana Trușcă, Miron Teodor Caproiu, Mariana Carmen Chifiriuc, Bianca Gălățeanu, Marieta Costache, Laurențiu Morușciag, Grațiela Pîrcălăbioru and Diana Camelia Nuță
Molecules 2014, 19(8), 12011-12030; https://doi.org/10.3390/molecules190812011 - 12 Aug 2014
Cited by 18 | Viewed by 8716
Abstract
Novel derivatives were prepared by reaction of aromatic amines with 2-(4-ethylphenoxymethyl)benzoyl isothiocyanate, affording the N-[2-(4-ethylphenoxymethyl) benzoyl]-Nꞌ-(substituted phenyl)thiourea. Structural elucidation of these compounds was performed by IR, NMR spectroscopy and elemental analysis. The new compounds were used in combination with Fe3O4 and polyvinylpyrrolidone (PVP) [...] Read more.
Novel derivatives were prepared by reaction of aromatic amines with 2-(4-ethylphenoxymethyl)benzoyl isothiocyanate, affording the N-[2-(4-ethylphenoxymethyl) benzoyl]-Nꞌ-(substituted phenyl)thiourea. Structural elucidation of these compounds was performed by IR, NMR spectroscopy and elemental analysis. The new compounds were used in combination with Fe3O4 and polyvinylpyrrolidone (PVP) for the coating of medical surfaces. In our experiments, catheter pieces were coated by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. The microbial adherence ability was investigated in 6 multi-well plates by using culture based methods. The obtained surfaces were also assessed for their cytotoxicity with respect to osteoblast cells, by using fluorescence microscopy and MTT assay. The prepared surfaces by advanced laser processing inhibited the adherence and biofilm development ability of Staphylococcus aureus and Pseudomonas aeruginosa tested strains while cytotoxic effects on the 3T3-E1 preosteoblasts embedded in layer shaped alginate hydrogels were not observed. These results suggest that the obtained medical surfaces, based on the novel thiourea derivatives and magnetic nanoparticles with a polymeric shell could represent a promising alternative for the development of new and effective anti-infective strategies. Full article
(This article belongs to the Special Issue Bio and Nanomaterials Based on Fe3O4)
Show Figures

Graphical abstract

2444 KiB  
Article
New Limonoids from Hortia oreadica and Unexpected Coumarin from H. superba Using Chromatography over Cleaning Sephadex with Sodium Hypochlorite
by Vanessa G.P. Severino, Sâmya D.L. De Freitas, Patrícia A.C. Braga, Moacir Rossi Forim, M. Fátima das G.F. Da Silva, João B. Fernandes, Paulo C. Vieira and Tiago Venâncio
Molecules 2014, 19(8), 12031-12047; https://doi.org/10.3390/molecules190812031 - 12 Aug 2014
Cited by 9 | Viewed by 6310
Abstract
Previous investigations of H. oreadica reported the presence of a wide spectrum of complex limonoids and dihydrocinnamic acids. Our interest in the Rutaceae motivated a reinvestigation of H. oreadica, H. brasiliana and H. superba searching for other secondary metabolites present in substantial [...] Read more.
Previous investigations of H. oreadica reported the presence of a wide spectrum of complex limonoids and dihydrocinnamic acids. Our interest in the Rutaceae motivated a reinvestigation of H. oreadica, H. brasiliana and H. superba searching for other secondary metabolites present in substantial amounts for taxonomic analysis. In a continuation of the investigation of the H. oreadica, three new limonoids have now been isolated 9α-hydroxyhortiolide A, 11β-hydroxyhortiolide C and 1(S*)-acetoxy-7(R*)-hydroxy-7-deoxoinchangin. All the isolated compounds from the Hortia species reinforce its position in the Rutaceae. With regard to limonoids the genus produces highly specialized compounds, whose structural variations do not occur in any other member of the Rutaceae, thus, it is evident from limonoid data that Hortia takes an isolated position within the family. In addition, H. superba afforded the unexpected coumarin 5-chloro-8-methoxy-psoralen, which may not be a genuine natural product. Solid-state cross-polarisation/magic-angle-spinning 13C nuclear magnetic resonance, X-Ray fluorescence and Field-emission gun scanning electron microscopy experiments show that the Sephadex LH-20 was modified after treatment with NaOCl, suggesting that when xanthotoxin (8-methoxy-psoralen) was extracted from cleaning of the gel column, chlorination of the aromatic system occurred. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

806 KiB  
Article
Synthesis and Cytotoxic Activity Evaluation of Novel Arylpiperazine Derivatives on Human Prostate Cancer Cell Lines
by Hong Chen, Xue Liang, Fang Xu, Bingbing Xu, Xuelan He, Biyun Huang and Mu Yuan
Molecules 2014, 19(8), 12048-12064; https://doi.org/10.3390/molecules190812048 - 12 Aug 2014
Cited by 24 | Viewed by 6190
Abstract
A series of novel arylpiperazine derivatives was synthesized. The in vitro cytotoxic activities of all synthesized compounds against three human prostate cancer cell lines (PC-3, LNCaP, and DU145) were evaluated by a CCK-8 assay. Compounds 9 and 15 exhibited strong cytotoxic activities against [...] Read more.
A series of novel arylpiperazine derivatives was synthesized. The in vitro cytotoxic activities of all synthesized compounds against three human prostate cancer cell lines (PC-3, LNCaP, and DU145) were evaluated by a CCK-8 assay. Compounds 9 and 15 exhibited strong cytotoxic activities against LNCaP cells (IC50 < 5 μM), and compound 8 (IC50 = 8.25 μM) possessed the most potent activity against DU145 cells. However, these compounds also exhibited cytotoxicity towards human epithelial prostate normal cells RWPE-1. The structure–activity relationship (SAR) of these arylpiperazine derivatives was also discussed based on the obtained experimental data. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

1978 KiB  
Article
Comparative Pharmacokinetics Study of Sinomenine in Rats after Oral Administration of Sinomenine Monomer and Sinomenium Acutum Extract
by Mao-Fan Zhang, Yan Zhao, Kun-Yu Jiang, Long Han, Xiao-Yue Lu, Xin Wang, Lan Zuo and Sheng-Nan Meng
Molecules 2014, 19(8), 12065-12077; https://doi.org/10.3390/molecules190812065 - 12 Aug 2014
Cited by 29 | Viewed by 7169
Abstract
Various products containing sinomenine monomer and extracts of Sinomenium acutum have been widely applied in clinical treatments. The goal of the present study was to compare the pharmacokinetics of sinomenine in rats after oral administration of sinomenine monomer and Sinomenium acutum extract, and [...] Read more.
Various products containing sinomenine monomer and extracts of Sinomenium acutum have been widely applied in clinical treatments. The goal of the present study was to compare the pharmacokinetics of sinomenine in rats after oral administration of sinomenine monomer and Sinomenium acutum extract, and to attempt to explore potential component-component interactions between the constituents of this traditional Chinese herbal medicine. A reliable and specific reversed phase high performance liquid chromatography method was developed to analyze sinomenine in rat plasma. Pharmacokinetic parameters for sinomenine were processed by non-compartmental analysis. The results showed that the maximum concentration, the area under the concentration-time curve, clearance and the apparent volume of distribution of sinomenine in the Sinomenium acutum extract statistically differed from those of sinomenine monomer (p < 0.05); however, the mean residence time, time of peak concentration, and half-life did not show significant differences between the two groups. These findings suggested that some additional components in the Sinomenium acutum extract may decrease the absorption of sinomenine. The complex interactions between sinomenine and other components of the herbal extract could result in the altered pharmacokinetic behavior of sinomenine, which may subsequently cause different therapeutic and detoxification effects. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

1078 KiB  
Article
Fused-Ring Derivatives of Quinoxalines: Spectroscopic Characterization and Photoinduced Processes Investigated by EPR Spin Trapping Technique
by Zuzana Barbieriková, Dana Dvoranová, Maroš Bella, Viktor Milata, Adriana Czímerová and Vlasta Brezová
Molecules 2014, 19(8), 12078-12098; https://doi.org/10.3390/molecules190812078 - 12 Aug 2014
Cited by 12 | Viewed by 7340
Abstract
10-Ethyl-7-oxo-7,10-dihydropyrido[2,3-f]quinoxaline derivatives, synthesized as promising biologically/photobiologically active compounds were characterized by UV/vis, FT-IR and fluorescent spectroscopy. Photoinduced processes of these derivatives were studied by EPR spectroscopy, monitoring in situ the generation of reactive intermediates upon UVA (λmax = 365 nm) [...] Read more.
10-Ethyl-7-oxo-7,10-dihydropyrido[2,3-f]quinoxaline derivatives, synthesized as promising biologically/photobiologically active compounds were characterized by UV/vis, FT-IR and fluorescent spectroscopy. Photoinduced processes of these derivatives were studied by EPR spectroscopy, monitoring in situ the generation of reactive intermediates upon UVA (λmax = 365 nm) irradiation. The formation of reactive oxygen species and further oxygen- and carbon-centered radical intermediates was detected and possible reaction routes were suggested. To quantify the investigated processes, the quantum yields of the superoxide radical anion spin-adduct and 4-oxo-2,2,6,6-tetramethylpiperidine N-oxyl generation were determined, reflecting the activation of molecular oxygen by the excited state of the quinoxaline derivative. Full article
(This article belongs to the Special Issue Heterocyclic and Medicinal Chemistry)
Show Figures

Graphical abstract

1272 KiB  
Article
Isocorydine Derivatives and Their Anticancer Activities
by Mei Zhong, Yanjuan Liu, Junxi Liu, Duolong Di, Mengrou Xu, Yaya Yang, Wenguang Li, Yali Chen and Jinxia Liu
Molecules 2014, 19(8), 12099-12115; https://doi.org/10.3390/molecules190812099 - 12 Aug 2014
Cited by 26 | Viewed by 7889
Abstract
In order to improve the anticancer activity of isocorydine (ICD), ten isocorydine derivatives were prepared through chemical structure modifications, and their in vitro and in vivo activities were experimentally investigated. 8-Amino-isocorydine (8) and 6a,7-dihydrogen-isocorydione (10) could inhibit the growth [...] Read more.
In order to improve the anticancer activity of isocorydine (ICD), ten isocorydine derivatives were prepared through chemical structure modifications, and their in vitro and in vivo activities were experimentally investigated. 8-Amino-isocorydine (8) and 6a,7-dihydrogen-isocorydione (10) could inhibit the growth of human lung (A549), gastric (SGC7901) and liver (HepG2) cancer cell lines in vitro. Isocorydione (2) could inhibit the tumor growth of murine sarcoma S180-bearing mice, and 8-acetamino-isocorydine (11), a pro-drug of 8-amino-isocorydine (8), which is instable in water solution at room temperature, had a good inhibitory effect on murine hepatoma H22-induced tumors. The results suggested that the isocorydine structural modifications at C-8 could significantly improve the biological activity of this alkaloid, indicating its suitability as a lead compound in the development of an effective anticancer agent. Full article
Show Figures

Graphical abstract

9959 KiB  
Article
Epigalloccatechin-3-gallate Inhibits Ocular Neovascularization and Vascular Permeability in Human Retinal Pigment Epithelial and Human Retinal Microvascular Endothelial Cells via Suppression of MMP-9 and VEGF Activation
by Hak Sung Lee, Jae-Hyun Jun, Eun-Ha Jung, Bon Am Koo and Yeong Shik Kim
Molecules 2014, 19(8), 12150-12172; https://doi.org/10.3390/molecules190812150 - 13 Aug 2014
Cited by 77 | Viewed by 11340
Abstract
Epigalloccatechin-3-gallate (EGCG) is the main polyphenol component of green tea (leaves of Camellia sinensis). EGCG is known for its antioxidant, anti-inflammatory, antiviral, and anti-carcinogenic properties. Here, we identify EGCG as a new inhibitor of ocular angiogenesis and its vascular permeability. Matrix metalloproteinases [...] Read more.
Epigalloccatechin-3-gallate (EGCG) is the main polyphenol component of green tea (leaves of Camellia sinensis). EGCG is known for its antioxidant, anti-inflammatory, antiviral, and anti-carcinogenic properties. Here, we identify EGCG as a new inhibitor of ocular angiogenesis and its vascular permeability. Matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) play a key role in the processes of extracellular matrix (ECM) remodeling and microvascular permeability during angiogenesis. We investigated the inhibitory effects of EGCG on ocular neovascularization and vascular permeability using the retina oriented cells and animal models induced by VEGF and alkaline burn. EGCG treatment significantly decreased mRNA and protein expression levels of MMP-9 in the presence of 12-O-tetradecanoylphorbol-13-acetate (TPA) and tumor necrosis factor alpha (TNF-α) in human retinal pigment epithelial cells (HRPECs). EGCG also effectively protected ARPE-19 cells from cell death and attenuated mRNA expressions of key angiogenic factors (MMP-9, VEGF, VEGF Receptor-2) by inhibiting generation of reactive oxygen species (ROS). EGCG significantly inhibited proliferation, vascular permeability, and tube formation in VEGF-induced human retinal microvascular endothelial cells (HRMECs). Furthermore, EGCG significantly reduced vascular leakage and permeability by blood-retinal barrier breakdown in VEGF-induced animal models. In addition, EGCG effectively limited upregulation of MMP-9 and platelet endothelial cell adhesion molecule (PECAM/CD31) on corneal neovascularization (CNV) induced by alkaline burn. Our data suggest that MMP-9 and VEGF are key therapeutic targets of EGCG for treatment and prevention of ocular angiogenic diseases such as age-related macular degeneration, diabetic retinopathy, and corneal neovascularization. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

