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Abstract: We examined nearsightedness of electronic matter (NEM) of finite systems on 

the basis of linear response function (LRF). From the computational results of a square-well 

model system, the behavior of responses obviously depends on the number of electrons 

(N): as N increases, LRF, δρ(r)/δv(r′), decays rapidly for the distance, |r−r′|. This 

exemplifies that the principle suggested by Kohn and Prodan holds even for finite systems: 

the cause of NEM is destructive interference among electron density amplitudes. In 

addition, we examined double-well model systems, which have low-lying degenerate 

levels. In this case, there are two types of LRF: the cases of the half-filled and of full-filled 

in low-lying degenerate levels. The response for the former is delocalized, while that of the 

later is localized. These behaviors of model systems are discussed in relation to the 

molecular systems’ counterparts, H2, He2
2+, and He2 systems. We also see that NEM holds 

for the dissociated limit of H2, of which the mechanism is similar to that of the insulating 

state of solids as suggested by Kohn. We also examined LRF of alanine tripeptide system 

as well as butane and butadiene molecules, showing that NEM of the polypeptide system is 

caused by sp3 junctions at Cα atoms that prevent propagation of amplitudes of LRF, which 

is critically different from that of NEM for finite and infinite homogeneous systems. 
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1. Introduction 

Karplus, Warshel and Levitt won the 2013 Novel Prize in Chemistry for developing the multiscale 

models, i.e., quantum mechanics/molecular mechanics (QM/MM) models, for complex chemical 

systems [1,2]. In the QM/MM models, chemically active sites are described with QM methods while 

peripheral regions such as protein environments in enzymes and solvents in liquids with MM methods 

where the electronic structures of them are replaced by classical point charges. In such approximations, 

we assume that the artificial Coulomb potentials due to the point charges do not deteriorate 

description of electronic structures of the QM sites. In other words, this type of approaches relies on 

nearsightedness of electronic matter (NEM) as proposed by Kohn and Prodan [3,4], the fact that the 

changes of electric potentials at any points that are far enough from a specific point do not affect 

significantly electronic properties at the point. They proved that NEM holds for some infinite ordered 

and nonordered systems. Kohn has also analyzed the Mott insulating states to show that the low-lying 

states can be described with a sum of “localized wavefunctions”, which is another type of NEM [5]. A 

noteworthy point is that they deliberately excluded small systems of a few electrons from a list of 

substances for which NEM holds. This implies that the simplest molecule system, hydrogen molecule, 

is not included the list. The problem is whether NEM holds for molecular systems: as described above, 

quantum chemists using the QM/MM models also assume that NEM holds for large molecular 

systems. If so, as the number of electrons in molecules increases from two of hydrogen molecule, 

which size does NEM start to hold for? What is the difference between hydrogen molecule and a large 

molecule for which NEM holds? To begin with, what is the reason that NEM holds for the large molecular 

systems? Is it the same reason that was presented by Prodan and Kohn for infinite systems [3–5]?  

In order to provide answers to these questions, we examined two types of systems: the first one is 

simple model systems such as electrons in square-well potential and electrons in harmonic oscillator 

potential. These systems are simple models for molecular systems, but without the intrinsic structure 

due to the existence of atoms such as atomic orbitals and chemical bonds. This simplicity of finite 

model systems is similar to that of the infinite systems that were presented by Prodan and Kohn [4].  

The second one is simple molecular systems with using ab initio density functional computational 

results, which are directly related to the QM/MM applications. The comparison among LRFs 

(δρ(r)/δv(r′)) for these two types of systems reveals that the propagations of density deviations (δρ(r)) 

due to virtual perturbations (δv(r′)) are the results of different type of effects.  

2. Theoretical Background  

In the original theory of NEM, Prodan and Kohn state that NEM is not an aspect of linear or 

nonlinear response to external perturbations. At the same time, they also state that NEM does not 

exclude them. In fact, they also analyzed density changes due to perturbations, which is similar to 

linear response function, δρ(r)/δv(r′). Density is the most important quantity in electronic structure 

theory: in density functional theory, it determines all of other electronic properties uniquely [6,7]. 
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Also, two leading terms in electronic energies, nuclear-attraction and classical Coulomb repulsion 

terms explicitly depend on density. Thus, the change of density directly leads to the change of energy 

of the system. In addition, according to the Feynman’s electrostatic theorem [8], forces acting on 

nuclei depend on interactions among nuclei and electron density of the system. Because the movement 

of nuclei in either molecular dynamics or geometry optimizations is determined by the forces, density 

also determines dynamical behaviors of the system. Therefore, the density change results in the change 

of both static and dynamic behavior of the system. This is the reason why the density is important in 

various fields from fundamental chemistry to biological and material sciences (for a comprehensive 

review, see reference [9]). For the perturbation, δv(r′), the change of density is given by: 

( )
( ) d v( )

v( )

δρ′ ′δρ = δ ′δ
r

r r r
r

 (1) 

A well-known example is a phenomenon that is called “Friedel oscillation” of an impurity problem 

for metals [10–13]. In this case, δv(r′) is the perturbation due to the magnetic impurities that causes 

density polarizations in metals around the impurities. This phenomenon is well described with the 

linear response theory under the random phase approximation for a homogenous electron gas (HEG) 

model [14]: The analytical form of density polarization is given by:  

TF

2 2 2
q rTF TF TF F

2 2 2 3
TF TF

q q k cos[2k r]1
(r) e

4 r (4 q (2k )) r
−δρ = − +

π π +
 (2)

here, qTF is the inverse of the Thomas-Fermi screening length, kF is the Fermi wavenumber, and r is the 

distance from the point charge that mimics the impurity. The first term is the monotonically 

exponential decay term, and the second term causes the decaying “oscillation” term around the 

impurity, which was observed as NMR signals [11,12] and directly as scanning probe images about a 

decade ago [13]. A noteworthy point is that the change of density is a function only of the distance 

from the point charge because the HEG system is homogeneous and isotropic. If the system is well 

approximated as a HEG system, the above Equation (2) is effective for describing the response to 

virtual perturbations. However, because the molecular systems are neither homogeneous nor isotropic, 

responses to perturbations must strongly depend on both the response point and the point to which the 

perturbation is applied. In that case, it is essential to consider the linear response function (LRF) in the 

matrix form that is given by: 

Nocc unocc i i j j

i j
i j

( ) ( ) ( ) ( )( )
2

v( )

′ ′ψ ψ ψ ψδρ =
′δ ε − ε 

r r r rr

r
 (3) 

using the straightforward perturbation treatment. Here i ( )ψ r  and j( )ψ r  are occupied and unoccupied 

orbitals respectively, and iε  and jε  are the corresponding orbital energies. In addition, double 

summations in the right side of Equation (3) run over occupied orbitals (Nocc) (i) and unoccupied 

orbitals (j). Because we here assume that the closed-shell many-electrons systems, the factor, 2, 

appears in the right side. We would like to emphasize here that LRF is a function of both the response 

point (r) and the perturbed point (r′), which is critically different from the case of the HEG system. It 

is also noteworthy that the integral of LRF over the space is zero, i.e., ( ) v( )d 0′δρ δ = r r r , because 

the number of electrons is conserved. 
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During the past decades, LRFs of molecules has been computed in relation to the chemical 

reactivities [15–22]. In particular, an important relation is the Berkowitz-Parr relation [17] as given by: 

( ) s( )s( )
s( , )

v( ) S

′δρ ′= − +
′δ

r r r
r r

r
 (4) 

here S, s(r), and s(r,r′) are softness, local softness, and the kernel of the local softness, respectively, all 

of which are essential properties in important applications of conceptual DFT to the hard and soft acid 

and bases (HSAB) principle. This type of theories provides new viewpoints and fruitful discussions 

that link between DFT and chemistry (for instance, see a comprehensive review, reference [16]), but 

we will not step into this fruitful field of softness and their related properties any further. Instead, we 

focus our attention on whether and how the nearsightedness holds for the finite model systems as well 

as molecular systems. Of course, the reactivities of molecules are closely related to the issue of 

nearsightedness of molecules. In particular, the substituent effects such as inductive and resonance 

effects are not localized on the few sites, for which NEM does not holds [19]. Our study is to examine 

NEM of finite systems on the basis of LRF analyses of both model systems and molecular systems. In 

the following, we start from more simple examples using model systems that are well-known in the 

primer of the Quantum Mechanics [23]. Then we proceed to the molecular systems in order to make a 

comparison between model systems and molecular systems on the origins of nearsightedness.  

3. Results and Discussion 

3.1. Model Systems  

3.1.1. An Infinite Square Well Potential System 

First, we consider many electrons systems in one-dimensional (1-D) square well potentials. In this 

case, the Schrödinger Equation is given by: 

2
2

n n n n
e

(r) U(r) (r) E (r)
2M

− ∇ ψ + ψ = ψ
 (5) 

where eM  is mass of electron and U(r)  is the square well potential given by the following:  

0 0 r 1
U(r)

r 0 or 1 r

≤ ≤
= ∞ < <

 (6) 

The electrons are confined in this finite 1-D space. The eigenfunctions and those eigenvalues  

are respectively: 

n (r) 2 sin(n x)ψ = π  (7) 

and: 

2 2 2

n
e

n
E

2M

π= 
 (8) 

We ignore electron interactions. Thus, the linear response function is given by:  



Molecules 2014, 19 13362 

 
Nocc unocce

2 2 2 2n m

16M(r) sin(n r)sin(n r )sin(m r)sin(m r )

v(r ) n m

′ ′δρ π π π π=
′δ π − 


 (9) 

Our focus is on the dependency of (r) v(r )′δρ δ on | r r |′− . Since the factor is essentially irrelevant 

to the dependency, we analyzed: 

Nocc unocc

2 2n m

(r) sin(n r)sin(n r )sin(m r)sin(m r )
~

v(r ) n m

′ ′δρ π π π π
′δ −   (10) 

The calculations of the LRF given by Equation (10) were done with using Mathematica Ver. 9 [24]. 