890 KiB  
Article
Effect on the Aroma Profile of Graciano and Tempranillo Red Wines of the Application of Two Antifungal Treatments onto Vines
by Raquel Noguerol-Pato, Thais Sieiro-Sampredro, Carmen González-Barreiro, Beatriz Cancho-Grande and Jesús Simal-Gándara
Molecules 2014, 19(8), 12173-12193; https://doi.org/10.3390/molecules190812173 - 13 Aug 2014
Cited by 23 | Viewed by 6011 | Correction
Abstract
The effect of two antifungals (boscalid + kresoxim-methyl and metrafenone) applied onto vines under Good Agricultural Practices (GAPs) on the volatile composition of Tempranillo and Graciano red wines was studied. Changes in aroma profile in the wines were assessed from the combined odour [...] Read more.
The effect of two antifungals (boscalid + kresoxim-methyl and metrafenone) applied onto vines under Good Agricultural Practices (GAPs) on the volatile composition of Tempranillo and Graciano red wines was studied. Changes in aroma profile in the wines were assessed from the combined odour activity values (OAVs) for the volatile compounds in each of seven different odorant series (viz., ripe fruits, fresh fruits, lactic, floral, vinous, spicy and herbaceous). Graciano wines obtained from grapes treated with the antifungals exhibited markedly increased concentrations of varietal volatile compounds (monoterpenes and C13-norisoprenoids) and aldehydes, and decreased concentrations of acetates and aromatic alcohols. By contrast, the concentrations of volatile compounds in Tempranillo wines showed different changes depending on the fungicide applied. Also, the aroma profiles of wines obtained from treated grapes were modified, particularly the ripe fruit nuances in Graciano wines. The OAV of this odorant series underwent an increase by more than 60% with respect to the control wine as a result of the increase of β-damascenone concentration (which imparts wine a dry plum note). The aroma profile of Tempranillo red wines containing metrafenone residues exhibited marked changes relative to those from untreated grapes. Full article
(This article belongs to the Special Issue Aromas and Volatiles of Fruits)
Show Figures

Figure 1

1167 KiB  
Article
The Effect of Some Fluoroquinolone Family Members on Biospeciation of Copper(II), Nickel(II) and Zinc(II) Ions in Human Plasma
by Predrag Djurdjevic, Ivan Jakovljevic, Ljubinka Joksovic, Nevena Ivanovic and Milena Jelikic-Stankov
Molecules 2014, 19(8), 12194-12223; https://doi.org/10.3390/molecules190812194 - 13 Aug 2014
Cited by 17 | Viewed by 9836
Abstract
The speciation of Cu2+, Ni2+ and Zn2+ ions in the presence of the fluoroquinolones (FQs) moxifloxacin, ofloxacin, levofloxacin and ciprofloxacin, in human blood plasma was studied under physiological conditions by computer simulation. The speciation was calculated using an updated [...] Read more.
The speciation of Cu2+, Ni2+ and Zn2+ ions in the presence of the fluoroquinolones (FQs) moxifloxacin, ofloxacin, levofloxacin and ciprofloxacin, in human blood plasma was studied under physiological conditions by computer simulation. The speciation was calculated using an updated model of human blood plasma including over 6,000 species with the aid of the program Hyss2009. The identity and stability of metal-FQ complexes were determined by potentiometric (310 K, 0.15 mol/L NaCl), spectrophotometric, spectrofluorimetric, ESI-MS and 1H-NMR measurements. In the case of Cu2+ ion the concentration of main low molecular weight (LMW) plasma complex (Cu(Cis)His) is very slightly influenced by all examined FQs. FQs show much higher influence on main plasma Ni2+ and Zn2+ complexes: (Ni(His)2 and Zn(Cys)Cit, respectively. Levofloxacin exhibits the highest influence on the fraction of the main nickel complex, Ni(His)2, even at a concentration level of 3 × 10−5 mol/L. The same effect is seen on the main zinc complex, Zn(Cys)Cit. Calculated plasma mobilizing indexes indicate that ciprofloxacin possesses the highest mobilizing power from plasma proteins, toward copper ion, while levofloxacin is the most influential on nickel and zinc ions. The results obtained indicate that the drugs studied are safe in relation to mobilization of essential metal ions under physiological conditions. The observed effects were explained in terms of competitive equilibrium reactions between the FQs and the main LMW complexes of the metal ions. Full article
(This article belongs to the Special Issue Practical Applications of Metal Complexes)
Show Figures

Graphical abstract

1778 KiB  
Article
Tryptophan as a Probe to Study the Anticancer Mechanism of Action and Specificity of α-Helical Anticancer Peptides
by Guirong Li, Yibing Huang, Qi Feng and Yuxin Chen
Molecules 2014, 19(8), 12224-12241; https://doi.org/10.3390/molecules190812224 - 13 Aug 2014
Cited by 27 | Viewed by 6764
Abstract
In the present study, a single tryptophan, as a fluorescence probe, was shifted from the N-terminus to the middle and to the C-terminus of a 26-residue α-helical anticancer peptide sequence to study the mechanism of action and specificity. The hydrophobicity of peptides, as [...] Read more.
In the present study, a single tryptophan, as a fluorescence probe, was shifted from the N-terminus to the middle and to the C-terminus of a 26-residue α-helical anticancer peptide sequence to study the mechanism of action and specificity. The hydrophobicity of peptides, as well as peptide helicity and self-associating ability, were slightly influenced by the position change of tryptophan in the peptide sequence, while the hemolytic activity and anticancer activity of the peptide analogs remained the same. The tryptophan fluorescence experiment demonstrated that peptide analogs were more selective against LUVs mimicking cancer cell membranes than LUVs mimicking normal cell membranes. During the interaction with target membranes, the N-terminus of an anticancer peptide may be inserted vertically or tilted into the hydrophobic components of the phospholipid bilayer first. The thermodynamic parameters of the peptides PNW and PCW, when interacting with zwitterionic DMPC or negatively charged DMPS, were determined by ITC. DSC experiments showed that peptide analogs significantly altered the phase transition profiles of DMPC, but did not dramatically modify the phase transition of DMPS. It is demonstrated that hydrophobic interactions are the main driving force for peptides interacting with normal cell membranes, whilst, electrostatic interactions dominate the interactions between peptides and cancer cell membranes. Utilizing tryptophan as a fluorescence probe molecule appears to be a practicable approach to determine the interaction of peptides with phospholipid bilayers. Full article
(This article belongs to the Special Issue Peptide Chemistry)
Show Figures

Graphical abstract

2237 KiB  
Article
The Toxicity Mechanisms of Action of Aβ25–35 in Isolated Rat Cardiac Myocytes
by Beiru Zhang, Xiaohui Bian, Ping He, Xiaoying Fu, Keiichi Higuchi, Xu Yang and Detian Li
Molecules 2014, 19(8), 12242-12257; https://doi.org/10.3390/molecules190812242 - 13 Aug 2014
Cited by 5 | Viewed by 5991
Abstract
β-Amyloid (Aβ) is deposited in neurons and vascular cells of the brain and is characterized as a pathologic feature of Alzheimer’s disease (AD). Recently studies have reported that there is an association between cardiovascular risk factors and AD, however the mechanism of this [...] Read more.
β-Amyloid (Aβ) is deposited in neurons and vascular cells of the brain and is characterized as a pathologic feature of Alzheimer’s disease (AD). Recently studies have reported that there is an association between cardiovascular risk factors and AD, however the mechanism of this association is still uncertain. In this study we observed Aβ had an effect on cardiovascular cells. We represent as a major discovery that Aβ25–35 had toxicity on isolated rat cardiac myocytes by impacting the cytoskeleton assembly and causing ER stress, ultimately contributing to the apoptosis of the myocytes. Importantly, the activation of ER stress and subsequent cellular dysfunction and apoptosis by Aβ25–35 was regulated by the MAPK pathway, which could be prevented by inhibition of p38 via pharmacological inhibitors. It was noteworthy that Aβ25–35 played a critical role in cardiac myocytes, suggesting that Alzheimer’s disease (AD) had a relation with the heart and understanding of these associations in future will help search for effective treatment strategies. Full article
(This article belongs to the Section Molecular Diversity)
Show Figures

Figure 1

2882 KiB  
Article
Intracellular Diagnostics: Hunting for the Mode of Action of Redox-Modulating Selenium Compounds in Selected Model Systems
by Dominika Mániková, Lucia Medvecová Letavayová, Danuša Vlasáková, Pavol Košík, Ethiene Castellucci Estevam, Muhammad Jawad Nasim, Martin Gruhlke, Alan Slusarenko, Torsten Burkholz, Claus Jacob and Miroslav Chovanec
Molecules 2014, 19(8), 12258-12279; https://doi.org/10.3390/molecules190812258 - 13 Aug 2014
Cited by 30 | Viewed by 8227
Abstract
Redox-modulating compounds derived from natural sources, such as redox active secondary metabolites, are currently of considerable interest in the field of chemoprevention, drug and phytoprotectant development. Unfortunately, the exact and occasionally even selective activity of such products, and the underlying (bio-)chemical causes thereof, [...] Read more.
Redox-modulating compounds derived from natural sources, such as redox active secondary metabolites, are currently of considerable interest in the field of chemoprevention, drug and phytoprotectant development. Unfortunately, the exact and occasionally even selective activity of such products, and the underlying (bio-)chemical causes thereof, are often only poorly understood. A combination of the nematode- and yeast-based assays provides a powerful platform to investigate a possible biological activity of a new compound and also to explore the “redox link” which may exist between its activity on the one side and its chemistry on the other. Here, we will demonstrate the usefulness of this platform for screening several selenium and tellurium compounds for their activity and action. We will also show how the nematode-based assay can be used to obtain information on compound uptake and distribution inside a multicellular organism, whilst the yeast-based system can be employed to explore possible intracellular mechanisms via chemogenetic screening and intracellular diagnostics. Whilst none of these simple and easy-to-use assays can ultimately substitute for in-depth studies in human cells and animals, these methods nonetheless provide a first glimpse on the possible biological activities of new compounds and offer direction for more complicated future investigations. They may also uncover some rather unpleasant biochemical actions of certain compounds, such as the ability of the trace element supplement selenite to induce DNA strand breaks. Full article
Show Figures

Figure 1

740 KiB  
Article
Assessment of Extraction Parameters on Antioxidant Capacity, Polyphenol Content, Epigallocatechin Gallate (EGCG), Epicatechin Gallate (ECG) and Iriflophenone 3-C-β-Glucoside of Agarwood (Aquilaria crassna) Young Leaves
by Pei Yin Tay, Chin Ping Tan, Faridah Abas, Hip Seng Yim and Chun Wai Ho
Molecules 2014, 19(8), 12304-12319; https://doi.org/10.3390/molecules190812304 - 14 Aug 2014
Cited by 51 | Viewed by 9262
Abstract
The effects of ethanol concentration (0%–100%, v/v), solid-to-solvent ratio (1:10–1:60, w/v) and extraction time (30–180 min) on the extraction of polyphenols from agarwood (Aquilaria crassna) were examined. Total phenolic content (TPC), total flavonoid content (TFC) and total flavanol (TF) assays and [...] Read more.
The effects of ethanol concentration (0%–100%, v/v), solid-to-solvent ratio (1:10–1:60, w/v) and extraction time (30–180 min) on the extraction of polyphenols from agarwood (Aquilaria crassna) were examined. Total phenolic content (TPC), total flavonoid content (TFC) and total flavanol (TF) assays and HPLC-DAD were used for the determination and quantification of polyphenols, flavanol gallates (epigallocatechin gallate—EGCG and epicatechin gallate—ECG) and a benzophenone (iriflophenone 3-C-β-glucoside) from the crude polyphenol extract (CPE) of A. crassna. 2,2'-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was used to evaluate the antioxidant capacity of the CPE. Experimental results concluded that ethanol concentration and solid-to-solvent ratio had significant effects (p < 0.05) on the yields of polyphenol and antioxidant capacity. Extraction time had an insignificant influence on the recovery of EGCG, ECG and iriflophenone 3-C-β-glucoside, as well as radical scavenging capacity from the CPE. The extraction parameters that exhibited maximum yields were 40% (v/v) ethanol, 1:60 (w/v) for 30 min where the TPC, TFC, TF, DPPH, EGCG, ECG and iriflophenone 3-C-β-glucoside levels achieved were 183.5 mg GAE/g DW, 249.0 mg QE/g DW, 4.9 mg CE/g DW, 93.7%, 29.1 mg EGCG/g DW, 44.3 mg ECG/g DW and 39.9 mg iriflophenone 3-C-β-glucoside/g DW respectively. The IC50 of the CPE was 24.6 mg/L. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

779 KiB  
Article
Rumphellaones B and C, New 4,5-Seco-Caryophyllane Sesquiterpenoids from Rumphella
by Hsu-Ming Chung, Wei-Hsien Wang, Tsong-Long Hwang, Jan-Jung Li, Lee-Shing Fang, Yang-Chang Wu and Ping-Jyun Sung
Molecules 2014, 19(8), 12320-12327; https://doi.org/10.3390/molecules190812320 - 14 Aug 2014
Cited by 16 | Viewed by 5615
Abstract
Two new 4,5-seco-caryophyllane sesquiterpenoids, rumphellaones B (1) and C (2), which were found to possess unprecedented γ-lactone moieties, were obtained from the gorgonian coral Rumphella antipathies. The structures of 1 and 2 were elucidated by spectroscopic [...] Read more.
Two new 4,5-seco-caryophyllane sesquiterpenoids, rumphellaones B (1) and C (2), which were found to possess unprecedented γ-lactone moieties, were obtained from the gorgonian coral Rumphella antipathies. The structures of 1 and 2 were elucidated by spectroscopic methods and compound 2 was found to display modest inhibitory effects on the generation of superoxide anions and the release of elastase by human neutrophils at a concentration of 10 μg/mL Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

761 KiB  
Article
Partial Characterization of an Enzymatic Extract from Bentong Ginger (Zingiber officinale var. Bentong)
by Ahmad Nafi', Foo Hooi Ling, Jamilah Bakar and Hasanah M. Ghazali
Molecules 2014, 19(8), 12336-12348; https://doi.org/10.3390/molecules190812336 - 15 Aug 2014
Cited by 25 | Viewed by 9105
Abstract
Extraction of protease from a local ginger rhizome (Zingiber officinale var. Bentong) was carried out. The effect of extraction pH (6.4, 6.8, 7.0, 7.2, 7.6, 8.0, 8.4, and 8.8) and stabilizers (0.2% ascorbic acid, 0.2% ascorbic acid and 5 mM EDTA, or [...] Read more.
Extraction of protease from a local ginger rhizome (Zingiber officinale var. Bentong) was carried out. The effect of extraction pH (6.4, 6.8, 7.0, 7.2, 7.6, 8.0, 8.4, and 8.8) and stabilizers (0.2% ascorbic acid, 0.2% ascorbic acid and 5 mM EDTA, or 10 mM cysteine and 5 mM EDTA) on protease activity during extraction was examined. pH 7.0 potassium phosphate buffer and 10 mM cysteine in combination with 5 mM EDTA as stabilizer were found to be the most effective conditions. The extraction procedure yielded 0.73% of Bentong ginger protease (BGP) with a specific activity of 24.8 ± 0.2 U/mg protein. Inhibitory tests with some protease inhibitors classified the enzyme as a cysteine protease. The protease showed optimum activity at 60 °C and pH 6–8, respectively. The enzyme was completely inhibited by heavy metal cations such as Cu2+, and Hg2+. SDS stimulated the activity of enzyme, while emulsifiers (Tween 80 and Tween 20) slightly reduced its activity. The kinetic analysis showed that the protease has Km and Vmax values of 0.21 mg mL−1 and 34.48 mg mL−1 min−1, respectively. The dried enzyme retained its activity for 22 months when stored at −20 °C. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

1009 KiB  
Article
Caffeic Acid Inhibits the Formation of 7-Carboxyheptyl Radicals from Oleic Acid under Flavin Mononucleotide Photosensitization by Scavenging Singlet Oxygen and Quenching the Excited State of Flavin Mononucleotide
by Marie Asano and Hideo Iwahashi
Molecules 2014, 19(8), 12486-12499; https://doi.org/10.3390/molecules190812486 - 18 Aug 2014
Cited by 11 | Viewed by 7289
Abstract
We examined the effects of caffeic acid (CA) and related compounds on 7-carboxyheptyl radical formation. This analysis was performed using a standard D2O reaction mixture containing 4.3 mM oleic acid, 25 μM flavin mononucleotide (FMN), 160 mM phosphate buffer (pH 7.4), [...] Read more.
We examined the effects of caffeic acid (CA) and related compounds on 7-carboxyheptyl radical formation. This analysis was performed using a standard D2O reaction mixture containing 4.3 mM oleic acid, 25 μM flavin mononucleotide (FMN), 160 mM phosphate buffer (pH 7.4), 10 mM cholic acid, 100 mM α-(4-pyridyl-1-oxide)-N-tert-butylnitrone, and 1 mM Fe(SO4)2(NH4)2 during irradiation with 7.8 J/cm2 at 436 nm. 7-Carboxyheptyl radical formation was inhibited by CA, catechol, gallic acid, chlorogenic acid, ferulic acid, noradrenalin, 2-hydroxybenzoic acid, 3-hydroxybenzoic acid, and 4-hydroxybenzoic acid. Quinic acid, benzoic acid, and p-anisic acid had no effect on radical formation. These results suggest that a phenol moiety is essential for these inhibitory effects. The fluorescence intensity of FMN decreased by 69% ± 2% after CA addition, suggesting that CA quenches the singlet excited state of FMN. When 1 mM CA was added to a standard reaction mixture containing 25 μM FMN, 140 mM phosphate buffer (pH 7.4), and 10 mM 4-oxo-2,2,6,6-tetramethylpiperidine, the electron spin resonance signal of 4-oxo-2,2,6,6-tetramethylpiperidinooxy disappeared. This finding suggests that singlet oxygen was scavenged completely by CA. Therefore, CA appears to inhibit 7-carboxyheptyl radical formation by scavenging singlet oxygen and quenching the excited state of FMN. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

666 KiB  
Article
Effectiveness of Phenolic Compounds against Citrus Green Mould
by Simona M. Sanzani, Leonardo Schena and Antonio Ippolito
Molecules 2014, 19(8), 12500-12508; https://doi.org/10.3390/molecules190812500 - 18 Aug 2014
Cited by 45 | Viewed by 6915
Abstract
Stored citrus fruit suffer huge losses because of the development of green mould caused by Penicillium digitatum. Usually synthetic fungicides are employed to control this disease, but their use is facing some obstacles, such public concern about possible adverse effects on human [...] Read more.
Stored citrus fruit suffer huge losses because of the development of green mould caused by Penicillium digitatum. Usually synthetic fungicides are employed to control this disease, but their use is facing some obstacles, such public concern about possible adverse effects on human and environmental health and the development of resistant pathogen populations. In the present study quercetin, scopoletin and scoparone—phenolic compounds present in several agricultural commodities and associated with response to stresses—were firstly tested in vitro against P. digitatum and then applied in vivo on oranges cv. Navelina. Fruits were wound-treated (100 µg), pathogen-inoculated, stored and surveyed for disease incidence and severity. Although only a minor (≤13%) control effect on P. digitatum growth was recorded in vitro, the in vivo trial results were encouraging. In fact, on phenolic-treated oranges, symptoms appeared at 6 days post-inoculation (DPI), i.e., with a 2 day-delay as compared to the untreated control. Moreover, at 8 DPI, quercetin, scopoletin, and scoparone significantly reduced disease incidence and severity by 69%–40% and 85%–70%, respectively, as compared to the control. At 14 DPI, scoparone was the most active molecule. Based on the results, these compounds might represent an interesting alternative to synthetic fungicides. Full article
(This article belongs to the Special Issue Phytoalexins: Current Progress and Future Prospects)
Show Figures

Figure 1

1146 KiB  
Article
Influence of the Morphology of Core-Shell Supports on the Immobilization of Lipase B from Candida antarctica
by Martina C. C. Pinto, Denise M. G. Freire and José Carlos Pinto
Molecules 2014, 19(8), 12509-12530; https://doi.org/10.3390/molecules190812509 - 18 Aug 2014
Cited by 38 | Viewed by 6857
Abstract
Core-shell polymer particles with different properties were produced through combined suspension-emulsion polymerizations and employed as supports for immobilization of lipase B from Candida antarctica. In order to evaluate how the morphology of the particles affects the immobilization parameters, empirical models were developed [...] Read more.
Core-shell polymer particles with different properties were produced through combined suspension-emulsion polymerizations and employed as supports for immobilization of lipase B from Candida antarctica. In order to evaluate how the morphology of the particles affects the immobilization parameters, empirical models were developed to describe the performance of the biocatalysts as a function of the specific area, volume of pores and average pore diameter of the supports. It was observed that the average pore sizes did not affect the enzymatic activities in the analyzed range of pore sizes. It was also observed that the increase of the specific area (and of the volume of pores) led to higher enzyme loadings, also leading to an increase in the esterification activity, as expected. However, when the specific area (and volume of pores) increased, the hydrolytic activity and the retention of hydrolytic activity of the biocatalysts decreased, indicating the existence of diffusional limitations for some hydrolytic reactions, probably because of the high reaction rates. Full article
(This article belongs to the Special Issue Enzyme Immobilization)
Show Figures

Graphical abstract

1420 KiB  
Article
pH-Dependent Deformations of the Energy Landscape of Avidin-like Proteins Investigated by Single Molecule Force Spectroscopy
by Melanie Köhler, Andreas Karner, Michael Leitner, Vesa P. Hytönen, Markku Kulomaa, Peter Hinterdorfer and Andreas Ebner
Molecules 2014, 19(8), 12531-12546; https://doi.org/10.3390/molecules190812531 - 18 Aug 2014
Cited by 11 | Viewed by 10335
Abstract
Avidin and avidin-like proteins are widely used in numerous techniques since the avidin-biotin interaction is known to be very robust and reliable. Within this study, we investigated this bond at the molecular level under harsh conditions ranging from very low to very high [...] Read more.
Avidin and avidin-like proteins are widely used in numerous techniques since the avidin-biotin interaction is known to be very robust and reliable. Within this study, we investigated this bond at the molecular level under harsh conditions ranging from very low to very high pH values. We compared avidin with streptavidin and a recently developed avidin-based mutant, chimeric avidin. To gain insights of the energy landscape of these interactions we used a single molecule approach and performed the Single Molecule Force Spectroscopy atomic force microscopy technique. There, the ligand (biotin) is covalently coupled to a sharp AFM tip via a distensible hetero-bi-functional crosslinker, whereas the receptor of interest is immobilized on the probe surface. Receptor-ligand complexes are formed and ruptured by repeatedly approaching and withdrawing the tip from the surface. Varying both pulling velocity and pH value, we could determine changes of the energy landscape of the complexes. Our results clearly demonstrate that avidin, streptavidin and chimeric avidin are stable over a wide pH range although we could identify differences at the outer pH range. Taking this into account, they can be used in a broad range of applications, like surface sensors at extreme pH values. Full article
(This article belongs to the Special Issue Single Molecule Techniques)
Show Figures

Figure 1

831 KiB  
Article
Fumigant Toxicity of Oriental Sweetgum (Liquidambar orientalis) and Valerian (Valeriana wallichii) Essential Oils and Their Components, Including Their Acetylcholinesterase Inhibitory Activity, against Japanese Termites (Reticulitermes speratus)
by Il-Kwon Park
Molecules 2014, 19(8), 12547-12558; https://doi.org/10.3390/molecules190812547 - 19 Aug 2014
Cited by 26 | Viewed by 6100
Abstract
This study investigated the fumigant toxicity of oriental sweetgum (Liquidambar orientalis) and valerian (Valeriana wallichii) essential oils and their components against the Japanese termite (Reticulitermes speratus). The fumigant toxicity of oriental sweetgum and valerian oil differed significantly [...] Read more.
This study investigated the fumigant toxicity of oriental sweetgum (Liquidambar orientalis) and valerian (Valeriana wallichii) essential oils and their components against the Japanese termite (Reticulitermes speratus). The fumigant toxicity of oriental sweetgum and valerian oil differed significantly according to exposure time. Oriental sweetgum showed toxicity at short exposure times (2 days), and the toxicity of valerian oil was high 7 days after treatment. The main constituents of oriental sweetgum and valerian oils were tested individually for their fumigant toxicity against Japanese termites. Among the test compounds, benzyl alcohol, acetophenone, 1-phenyl-1-ethanol, hydrocinnamyl alcohol, trans-cinnamyl aldehyde, trans-cinnamyl alcohol, cis-asarone, styrene, and cis-ocimene showed toxicity against Japanese termites 7 days after treatment. Hydrocinnamyl alcohol and trans-cinnamyl alcohol were found to be the major contributors to the fumigant antitermitic toxicity of oriental sweetgum oil. The acetylcholinesterase (AChE) inhibition activity of two oils and their constituents was tested to determine their mode of action. Only cis-ocimene showed strong AChE inhibition activity with an IC50 value of 0.131 mg/mL. Further studies are warranted to determine the potential of these essential oils and their constituents as fumigants for termite control. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

1202 KiB  
Article
Effects of Ursolic Acid Derivatives on Caco-2 Cells and Their Alleviating Role in Streptozocin-Induced Type 2 Diabetic Rats
by Panpan Wu, Ping He, Suqing Zhao, Tianming Huang, Yujing Lu and Kun Zhang
Molecules 2014, 19(8), 12559-12576; https://doi.org/10.3390/molecules190812559 - 19 Aug 2014
Cited by 19 | Viewed by 8677
Abstract
In this study, the effect and mechanism of a series of ursolic acid (UA) derivatives on glucose uptake were investigated in a Caco-2 cells model. Their effect on hyperglycemia, hyperlipidemia and oxidative stress were also demonstrated in streptozocin (STZ)-induced diabetic rats. 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-glucose (2-NBDG) [...] Read more.
In this study, the effect and mechanism of a series of ursolic acid (UA) derivatives on glucose uptake were investigated in a Caco-2 cells model. Their effect on hyperglycemia, hyperlipidemia and oxidative stress were also demonstrated in streptozocin (STZ)-induced diabetic rats. 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-glucose (2-NBDG) was used as a fluorescein in Caco-2 cells model to screen UA derivatives by glucose uptake and expression of glucose transporter protein (SGLT-1, GLUT-2). Moreover, STZ-induced diabetic rats were administered with these derivatives for 4 weeks of treatment. The fasting blood glucose (FBG), insulin levels, biochemical parameters, lipid levels, and oxidative stress markers were finally evaluated. The results of this study indicated that compounds 10 and 11 significantly inhibited 2-NBDG uptake under both Na+-dependent and Na+-independent conditions by decreasing SGLT-1 and GLUT-2 expression in the Caco-2 cells model. Further in vivo studies revealed that compound 10 significantly reduced hyperglycemia by increasing levels of serum insulin, total protein, and albumin, while the fasting blood glucose, body weight and food intake were restored much closer to those of normal rats. Compounds 10 and 11 showed hypolipidemic activity by decreasing the total amounts of cholesterol (TC) and triglycerides (TG). Furthermore, compound 10 showed antioxidant potential which was confirmed by elevation of glutathione (GSH) and superoxide dismutase (SOD) and reduction of malondialdehyde (MDA) levels in the liver and kidney of diabetic rats. It was concluded that compound 10 caused an apparent inhibition of intestinal glucose uptake in Caco-2 cells and hypoglycemia, hypolipidemia and augmented oxidative stress in STZ-induced diabetic rats. Thus, compound 10 could be developed as a potentially complementary therapeutic or prophylactic agent for diabetics mellitus and its complications. Full article
(This article belongs to the Special Issue Prodrugs)
Show Figures

Graphical abstract

985 KiB  
Article
Preparative Isolation of Seven Diterpenoid Alkaloids from Aconitum coreanum by pH-Zone-Refining Counter-Current Chromatography
by Xueyong Wang, Xikai Shu, Xiao Wang, Jinqian Yu and Feng Jing
Molecules 2014, 19(8), 12619-12629; https://doi.org/10.3390/molecules190812619 - 19 Aug 2014
Cited by 9 | Viewed by 6880
Abstract
The aim of this paper was to seek an efficient method to preparative separation of alkaloid compounds from Aconitum coreanum (Guanbaifu), a well-known traditional Chinese medicinal plant for heart disease. Seven alkaloid compounds were successfully purified by pH-zone-refining counter-current chromatography with two-phase solvent [...] Read more.
The aim of this paper was to seek an efficient method to preparative separation of alkaloid compounds from Aconitum coreanum (Guanbaifu), a well-known traditional Chinese medicinal plant for heart disease. Seven alkaloid compounds were successfully purified by pH-zone-refining counter-current chromatography with two-phase solvent system of petroleum ether–ethyl acetate–methanol–water (5:5:1:9, v/v/v/v), 10 mM triethylamine in upper phase and 10 mM hydrochloric acid in lower phase. From 3.5 g of crude extract, 356 mg of Guanfu base I, 578 mg of Guanfu base A, 74 mg of atisine, 94 mg of Guanfu base F, 423 mg of Guanfu base G, 67 mg of Guanfu base R and 154 mg of Guanfu base P were obtained with the purity of 96.40%, 97.2%, 97.5%, 98.1%, 98.9%, 98.3% and 98.4%. Their chemical structures were identified by TOF-MS and 1H-NMR. This study indicated that pH-zone-refining counter-current chromatography was an efficient method for separating the kind of alkaloids with low absorbance values. Full article
(This article belongs to the Special Issue Alkaloids: Novel Therapeutic Perspectives)
Show Figures

Figure 1

945 KiB  
Article
Studies of the in Vitro Antibacterial Activities of Several Polyphenols against Clinical Isolates of Methicillin-Resistant Staphylococcus aureus
by Yanli Su, Liyan Ma, Yan Wen, Hong Wang and Shuwen Zhang
Molecules 2014, 19(8), 12630-12639; https://doi.org/10.3390/molecules190812630 - 19 Aug 2014
Cited by 64 | Viewed by 7364
Abstract
In this study, we report the antibacterial activities of six polyphenols (i.e., luteolin, quercetin, scutellarin, apigenin, chlorogenic acid, and resveratrol) against 29 clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA), and in vitro antibacterial activities of two-drug combinations. All of the MRSA [...] Read more.
In this study, we report the antibacterial activities of six polyphenols (i.e., luteolin, quercetin, scutellarin, apigenin, chlorogenic acid, and resveratrol) against 29 clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA), and in vitro antibacterial activities of two-drug combinations. All of the MRSA strains evaluated were clinical isolates from patients with MRSA bacteremia. The antibacterial activities were determined by agar dilution method, and the two-drug antibacterial activities were determined by the checkerboard agar dilution method. It was found that luteolin, quercetin and resveratrol show obvious antibacterial activities against MRSA, and the results of two-drug antibacterial activity show either synergy or additivity, without evidences of antagonistic effects. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

3395 KiB  
Article
Ultrasound-Assisted Extraction of Antioxidants in Misai Kucing (Orthosiphon stamineus)
by Swee Kheng Ho, Chin Ping Tan, Yin Yin Thoo, Faridah Abas and Chun Wai Ho
Molecules 2014, 19(8), 12640-12659; https://doi.org/10.3390/molecules190812640 - 19 Aug 2014
Cited by 31 | Viewed by 7159
Abstract
Ultrasound-assisted extraction (UAE) with ethanol was used to extract the compounds responsible for the antioxidant activities of Misai Kucing (Orthosiphon stamineus). Response surface methodology (RSM) was used to optimize four independent variables: ethanol concentration (%), amplitude (%), duty cycle (W/s) and [...] Read more.
Ultrasound-assisted extraction (UAE) with ethanol was used to extract the compounds responsible for the antioxidant activities of Misai Kucing (Orthosiphon stamineus). Response surface methodology (RSM) was used to optimize four independent variables: ethanol concentration (%), amplitude (%), duty cycle (W/s) and extraction time (min). Antioxidant compounds were determined by total phenolic content and total flavonoid content to be 1.4 g gallic acid equivalent/100 g DW and 45 g catechin equivalent/100 g DW, respectively. Antioxidant activities were evaluated using the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+) radical scavenging capacity assay and the 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radical scavenging capacity assay to be 1,961.3 and 2,423.3 µmol Trolox Equivalent Antioxidant Capacity (TEAC)/100 g DW, respectively. Based on the optimal conditions, experimental values were reported to be close to the predicted value by RSM modeling (p > 0.05), indicating the suitability of UAE for extracting the antioxidants of Misai Kucing. Rosmarinic acid, kaempferol-rutinoside and sinesetine were identified by high performance liquid chromatography-mass spectrometry. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

1897 KiB  
Article
Prebiotic Potential of Agave angustifolia Haw Fructans with Different Degrees of Polymerization
by José Rodolfo Velázquez-Martínez, Rina M. González-Cervantes, Minerva Aurora Hernández-Gallegos, Roberto Campos Mendiola, Antonio R. Jiménez Aparicio and Martha L. Arenas Ocampo
Molecules 2014, 19(8), 12660-12675; https://doi.org/10.3390/molecules190812660 - 19 Aug 2014
Cited by 55 | Viewed by 10118
Abstract
Inulin-type fructans are the most studied prebiotic compounds because of their broad range of health benefits. In particular, plants of the Agave genus are rich in fructans. Agave-derived fructans have a branched structure with both β-(2→1) and β-(2→6) linked fructosyl chains attached to [...] Read more.
Inulin-type fructans are the most studied prebiotic compounds because of their broad range of health benefits. In particular, plants of the Agave genus are rich in fructans. Agave-derived fructans have a branched structure with both β-(2→1) and β-(2→6) linked fructosyl chains attached to the sucrose start unit with a degree of polymerization (DP) of up to 80 fructose units. The objective of this work was to assess the prebiotic potential of three Agave angustifolia Haw fructan fractions (AFF) with different degrees of polymerization. The three fructan fractions were extracted from the agave stem by lixiviation and then purified by ultrafiltration and ion exchange chromatography: AFF1, AFF2 and AFF3 with high (3–60 fructose units), medium (2–40) and low (2–22) DP, respectively. The fructan profile was determined with high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), which confirmed a branched fructan structure. Structural elucidation was performed by Fourier Transform Infra-Red Spectroscopy. The AFF spectrum shows characteristic fructan bands. The prebiotic effect of these fractions was assessed in vitro through fermentation by Bifidobacterium and Lactobacillus strains. Four growth patterns were observed. Some bacteria did not grow with any of the AFF, while other strains grew with only AFF3. Some bacteria grew according to the molecular weight of the AFF and some grew indistinctly with the three fructan fractions. Full article
(This article belongs to the Section Metabolites)
Show Figures

Figure 1

1812 KiB  
Article
Cucurbitane Glycosides Derived from Mogroside IIE: Structure-Taste Relationships, Antioxidant Activity, and Acute Toxicity
by Lei Wang, Ziming Yang, Fenglai Lu, Jinglei Liu, Yunfei Song and Dianpeng Li
Molecules 2014, 19(8), 12676-12689; https://doi.org/10.3390/molecules190812676 - 20 Aug 2014
Cited by 22 | Viewed by 7767
Abstract
Mogroside IIE is a bitter triterpenoid saponin which is the main component of unripe Luo Han Guo fruit and a precursor of the commercially available sweetener mogroside V. In this study, we developed an enzymatic glycosyl transfer method, by which bitter mogroside IIE [...] Read more.
Mogroside IIE is a bitter triterpenoid saponin which is the main component of unripe Luo Han Guo fruit and a precursor of the commercially available sweetener mogroside V. In this study, we developed an enzymatic glycosyl transfer method, by which bitter mogroside IIE could be converted into a sweet triterpenoid saponin mixture. The reactant concentration, temperature, pH and buffer system were studied. New saponins with the α-glucose group were isolated from the resulting mixtures, and the structures of three components of the extract were determined. The structure-taste relationships of these derivatives were also studied together with those of the natural mogrosides. The number and stereoconfiguration of glucose groups present in the mogroside molecules were found to be the main factor to determine the sweet or bitter taste of a compound. The antioxidant and food safety properties were initially evaluated by their radical scavenging ability and via 7 day mice survival tests, respectively. The results showed that the sweet triterpenoid saponin mixture has the same favorable physiological and safety characteristics as the natural mogrosides. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

733 KiB  
Article
Oligo-Carrageenan Kappa-Induced Reducing Redox Status and Activation of TRR/TRX System Increase the Level of Indole-3-acetic Acid, Gibberellin A3 and trans-Zeatin in Eucalyptus globulus Trees
by Alberto González, Rodrigo A. Contreras, Gustavo Zúiga and Alejandra Moenne
Molecules 2014, 19(8), 12690-12698; https://doi.org/10.3390/molecules190812690 - 20 Aug 2014
Cited by 22 | Viewed by 6119
Abstract
Eucalyptus globulus trees treated with oligo-carrageenan (OC) kappa showed an increase in NADPH, ascorbate and glutathione levels and activation of the thioredoxin reductase (TRR)/thioredoxin (TRX) system which enhance photosynthesis, basal metabolism and growth. In order to analyze whether the reducing redox status and [...] Read more.
Eucalyptus globulus trees treated with oligo-carrageenan (OC) kappa showed an increase in NADPH, ascorbate and glutathione levels and activation of the thioredoxin reductase (TRR)/thioredoxin (TRX) system which enhance photosynthesis, basal metabolism and growth. In order to analyze whether the reducing redox status and the activation of thioredoxin reductase (TRR)/thioredoxin (TRX) increased the level of growth-promoting hormones, trees were treated with water (control), with OC kappa, or with inhibitors of ascorbate synthesis, lycorine, glutathione synthesis, buthionine sulfoximine (BSO), NADPH synthesis, CHS-828, and thioredoxin reductase activity, auranofine, and with OC kappa, and cultivated for four additional months. Eucalyptus trees treated with OC kappa showed an increase in the levels of the auxin indole 3-acetic acid (IAA), gibberellin A3 (GA3) and the cytokinin trans-zeatin (t-Z) as well as a decrease in the level of the brassinosteroid epi-brassinolide (EB). In addition, treatment with lycorine, BSO, CHS-828 and auranofine inhibited the increase in IAA, GA3 and t-Z as well as the decrease in EB levels. Thus, the reducing redox status and the activation of TRR/TRX system induced by OC kappa increased the levels of IAA, GA3 and t-Z levels determining, at least in part, the stimulation of growth in Eucalyptus trees. Full article
(This article belongs to the Section Metabolites)
Show Figures

Figure 1

1297 KiB  
Article
Identification of Two Novel α1-AR Agonists Using a High-Throughput Screening Model
by Fang Xu, Hong Chen, Xuelan He, Jingyi Xu, Bingbing Xu, Biyun Huang, Xue Liang and Mu Yuan
Molecules 2014, 19(8), 12699-12709; https://doi.org/10.3390/molecules190812699 - 20 Aug 2014
Cited by 7 | Viewed by 5223
Abstract
α1-Adrenoceptors (ARs; 1A, 1B, and 1D) have been determined to perform different prominent functions in the physiological responses of the sympathetic nervous system. A high-throughput screening assay (HTS) was set up to detect α1-AR subtype-selective agonists by a dual-luciferase [...] Read more.
α1-Adrenoceptors (ARs; 1A, 1B, and 1D) have been determined to perform different prominent functions in the physiological responses of the sympathetic nervous system. A high-throughput screening assay (HTS) was set up to detect α1-AR subtype-selective agonists by a dual-luciferase reporter assay in HEK293 cells. Using the HTS assay, two novel compounds, CHE3 and CHK3, were discovered as α1-ARs agonists in α1-ARs expressed in HEK293 cells. These compounds also showed moderate/weak anti-proliferative activities against tested cancer cell lines. The HTS assay proposed in this study represents a potential method for discovering more α1-AR subtype-selective ligands. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

5178 KiB  
Article
Effects of Drying Methods on Physicochemical and Immunomodulatory Properties of Polysaccharide-Protein Complexes from Litchi Pulp
by Fei Huang, Yajuan Guo, Ruifen Zhang, Yang Yi, Yuanyuan Deng, Dongxiao Su and Mingwei Zhang
Molecules 2014, 19(8), 12760-12776; https://doi.org/10.3390/molecules190812760 - 20 Aug 2014
Cited by 33 | Viewed by 6548
Abstract
Dried litchi pulp has been used in traditional remedies in China for many years to treat various diseases, and the therapeutic activity has been, at least partly, attributed to the presence of bioactive polysaccharides. Polysaccharide-protein complexes from vacuum freeze-(VF), vacuum microwave-(VM) and heat [...] Read more.
Dried litchi pulp has been used in traditional remedies in China for many years to treat various diseases, and the therapeutic activity has been, at least partly, attributed to the presence of bioactive polysaccharides. Polysaccharide-protein complexes from vacuum freeze-(VF), vacuum microwave-(VM) and heat pump (HP) dried litchi pulp, which were coded as LP-VF, LP-VM and LP-HP, were comparatively studied on the physicochemical and immunomodulatory properties. LP-HP had a predominance of galactose, while glucose was the major sugar component in LP-VF and LP-VM. Compared with LP-VF and LP-VM, LP-HP contained more aspartate and glutamic in binding protein. LP-HP also exhibited a stronger stimulatory effect on splenocyte proliferation at 200 μg/mL and triggered higher NO, TNF-α and IL-6 secretion from RAW264.7 macrophages. Different drying methods caused the difference in physicochemical properties of polysaccharide-protein complexes from dried litchi pulp, which resulted in significantly different immunomodulatory activity. HP drying appears to be the best method for preparing litchi pulp to improve its immunomodulatory properties. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

835 KiB  
Article
Anti-Inflammatory Effect of Momordica Charantia in Sepsis Mice
by Che-Yi Chao, Ping-Jyun Sung, Wei-Hsien Wang and Yueh-Hsiung Kuo
Molecules 2014, 19(8), 12777-12788; https://doi.org/10.3390/molecules190812777 - 21 Aug 2014
Cited by 56 | Viewed by 9756
Abstract
Wild bitter gourd (Momordica charantia L. var. abbreviate Seringe), a common vegetable in Asia, is used in traditional medicine to treat various diseases, including inflammation. Extant literature indicates that wild bitter gourds have components that activate PPARα and PPARγ. This research probed [...] Read more.
Wild bitter gourd (Momordica charantia L. var. abbreviate Seringe), a common vegetable in Asia, is used in traditional medicine to treat various diseases, including inflammation. Extant literature indicates that wild bitter gourds have components that activate PPARα and PPARγ. This research probed the influence of adding wild bitter gourd to diets on inflammation responses in mice with sepsis induced by intraperitoneal injection of LPS. Male BALB/c mice were divided normal, sepsis, positive control, and three experimental groups. The latter ate diets with low (1%), moderate (2%), and high (10%) ratios of wild bitter gourd lyophilized powder. Before mice were sacrificed, with the exception of the normal group, intraperitoneal injection of LPS induced sepsis in each group; positive control group was injected with LPS after PDTC. This experiment revealed starkly lower weights in groups with added wild bitter gourd than those of the remaining groups. Blood lipids (TG, cholesterol, and NEFA) were also lower in comparison to the sepsis group, and blood glucose concentrations recovered and approached normal levels. Blood biochemistry values related to inflammation reactions indicated GOT, GPT, C-RP, and NO concentrations of groups with added wild bitter gourd were all lower than those of the sepsis group. Secretion levels of the spleen pro-inflammatory cytokines IL-1, IL-6, and TNF-α tallied significantly lower in comparison to the sepsis group, whereas secretion levels of IL-10 anti-inflammatory cytokine increased. Expression level of proteins NF-κB, iNOS, and COX-2 were significantly inhibited. Results indicate wild bitter gourd in diets promoted lipid metabolism, reducing fat accumulation, and improving low blood glucose in sepsis. Addition of wild bitter gourd can reduce inflammation biochemical markers or indicators and pro-inflammatory cytokines in the body, hence improving the inflammation responses in mice with sepsis. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

731 KiB  
Article
Copaiba Oil Suppresses Inflammatory Cytokines in Splenocytes of C57Bl/6 Mice Induced with Experimental Autoimmune Encephalomyelitis (EAE)
by Débora S. Dias, Lívia B. A. Fontes, Antônio E. M. Crotti, Beatriz J. V. Aarestrup, Fernando M. Aarestrup, Ademar A. Da Silva Filho and José O. A. Corrêa
Molecules 2014, 19(8), 12814-12826; https://doi.org/10.3390/molecules190812814 - 21 Aug 2014
Cited by 31 | Viewed by 14519
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a murine autoimmune disease used to study multiple sclerosis. We have investigated the immunomodulatory effects of copaiba oil (100, 50 and 25 µg/mL) on NO, H2O2, TNF-α, IFN-γ and IL-17 production in cultured cells [...] Read more.
Experimental autoimmune encephalomyelitis (EAE) is a murine autoimmune disease used to study multiple sclerosis. We have investigated the immunomodulatory effects of copaiba oil (100, 50 and 25 µg/mL) on NO, H2O2, TNF-α, IFN-γ and IL-17 production in cultured cells from EAE-mice. Copaiba oil (100 µg/mL) inhibited H2O2, NO, IFN-γ TNF-α and IL-17 production spontaneously or after ConA and MOG35–55 stimulation. It is suggested that copaiba oil acts on the mechanism of development of EAE by IFN-γ, IL-17 and TNF-α inhibition, modulating the immune response on both Th1 and Th17 cells. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

1490 KiB  
Article
Anti-Inflammatory Effect of the Blueberry Anthocyanins Malvidin-3-Glucoside and Malvidin-3-Galactoside in Endothelial Cells
by Wu-Yang Huang, Ya-Mei Liu, Jian Wang, Xing-Na Wang and Chun-Yang Li
Molecules 2014, 19(8), 12827-12841; https://doi.org/10.3390/molecules190812827 - 21 Aug 2014
Cited by 108 | Viewed by 13321
Abstract
Blueberry fruits have a wide range of health benefits because of their abundant anthocyanins, which are natural antioxidants. The purpose of this study was to investigate the inhibitory effect of blueberry’s two main anthocyanins (malvidin-3-glucoside and malvidin-3-galactoside) on inflammatory response in endothelial cells. [...] Read more.
Blueberry fruits have a wide range of health benefits because of their abundant anthocyanins, which are natural antioxidants. The purpose of this study was to investigate the inhibitory effect of blueberry’s two main anthocyanins (malvidin-3-glucoside and malvidin-3-galactoside) on inflammatory response in endothelial cells. These two malvidin glycosides could inhibit tumor necrosis factor-alpha (TNF-α) induced increases of monocyte chemotactic protein-1 (MCP-1), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) production both in the protein and mRNA levels in a concentration-dependent manner. Mv-3-glc at the concentration of 1 μM could inhibit 35.9% increased MCP-1, 54.4% ICAM-1, and 44.7% VCAM-1 protein in supernatant, as well as 9.88% MCP-1 and 48.6% ICAM-1 mRNA expression (p < 0.05). In addition, they could decrease IκBα degradation (Mv-3-glc, Mv-3-gal, and their mixture at the concentration of 50 μM had the inhibition rate of 84.8%, 75.3%, and 43.2%, respectively, p < 0.01) and block the nuclear translocation of p65, which suggested their anti-inflammation mechanism was mediated by the nuclear factor-kappa B (NF-κB) pathway. In general malvidin-3-glucoside had better anti-inflammatory effect than malvidin-3-galactoside. These results indicated that blueberry is good resource of anti-inflammatory anthocyanins, which can be promising molecules for the development of nutraceuticals to prevent chronic inflammation in many diseases. Full article
(This article belongs to the Special Issue Anthocyanins)
Show Figures

Figure 1

1477 KiB  
Article
Unusual Product Distribution from Friedländer Reaction of Di- and Triacetylbenzenes with 3-Aminonaphthalene-2-carbaldehyde and Properties of New Benzo[g]quinoline-Derived Aza-aromatics
by Moinul Karim and Yurngdong Jahng
Molecules 2014, 19(8), 12842-12851; https://doi.org/10.3390/molecules190812842 - 21 Aug 2014
Cited by 6 | Viewed by 6178
Abstract
The Friedländer reactions of acetylbenzenes and 2-acetylpyridine with 3-aminonaphthalene-2-carbaldehyde afforded the corresponding 2-phenylbenzo[g]quinoline and 2-(pyrid-2-yl)benzo[g]quinoline, respectively. The same reactions of 3-aminonaphthalene-2-carbaldehyde with 1,2-, 1,3-, 1,4-di- and 1,3,5-triacetylbenzenes, however, afforded a series of corresponding (benzo[g]quinolin-2-yl)benzenes as new N [...] Read more.
The Friedländer reactions of acetylbenzenes and 2-acetylpyridine with 3-aminonaphthalene-2-carbaldehyde afforded the corresponding 2-phenylbenzo[g]quinoline and 2-(pyrid-2-yl)benzo[g]quinoline, respectively. The same reactions of 3-aminonaphthalene-2-carbaldehyde with 1,2-, 1,3-, 1,4-di- and 1,3,5-triacetylbenzenes, however, afforded a series of corresponding (benzo[g]quinolin-2-yl)benzenes as new N,C-bidentate and unexpected benzo[g]quinoline. Crystallinity, thermal properties, absorption and emission spectral properties of the products were studied. Full article
(This article belongs to the Section Molecular Diversity)
Show Figures

Graphical abstract

2104 KiB  
Article
Conjugates of 1'-Aminoferrocene-1-carboxylic Acid and Proline: Synthesis, Conformational Analysis and Biological Evaluation
by Monika Kovačević, Krešimir Molčanov, Kristina Radošević, Višnja Gaurina Srček, Sunčica Roca, Alan Čače and Lidija Barišić
Molecules 2014, 19(8), 12852-12880; https://doi.org/10.3390/molecules190812852 - 21 Aug 2014
Cited by 14 | Viewed by 9569
Abstract
Our previous studies showed that alteration of dipeptides Y-Fca-Ala-OMe (III) into Y-Ala-Fca-OMe (IV) (Y = Ac, Boc; Fca = 1'-aminoferrocene-1-carboxylic acid) significantly influenced their conformational space. The novel bioconjugates Y-Fca-Pro-OMe (1, Y = Ac; 2, Y [...] Read more.
Our previous studies showed that alteration of dipeptides Y-Fca-Ala-OMe (III) into Y-Ala-Fca-OMe (IV) (Y = Ac, Boc; Fca = 1'-aminoferrocene-1-carboxylic acid) significantly influenced their conformational space. The novel bioconjugates Y-Fca-Pro-OMe (1, Y = Ac; 2, Y = Boc) and Y-Pro-Fca-OMe (3, Y = Boc; 4, Y = Ac) have been prepared in order to investigate the influence of proline, a well-known turn-inducer, on the conformational properties of small organometallic peptides with an exchanged constituent amino acid sequences. For this purpose, peptides 14 were subjected to detailed spectroscopic analysis (IR, NMR, CD spectroscopy) in solution. The conformation of peptide 3 in the solid state was determined. Furthermore, the ability of the prepared conjugates to inhibit the growth of estrogen receptor-responsive MCF-7 mammary carcinoma cells and HeLa cervical carcinoma cells was tested. Full article
(This article belongs to the Special Issue Intramolecular Hydrogen Bonding)
Show Figures

Figure 1

1259 KiB  
Article
Genetic Variability and Population Structure of the Potential Bioenergy Crop Miscanthus sinensis (Poaceae) in Southwest China Based on SRAP Markers
by Gang Nie, Xin-Quan Zhang, Lin-Kai Huang, Wen-Zhi Xu, Jian-Ping Wang, Yun-Wei Zhang, Xiao Ma, Yan-Hong Yan and Hai-Dong Yan
Molecules 2014, 19(8), 12881-12897; https://doi.org/10.3390/molecules190812881 - 21 Aug 2014
Cited by 20 | Viewed by 6625
Abstract
The genus Miscanthus has great potential as a biofuel feedstock because of its high biomass, good burning quality, environmental tolerance, and good adaptability to marginal land. In this study, the genetic diversity and the relationship of 24 different natural Miscanthus sinensis populations collected [...] Read more.
The genus Miscanthus has great potential as a biofuel feedstock because of its high biomass, good burning quality, environmental tolerance, and good adaptability to marginal land. In this study, the genetic diversity and the relationship of 24 different natural Miscanthus sinensis populations collected from Southwestern China were analyzed by using 33 pairs of Sequence Related Amplified Polymorphism (SRAP) primers. A total of 688 bands were detected with 646 polymorphic bands, an average of 19.58 polymorphic bands per primer pair. The average percentage of polymorphic loci (P), gene diversity (H), and Shannon’s diversity index (I) among the 24 populations are 70.59%, 0.2589, and 0.3836, respectively. The mean value of total gene diversity (HT) was 0.3373 ± 0.0221, while the allelic diversity within populations (HS) was 0.2589 ± 0.0136 and the allelic diversity among populations (DST) was 0.0784. The mean genetic differentiation coefficient (Gst = 0.2326) estimated from the detected 688 loci indicated that there was 76.74% genetic differentiation within the populations, which is consistent with the results from Analysis of Molecular Variance (AMOVA) analysis. Based upon population structure and phylogenetic analysis, five groups were formed and a special population with mixed ancestry was inferred indicating that human-mediated dispersal may have had a significant effect on population structure of M. sinensis. Evaluating the genetic structure and genetic diversity at morphological and molecular levels of the wild M. sinensis in Southwest China is critical to further utilize the wild M. sinensis germplasm in the breeding program. The results in this study will facilitate the biofuel feedstock breeding program and germplasm conservation. Full article
(This article belongs to the Section Molecular Diversity)
Show Figures

Graphical abstract

Review

Jump to: Research

753 KiB  
Review
Hypericum japonicum Thunb. ex Murray: Phytochemistry, Pharmacology, Quality Control and Pharmacokinetics of an Important Herbal Medicine
by Lin-Sheng Liu, Meng-Hua Liu and Jing-Yu He
Molecules 2014, 19(8), 10733-10754; https://doi.org/10.3390/molecules190810733 - 24 Jul 2014
Cited by 30 | Viewed by 7267
Abstract
Hypericum japonicum Thunb. ex Murray is mainly distributed throughout Asia, Oceania and North America and is used as an important herbal medicine. H. japonicum contains many valuable secondary metabolites, such as flavonoids, phloroglucinols and xanthones and has hepatoprotective, anti-tumor, antibacterial, antiviral, and antioxidant [...] Read more.
Hypericum japonicum Thunb. ex Murray is mainly distributed throughout Asia, Oceania and North America and is used as an important herbal medicine. H. japonicum contains many valuable secondary metabolites, such as flavonoids, phloroglucinols and xanthones and has hepatoprotective, anti-tumor, antibacterial, antiviral, and antioxidant activities and effects on the cardiovascular system and immunity. Coupled with phytochemical and pharmacological research, a series of analytical methods have been developed to evaluate the quality of H. japonicum based on its bioactive components. A pharmacokinetics study involved the absorption of two main flavonoids of H. japonicum in rats. This review aims to present an up-to-date and comprehensive overview of the phytochemistry, pharmacology, quality control and pharmacokinetics of H. japonicum, which should be useful for the greater development of H. japonicum, especially in the development of new drugs and therapeutics for various diseases. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

2073 KiB  
Review
Metal Complexes Containing Natural and Artificial Radioactive Elements and Their Applications
by Oxana V. Kharissova, Miguel A. Méndez-Rojas, Boris I. Kharisov, Ubaldo Ortiz Méndez and Perla Elizondo Martínez
Molecules 2014, 19(8), 10755-10802; https://doi.org/10.3390/molecules190810755 - 24 Jul 2014
Cited by 15 | Viewed by 11380
Abstract
Recent advances (during the 2007–2014 period) in the coordination and organometallic chemistry of compounds containing natural and artificially prepared radionuclides (actinides and technetium), are reviewed. Radioactive isotopes of naturally stable elements are not included for discussion in this work. Actinide and technetium complexes [...] Read more.
Recent advances (during the 2007–2014 period) in the coordination and organometallic chemistry of compounds containing natural and artificially prepared radionuclides (actinides and technetium), are reviewed. Radioactive isotopes of naturally stable elements are not included for discussion in this work. Actinide and technetium complexes with O-, N-, N,O, N,S-, P-containing ligands, as well π-organometallics are discussed from the view point of their synthesis, properties, and main applications. On the basis of their properties, several mono-, bi-, tri-, tetra- or polydentate ligands have been designed for specific recognition of some particular radionuclides, and can be used in the processes of nuclear waste remediation, i.e., recycling of nuclear fuel and the separation of actinides and fission products from waste solutions or for analytical determination of actinides in solutions; actinide metal complexes are also usefulas catalysts forcoupling gaseous carbon monoxide,as well as antimicrobial and anti-fungi agents due to their biological activity. Radioactive labeling based on the short-lived metastable nuclide technetium-99m (99mTc) for biomedical use as heart, lung, kidney, bone, brain, liver or cancer imaging agents is also discussed. Finally, the promising applications of technetium labeling of nanomaterials, with potential applications as drug transport and delivery vehicles, radiotherapeutic agents or radiotracers for monitoring metabolic pathways, are also described. Full article
(This article belongs to the Special Issue Practical Applications of Metal Complexes)
Show Figures

Figure 1

788 KiB  
Review
Triterpenoids from Gymnema sylvestre and Their Pharmacological Activities
by Giovanni Di Fabio, Valeria Romanucci, Anna De Marco and Armando Zarrelli
Molecules 2014, 19(8), 10956-10981; https://doi.org/10.3390/molecules190810956 - 28 Jul 2014
Cited by 54 | Viewed by 12625
Abstract
Because plants are estimated to produce over 200,000 metabolites, research into new natural substances that can be used in the pharmaceutical, agrochemical and agro-industrial production of drugs, biopesticides and food additives has grown in recent years. The global market for plant-derived drugs over [...] Read more.
Because plants are estimated to produce over 200,000 metabolites, research into new natural substances that can be used in the pharmaceutical, agrochemical and agro-industrial production of drugs, biopesticides and food additives has grown in recent years. The global market for plant-derived drugs over the last decade has been estimated to be approximately 30.69 billion USD. A relevant specific example of a plant that is very interesting for its numerous pharmacological properties, which include antidiabetic, anticarcinogenic, and neuroprotective effects is Gymnema sylvestre, used as a medicinal plant in Asia for thousands of years. Its properties are attributed to triterpenoidic saponins. In light of the considerable interest generated in the chemistry and pharmacological properties of G. sylvestre triterpenes and their analogues, we have undertaken this review in an effort to summarise the available literature on these promising bioactive natural products. The review will detail studies on the isolation, chemistry and bioactivity of the triterpenoids, which are presented in the tables. In particular the triterpenoids oxidised at C-23; their isolation, distribution in different parts of the plant, and their NMR spectral data; their names and physico-chemical characterisation; and the biological properties associated with these compounds, with a focus on their potential chemotherapeutic applications. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

985 KiB  
Review
Rubus Fruticosus L.: Constituents, Biological Activities and Health Related Uses
by Muhammad Zia-Ul-Haq, Muhammad Riaz, Vincenzo De Feo, Hawa Z.E. Jaafar and Marius Moga
Molecules 2014, 19(8), 10998-11029; https://doi.org/10.3390/molecules190810998 - 28 Jul 2014
Cited by 150 | Viewed by 22504
Abstract
Rubus fruticosus L. is a shrub famous for its fruit called blackberry fruit or more commonly blackberry. The fruit has medicinal, cosmetic and nutritive value. It is a concentrated source of valuable nutrients, as well as bioactive constituents of therapeutic interest highlighting its [...] Read more.
Rubus fruticosus L. is a shrub famous for its fruit called blackberry fruit or more commonly blackberry. The fruit has medicinal, cosmetic and nutritive value. It is a concentrated source of valuable nutrients, as well as bioactive constituents of therapeutic interest highlighting its importance as a functional food. Besides use as a fresh fruit, it is also used as ingredient in cooked dishes, salads and bakery products like jams, snacks, desserts, and fruit preserves. R. fruticosus contains vitamins, steroids and lipids in seed oil and minerals, flavonoids, glycosides, terpenes, acids and tannins in aerial parts that possess diverse pharmacological activities such as antioxidant, anti-carcinogenic, anti-inflammatory, antimicrobial anti-diabetic, anti-diarrheal, and antiviral. Various agrogeoclimatological factors like cultivar, environmental conditions of the area, agronomic practices employed, harvest time, post-harvest storage and processing techniques all influence the nutritional composition of blackberry fruit. This review focuses on the nutrients and chemical constituents as well as medicinal properties of different parts of R. fruticosus. Various cultivars and their physicochemical characteristics, polyphenolic content and ascorbic acid content are also discussed. The information in the present work will serve as baseline data and may lead to new biomedical applications of R. fruticosus as functional food. Full article
Show Figures

Graphical abstract

1045 KiB  
Review
Application of Iron Magnetic Nanoparticles in Protein Immobilization
by Jiakun Xu, Jingjing Sun, Yuejun Wang, Jun Sheng, Fang Wang and Mi Sun
Molecules 2014, 19(8), 11465-11486; https://doi.org/10.3390/molecules190811465 - 04 Aug 2014
Cited by 233 | Viewed by 16074
Abstract
Due to their properties such as superparamagnetism, high surface area, large surface-to-volume ratio, easy separation under external magnetic fields, iron magnetic nanoparticles have attracted much attention in the past few decades. Various modification methods have been developed to produce biocompatible magnetic nanoparticles for [...] Read more.
Due to their properties such as superparamagnetism, high surface area, large surface-to-volume ratio, easy separation under external magnetic fields, iron magnetic nanoparticles have attracted much attention in the past few decades. Various modification methods have been developed to produce biocompatible magnetic nanoparticles for protein immobilization. This review provides an updated and integrated focus on the fabrication and characterization of suitable magnetic iron nanoparticle-based nano-active materials for protein immobilization. Full article
(This article belongs to the Special Issue Enzyme Immobilization)
Show Figures

Figure 1

475 KiB  
Review
Maslinic Acid, a Natural Phytoalexin-Type Triterpene from Olives — A Promising Nutraceutical?
by Glòria Lozano-Mena, Marta Sánchez-González, M. Emília Juan and Joana M. Planas
Molecules 2014, 19(8), 11538-11559; https://doi.org/10.3390/molecules190811538 - 04 Aug 2014
Cited by 109 | Viewed by 12769
Abstract
Maslinic acid is a pentacyclic triterpene found in a variety of natural sources, ranging from herbal remedies used in traditional Asian medicine to edible vegetables and fruits present in the Mediterranean diet. In recent years, several studies have proved that maslinic acid exerts [...] Read more.
Maslinic acid is a pentacyclic triterpene found in a variety of natural sources, ranging from herbal remedies used in traditional Asian medicine to edible vegetables and fruits present in the Mediterranean diet. In recent years, several studies have proved that maslinic acid exerts a wide range of biological activities, i.e. antitumor, antidiabetic, antioxidant, cardioprotective, neuroprotective, antiparasitic and growth-stimulating. Experimental models used for the assessment of maslinic acid effects include established cell lines, which have been often used to elucidate the underlying mechanisms of action, and also animal models of different disorders, which have confirmed the effects of the triterpene in vivo. Overall, and supported by the lack of adverse effects in mice, the results provide evidence of the potential of maslinic acid as a nutraceutical, not only for health promotion, but also as a therapeutic adjuvant in the treatment of several disorders. Full article
(This article belongs to the Special Issue Phytoalexins: Current Progress and Future Prospects)
Show Figures

Figure 1

7038 KiB  
Review
Tracking Electrons in Biological Macromolecules: From Ensemble to Single Molecule
by Leandro C. Tabares, Ankur Gupta, Thijs J. Aartsma and Gerard W. Canters
Molecules 2014, 19(8), 11660-11678; https://doi.org/10.3390/molecules190811660 - 06 Aug 2014
Cited by 7 | Viewed by 7929
Abstract
Nature utilizes oxido-reductases to cater to the energy demands of most biochemical processes in respiratory species. Oxido-reductases are capable of meeting this challenge by utilizing redox active sites, often containing transition metal ions, which facilitate movement and relocation of electrons/protons to create a [...] Read more.
Nature utilizes oxido-reductases to cater to the energy demands of most biochemical processes in respiratory species. Oxido-reductases are capable of meeting this challenge by utilizing redox active sites, often containing transition metal ions, which facilitate movement and relocation of electrons/protons to create a potential gradient that is used to energize redox reactions. There has been a consistent struggle by researchers to estimate the electron transfer rate constants in physiologically relevant processes. This review provides a brief background on the measurements of electron transfer rates in biological molecules, in particular Cu-containing enzymes, and highlights the recent advances in monitoring these electron transfer events at the single molecule level or better to say, at the individual event level. Full article
(This article belongs to the Special Issue Single Molecule Techniques)
Show Figures

Graphical abstract

825 KiB  
Review
Review of Natural Compounds for Potential Skin Cancer Treatment
by Tawona N. Chinembiri, Lissinda H. Du Plessis, Minja Gerber, Josias H. Hamman and Jeanetta Du Plessis
Molecules 2014, 19(8), 11679-11721; https://doi.org/10.3390/molecules190811679 - 06 Aug 2014
Cited by 206 | Viewed by 26714
Abstract
Most anti-cancer drugs are derived from natural resources such as marine, microbial and botanical sources. Cutaneous malignant melanoma is the most aggressive form of skin cancer, with a high mortality rate. Various treatments for malignant melanoma are available, but due to the development [...] Read more.
Most anti-cancer drugs are derived from natural resources such as marine, microbial and botanical sources. Cutaneous malignant melanoma is the most aggressive form of skin cancer, with a high mortality rate. Various treatments for malignant melanoma are available, but due to the development of multi-drug resistance, current or emerging chemotherapies have a relatively low success rates. This emphasizes the importance of discovering new compounds that are both safe and effective against melanoma. In vitro testing of melanoma cell lines and murine melanoma models offers the opportunity for identifying mechanisms of action of plant derived compounds and extracts. Common anti-melanoma effects of natural compounds include potentiating apoptosis, inhibiting cell proliferation and inhibiting metastasis. There are different mechanisms and pathways responsible for anti-melanoma actions of medicinal compounds such as promotion of caspase activity, inhibition of angiogenesis and inhibition of the effects of tumor promoting proteins such as PI3-K, Bcl-2, STAT3 and MMPs. This review thus aims at providing an overview of anti-cancer compounds, derived from natural sources, that are currently used in cancer chemotherapies, or that have been reported to show anti-melanoma, or anti-skin cancer activities. Phytochemicals that are discussed in this review include flavonoids, carotenoids, terpenoids, vitamins, sulforaphane, some polyphenols and crude plant extracts. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

5624 KiB  
Review
Ruthenium Polypyridine Complexes Combined with Oligonucleotides for Bioanalysis: A Review
by Shuyu Zhang, Yubin Ding and Hui Wei
Molecules 2014, 19(8), 11933-11987; https://doi.org/10.3390/molecules190811933 - 11 Aug 2014
Cited by 37 | Viewed by 12848
Abstract
Ruthenium complexes are among the most interesting coordination complexes and they have attracted great attention over the past decades due to their appealing biological, catalytic, electronic and optical properties. Ruthenium complexes have found a unique niche in bioanalysis, as demonstrated by the substantial [...] Read more.
Ruthenium complexes are among the most interesting coordination complexes and they have attracted great attention over the past decades due to their appealing biological, catalytic, electronic and optical properties. Ruthenium complexes have found a unique niche in bioanalysis, as demonstrated by the substantial progress made in the field. In this review, the applications of ruthenium complexes coordinated with polypyridine ligands (and analogues) in bioanalysis are discussed. Three main detection methods based on electrochemistry, electrochemiluminescence, and photoluminscence are covered. The important targets, including DNA and other biologically important targets, are detected by specific biorecognition with the corresponding oligonucleotides as the biorecognition elements (i.e., DNA is probed by its complementary strand and other targets are detected by functional nucleic acids, respectively). Selected examples are provided and thoroughly discussed to highlight the substantial progress made so far. Finally, a brief summary with perspectives is included. Full article
(This article belongs to the Special Issue Practical Applications of Metal Complexes)
Show Figures

Graphical abstract

6136 KiB  
Review
Imaging Live Cells at the Nanometer-Scale with Single-Molecule Microscopy: Obstacles and Achievements in Experiment Optimization for Microbiology
by Beth L. Haas, Jyl S. Matson, Victor J. DiRita and Julie S. Biteen
Molecules 2014, 19(8), 12116-12149; https://doi.org/10.3390/molecules190812116 - 13 Aug 2014
Cited by 40 | Viewed by 11201
Abstract
Single-molecule fluorescence microscopy enables biological investigations inside living cells to achieve millisecond- and nanometer-scale resolution. Although single-molecule-based methods are becoming increasingly accessible to non-experts, optimizing new single-molecule experiments can be challenging, in particular when super-resolution imaging and tracking are applied to live cells. [...] Read more.
Single-molecule fluorescence microscopy enables biological investigations inside living cells to achieve millisecond- and nanometer-scale resolution. Although single-molecule-based methods are becoming increasingly accessible to non-experts, optimizing new single-molecule experiments can be challenging, in particular when super-resolution imaging and tracking are applied to live cells. In this review, we summarize common obstacles to live-cell single-molecule microscopy and describe the methods we have developed and applied to overcome these challenges in live bacteria. We examine the choice of fluorophore and labeling scheme, approaches to achieving single-molecule levels of fluorescence, considerations for maintaining cell viability, and strategies for detecting single-molecule signals in the presence of noise and sample drift. We also discuss methods for analyzing single-molecule trajectories and the challenges presented by the finite size of a bacterial cell and the curvature of the bacterial membrane. Full article
(This article belongs to the Special Issue Single Molecule Techniques)
Show Figures

Graphical abstract

1796 KiB  
Review
Antifungal Plant Defensins: Mechanisms of Action and Production
by Kim Vriens, Bruno P. A. Cammue and Karin Thevissen
Molecules 2014, 19(8), 12280-12303; https://doi.org/10.3390/molecules190812280 - 14 Aug 2014
Cited by 189 | Viewed by 14849
Abstract
Plant defensins are small, cysteine-rich peptides that possess biological activity towards a broad range of organisms. Their activity is primarily directed against fungi, but bactericidal and insecticidal actions have also been reported. The mode of action of various antifungal plant defensins has been [...] Read more.
Plant defensins are small, cysteine-rich peptides that possess biological activity towards a broad range of organisms. Their activity is primarily directed against fungi, but bactericidal and insecticidal actions have also been reported. The mode of action of various antifungal plant defensins has been studied extensively during the last decades and several of their fungal targets have been identified to date. This review summarizes the mechanism of action of well-characterized antifungal plant defensins, including RsAFP2, MsDef1, MtDef4, NaD1 and Psd1, and points out the variety by which antifungal plant defensins affect microbial cell viability. Furthermore, this review summarizes production routes for plant defensins, either via heterologous expression or chemical synthesis. As plant defensins are generally considered non-toxic for plant and mammalian cells, they are regarded as attractive candidates for further development into novel antimicrobial agents. Full article
(This article belongs to the Special Issue Peptide Chemistry)
Show Figures

Figure 1

657 KiB  
Review
PM00104 (Zalypsis®): A Marine Derived Alkylating Agent
by Bradley J. Petek and Robin L. Jones
Molecules 2014, 19(8), 12328-12335; https://doi.org/10.3390/molecules190812328 - 15 Aug 2014
Cited by 27 | Viewed by 6561
Abstract
PM00104 (Zalypsis®) is a synthethic tetrahydroisoquinolone alkaloid, which is structurally similar to many marine organisms. The compound has been proposed as a potential chemotherapeutic agent in the treatment of solid human tumors and hematological malignancies. PM00104 is a DNA binding agent, [...] Read more.
PM00104 (Zalypsis®) is a synthethic tetrahydroisoquinolone alkaloid, which is structurally similar to many marine organisms. The compound has been proposed as a potential chemotherapeutic agent in the treatment of solid human tumors and hematological malignancies. PM00104 is a DNA binding agent, causing inhibition of the cell cycle and transcription, which can lead to double stranded DNA breaks. After rigorous pre-clinical testing, the drug has been evaluated in a number of phase II clinical trials. This manuscript provides a review of current trials and appraises the efficacy of PM00104 as a future cancer treatment. Full article
(This article belongs to the Special Issue Alkaloids: Novel Therapeutic Perspectives)
Show Figures

Graphical abstract

1094 KiB  
Review
Berberine, an Epiphany Against Cancer
by Luis Miguel Guamán Ortiz, Paolo Lombardi, Micol Tillhon and Anna Ivana Scovassi
Molecules 2014, 19(8), 12349-12367; https://doi.org/10.3390/molecules190812349 - 15 Aug 2014
Cited by 208 | Viewed by 28493
Abstract
Alkaloids are used in traditional medicine for the treatment of many diseases. These compounds are synthesized in plants as secondary metabolites and have multiple effects on cellular metabolism. Among plant derivatives with biological properties, the isoquinoline quaternary alkaloid berberine possesses a broad range [...] Read more.
Alkaloids are used in traditional medicine for the treatment of many diseases. These compounds are synthesized in plants as secondary metabolites and have multiple effects on cellular metabolism. Among plant derivatives with biological properties, the isoquinoline quaternary alkaloid berberine possesses a broad range of therapeutic uses against several diseases. In recent years, berberine has been reported to inhibit cell proliferation and to be cytotoxic towards cancer cells. Based on this evidence, many derivatives have been synthesized to improve berberine efficiency and selectivity; the results so far obtained on human cancer cell lines support the idea that they could be promising agents for cancer treatment. The main properties of berberine and derivatives will be illustrated. Full article
(This article belongs to the Special Issue Alkaloids: Novel Therapeutic Perspectives)
Show Figures

Figure 1

1766 KiB  
Review
Cyclodepsipeptides: A Rich Source of Biologically Active Compounds for Drug Research
by Sivatharushan Sivanathan and Jürgen Scherkenbeck
Molecules 2014, 19(8), 12368-12420; https://doi.org/10.3390/molecules190812368 - 15 Aug 2014
Cited by 76 | Viewed by 11524
Abstract
Faced with the need to find new drugs for all kinds of diseases, science sees that Nature offers numerous classes of compounds showing an impressively high biological potential. Among those are the cyclodepsipeptides, hybrid structures composed of amino and hydroxy acids. In the [...] Read more.
Faced with the need to find new drugs for all kinds of diseases, science sees that Nature offers numerous classes of compounds showing an impressively high biological potential. Among those are the cyclodepsipeptides, hybrid structures composed of amino and hydroxy acids. In the past decades numerous cyclodepsipeptides have been isolated and their potential as drugs has been studied extensively. For several cyclodepsipeptides total syntheses both in solution and on solid-phase have been established, allowing the production of combinatorial libraries. In addition, the biosynthesis of specific cyclodepsipeptides has been elucidated and used for the chemoenzymatic preparation of nonnatural analogues. This review summarizes the recent literature on cyclic tetra- to decadepsipeptides, composed exclusively of α-amino- and α-hydroxy acids. Full article
(This article belongs to the Special Issue Peptide Chemistry)
Show Figures

Graphical abstract

534 KiB  
Review
Towards the Development of Functionalized PolypyridineLigands for Ru(II) Complexes as Photosensitizers inDye-Sensitized Solar Cells (DSSCs)
by Adewale O. Adeloye and Peter A. Ajibade
Molecules 2014, 19(8), 12421-12460; https://doi.org/10.3390/molecules190812421 - 15 Aug 2014
Cited by 58 | Viewed by 11653
Abstract
A number of novel ruthenium(II) polypyridine complexes have been designedand synthesized for use as photosensitizers in dye-sensitized solar cells (DSSCs) due totheir rich photophysical properties such as intense absorption, long-lived lifetimes, highemission quantum yields and unique redox characteristics. Many of these complexesexhibit photophysical [...] Read more.
A number of novel ruthenium(II) polypyridine complexes have been designedand synthesized for use as photosensitizers in dye-sensitized solar cells (DSSCs) due totheir rich photophysical properties such as intense absorption, long-lived lifetimes, highemission quantum yields and unique redox characteristics. Many of these complexesexhibit photophysical behavior that can be readily controlled through a careful choice ofligands and/or substituents. With this perspective, we review the design and general syntheticmethods of some polypyridine ligands based on bipyridine, phenanthroline, terpyridine andquaterpyridine with/without anchoring groups with a view to correlate functionality ofligand structures with the observed photophysical, electroredox and power conversionefficiency of some examples of Ru(II) polypyridyl complexes that have been reported andparticularly used in the DSSCs applications. The main interest, however, is focused onshowing the development of new polypyridine ligand materials containing long-rangeelectron transfer motifs such as the alkenyl, alkynyl and polyaromatic donor functionalities. Full article
(This article belongs to the Special Issue Ruthenium Complex)
Show Figures

Figure 1

1143 KiB  
Review
Trends in Protein-Based Biosensor Assemblies for Drug Screening and Pharmaceutical Kinetic Studies
by Ana M. Gonçalves, Augusto Q. Pedro, Fátima M. Santos, Luís M. Martins, Cláudio J. Maia, João A. Queiroz and Luís A. Passarinha
Molecules 2014, 19(8), 12461-12485; https://doi.org/10.3390/molecules190812461 - 18 Aug 2014
Cited by 31 | Viewed by 7398
Abstract
The selection of natural and chemical compounds for potential applications in new pharmaceutical formulations constitutes a time-consuming procedure in drug screening. To overcome this issue, new devices called biosensors, have already demonstrated their versatility and capacity for routine clinical diagnosis. Designed to perform [...] Read more.
The selection of natural and chemical compounds for potential applications in new pharmaceutical formulations constitutes a time-consuming procedure in drug screening. To overcome this issue, new devices called biosensors, have already demonstrated their versatility and capacity for routine clinical diagnosis. Designed to perform analytical analysis for the detection of a particular analyte, biosensors based on the coupling of proteins to amperometric and optical devices have shown the appropriate selectivity, sensibility and accuracy. During the last years, the exponential demand for pharmacokinetic studies in the early phases of drug development, along with the need of lower molecular weight detection, have led to new biosensor structure materials with innovative immobilization strategies. The result has been the development of smaller, more reproducible biosensors with lower detection limits, and with a drastic reduction in the required sample volumes. Therefore in order to describe the main achievements in biosensor fields, the present review has the main aim of summarizing the essential strategies used to generate these specific devices, that can provide, under physiological conditions, a credible molecule profile and assess specific pharmacokinetic parameters. Full article
(This article belongs to the Special Issue Enzyme Immobilization)
Show Figures

Figure 1

741 KiB  
Review
Developments in the Fermentation Process and Quality Improvement Strategies for Mead Production
by Antonio Iglesias, Ananias Pascoal, Altino Branco Choupina, Carlos Alfredo Carvalho, Xesús Feás and Leticia M. Estevinho
Molecules 2014, 19(8), 12577-12590; https://doi.org/10.3390/molecules190812577 - 19 Aug 2014
Cited by 47 | Viewed by 20988
Abstract
Mead is a traditional alcoholic drink derived from the fermentation of diluted honey in the presence of appropriate yeast. Its modern production, in general terms, involves the addition of nutrients to initial diluted honey, pasteurization, yeast inoculation, fermentation and removal of impurities. Undesirable [...] Read more.
Mead is a traditional alcoholic drink derived from the fermentation of diluted honey in the presence of appropriate yeast. Its modern production, in general terms, involves the addition of nutrients to initial diluted honey, pasteurization, yeast inoculation, fermentation and removal of impurities. Undesirable events along the process have been reported; among them, we highlight: delayed or arrested fermentations, modified and unpleasant sensory and quality parameters of the final product. These problems have been linked to the inability of yeasts to accomplish their role in extreme growth conditions. Emphasis has also been placed on the long fermentation times required, ranging from weeks to months, particularly when traditional procedures are applied and when the honey concentration is low. A series of alterations to the must and technological changes have been proposed in order to optimize the mead production process. In this context, this review examines the evidence that aims to improve meads’ quality and make the production process easier and more efficient, by clarifying the source of unexpected events, describing the implementation of different fermentative microorganisms and using new methodologies. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

3642 KiB  
Review
Allicin: Chemistry and Biological Properties
by Jan Borlinghaus, Frank Albrecht, Martin C. H. Gruhlke, Ifeanyi D. Nwachukwu and Alan J. Slusarenko
Molecules 2014, 19(8), 12591-12618; https://doi.org/10.3390/molecules190812591 - 19 Aug 2014
Cited by 528 | Viewed by 58387
Abstract
Allicin (diallylthiosulfinate) is a defence molecule from garlic (Allium sativum L.) with a broad range of biological activities. Allicin is produced upon tissue damage from the non-proteinogenic amino acid alliin (S-allylcysteine sulfoxide) in a reaction that is catalyzed by the enzyme alliinase. [...] Read more.
Allicin (diallylthiosulfinate) is a defence molecule from garlic (Allium sativum L.) with a broad range of biological activities. Allicin is produced upon tissue damage from the non-proteinogenic amino acid alliin (S-allylcysteine sulfoxide) in a reaction that is catalyzed by the enzyme alliinase. Current understanding of the allicin biosynthetic pathway will be presented in this review. Being a thiosulfinate, allicin is a reactive sulfur species (RSS) and undergoes a redox-reaction with thiol groups in glutathione and proteins that is thought to be essential for its biological activity. Allicin is physiologically active in microbial, plant and mammalian cells. In a dose-dependent manner allicin can inhibit the proliferation of both bacteria and fungi or kill cells outright, including antibiotic-resistant strains like methicillin-resistant Staphylococcus aureus (MRSA). Furthermore, in mammalian cell lines, including cancer cells, allicin induces cell-death and inhibits cell proliferation. In plants allicin inhibits seed germination and attenuates root-development. The majority of allicin’s effects are believed to be mediated via redox-dependent mechanisms. In sub-lethal concentrations, allicin has a variety of health-promoting properties, for example cholesterol- and blood pressure-lowering effects that are advantageous for the cardio-vascular system. Clearly, allicin has wide-ranging and interesting applications in medicine and (green) agriculture, hence the detailed discussion of its enormous potential in this review. Taken together, allicin is a fascinating biologically active compound whose properties are a direct consequence of the molecule’s chemistry. Full article
Show Figures

Figure 1

1343 KiB  
Review
Magnetite Nanostructures as Novel Strategies for Anti-Infectious Therapy
by Ioannis Liakos, Alexandru Mihai Grumezescu and Alina Maria Holban
Molecules 2014, 19(8), 12710-12726; https://doi.org/10.3390/molecules190812710 - 20 Aug 2014
Cited by 58 | Viewed by 8462
Abstract
This review highlights the current situation of antimicrobial resistance and the use of magnetic nanoparticles (MNPs) in developing novel routes for fighting infectious diseases. The most important two directions developed recently are: (i) improved delivery of antimicrobial compounds based on a drastic decrease [...] Read more.
This review highlights the current situation of antimicrobial resistance and the use of magnetic nanoparticles (MNPs) in developing novel routes for fighting infectious diseases. The most important two directions developed recently are: (i) improved delivery of antimicrobial compounds based on a drastic decrease of the minimal inhibition concentration (MIC) of the drug used independently; and (ii) inhibition of microbial attachment and biofilm development on coated medical surfaces. These new directions represent promising alternatives in the development of new strategies to eradicate and prevent microbial infections that involve resistant and biofilm-embedded bacteria. Recent promising applications of MNPs, as the development of delivery nanocarriers and improved nanovehicles for the therapy of different diseases are discussed, together with the mechanisms of microbial inhibition. Full article
(This article belongs to the Special Issue Bio and Nanomaterials Based on Fe3O4)
Show Figures

Graphical abstract

2967 KiB  
Review
Effect of Redox Modulating NRF2 Activators on Chronic Kidney Disease
by Bo-hyun Choi, Kyung-Shin Kang and Mi-Kyoung Kwak
Molecules 2014, 19(8), 12727-12759; https://doi.org/10.3390/molecules190812727 - 20 Aug 2014
Cited by 123 | Viewed by 17558
Abstract
Chronic kidney disease (CKD) is featured by a progressive decline of kidney function and is mainly caused by chronic diseases such as diabetes mellitus and hypertension. CKD is a complex disease due to cardiovascular complications and high morbidity; however, there is no single [...] Read more.
Chronic kidney disease (CKD) is featured by a progressive decline of kidney function and is mainly caused by chronic diseases such as diabetes mellitus and hypertension. CKD is a complex disease due to cardiovascular complications and high morbidity; however, there is no single treatment to improve kidney function in CKD patients. Since biological markers representing oxidative stress are significantly elevated in CKD patients, oxidative stress is receiving attention as a contributing factor to CKD pathology. Nuclear factor erythroid-2 related factor 2 (NRF2) is a predominant transcription factor that regulates the expression of a wide array of genes encoding antioxidant proteins, thiol molecules and their generating enzymes, detoxifying enzymes, and stress response proteins, all of which can counteract inflammatory and oxidative damages. There is considerable experimental evidence suggesting that NRF2 signaling plays a protective role in renal injuries that are caused by various pathologic conditions. In addition, impaired NRF2 activity and consequent target gene repression have been observed in CKD animals. Therefore, a pharmacological intervention activating NRF2 signaling can be beneficial in protecting against kidney dysfunction in CKD. This review article provides an overview of the role of NRF2 in experimental CKD models and describes current findings on the renoprotective effects of naturally occurring NRF2 activators, including sulforaphane, resveratrol, curcumin, and cinnamic aldehyde. These experimental results, coupled with recent clinical experiences with a synthetic triterpenoid, bardoxolone methyl, have brought a light of hope for ameliorating CKD progression by preventing oxidative stress and maintaining cellular redox homeostasis. Full article
Show Figures

Graphical abstract

1566 KiB  
Review
Thiosulfoxide (Sulfane) Sulfur: New Chemistry and New Regulatory Roles in Biology
by John I. Toohey and Arthur J. L. Cooper
Molecules 2014, 19(8), 12789-12813; https://doi.org/10.3390/molecules190812789 - 21 Aug 2014
Cited by 134 | Viewed by 13034
Abstract
The understanding of sulfur bonding is undergoing change. Old theories on hypervalency of sulfur and the nature of the chalcogen-chalcogen bond are now questioned. At the same time, there is a rapidly expanding literature on the effects of sulfur in regulating biological systems. [...] Read more.
The understanding of sulfur bonding is undergoing change. Old theories on hypervalency of sulfur and the nature of the chalcogen-chalcogen bond are now questioned. At the same time, there is a rapidly expanding literature on the effects of sulfur in regulating biological systems. The two fields are inter-related because the new understanding of the thiosulfoxide bond helps to explain the newfound roles of sulfur in biology. This review examines the nature of thiosulfoxide (sulfane, S0) sulfur, the history of its regulatory role, its generation in biological systems, and its functions in cells. The functions include synthesis of cofactors (molybdenum cofactor, iron-sulfur clusters), sulfuration of tRNA, modulation of enzyme activities, and regulating the redox environment by several mechanisms (including the enhancement of the reductive capacity of glutathione). A brief review of the analogous form of selenium suggests that the toxicity of selenium may be due to over-reduction caused by the powerful reductive activity of glutathione perselenide. Full article
(This article belongs to the Special Issue Sulfur Atom: Element for Adaptation to an Oxidative Environment)
Show Figures

Graphical abstract

Previous Issue
Back to TopTop