We determine the upper limit of the summation over the unoccupied orbitals in Equation (10) in  

the following manner: We calculate the integral of the square of each term; and if that value is lower 

than 10−8; i.e.,: 

2
8

2 2

sin(n r)sin(n r )sin(m r)sin(m r )
dr dr 10

n m
−′ ′π π π π ′ ≤ −    (11) 

then the summation is truncated at the value truncatedm M≡ : 

truncatedNocc M

2 2n m

(r) sin(n r)sin(n r )sin(m r)sin(m r )
~

v(r ) n m

′ ′δρ π π π π
′δ −   (12) 

In the following, we employed this Equation to estimate LRF. Figure 1 shows plots of the 

calculated two-dimensional LRFs for various numbers of occupied orbitals (Nocc). LRF is symmetric, 

i.e., (r) v(r ) (r ) v(r)′ ′δρ δ = δρ δ , as is obvious from Equation (10).  

Figure 1. Plots of linear response functions of the infinite square-well potential system for 

various numbers of occupied orbitals (Nocc). (a) Nocc = 1; (b) Nocc = 2; (c) Nocc = 3;  

(d) Nocc = 4; (e) Nocc = 5; (f) Nocc = 10; (g) Nocc = 20; (h) Nocc = 35; (i) Nocc = 50.  
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Figure 1. Cont. 

 

In order to make the meanings of the plots clear, we also plotted (r) v(r )′δρ δ  for several specific 

points, r′, to which the virtual perturbations v(r )′δ  are applied, in Figure 2 (Nocc = 1) and Figure 3 

(Nocc = 50). At the site around the point where the perturbation is applied, the density decreases, while 

it increases at other regions to conserve the number of electrons.  

Figure 2. Plots of dr(r)/dv(r′) where virtual perturbations are applied to specific points (r′) 

indicated by arrows for the Nocc = 1 case. (a) r′ = 0.5; (b) r′ = 0.6; (c) r′ = 0.8.  

 

Figure 3. Plots of dr(r)/dv(r′) where virtual perturbations are applied to specific points (r′) 

indicated by arrows for the Nocc = 50 case. (a) r′ = 0.5; (b) r′ = 0.6; (c) r′ = 0.8.  

A noteworthy point for Figure 2 is that the change of density due to the perturbation spreads over 

whole the region in 1D space for Nocc = 1. On the other hand, we can see from Figure 3 that the 

effects due to perturbations are localized for Nocc = 50. Figures 2 and 3 present remarkable contrast 

between Nocc = 1 and Nocc = 50: we can state that NEM holds for Nocc = 50 case, but not for Nocc = 1 

case. We can see from the plots of Figure 1a–i that, as Nocc increases, δρ(r)/δv(r′) decays rapidly for 

the distance, |r − r′|. This is consistent with the fact that NEM is a result of destructive interference 

among density amplitudes suggested by Prodan and Kohn [4]. We also performed a similar analysis 

(a) (b) (c) 

(a) (b) (c) 
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for harmonic oscillator systems, and presented the results in the supporting Section S1: the conclusion 

is similar to that from results of this square well potential. 

3.1.2. Double-well Potential Systems 

Next, we consider many electrons systems in 1-D double-well potentials which is given by:  

0

0 2 r 1or 1 r 2

U(r) V 1 r 1

r 2 or 2 r

− ≤ ≤ − ≤ ≤
= − ≤ ≤
∞ < − <

 (13) 

Note that there is a barrier in the center of the system. In this case, there are two types of 

eigenfunctions: symmetric and antisymmetric functions.   Here, we examined two values, 25 and 100 

for V0, in order to confirm the effects of the height of the barrier. The solutions are described in 

Section S2 in the Supplementary Materials. A noteworthy point is that, in contrast to the single-well 

case examined in Section 3.1.1, there are pairs of symmetric and antisymmetric states as shown in the 

schematic illustrations of Figure 4a,b. Eigenfunctions of each pair are quasi-degenerate under n
0k

E V± < , 

while the quasi-degeneracy is lifted for n
0k

E V± > :  

Figure 4. Energy level of double-well potential systems. (a) V0 = 25. (b) V0 = 100.  

 
(a) (b) 

The numbers of pairs with n
0k

E V± <  are two and three for V0 = 25 and V0 = 100, respectively, as 

shown in Figure 4a,b. The exact eigenvalues are listed in the Section S2 in the Supplementary 

Materials. Now we performed the LRF analysis in a manner similar to that described in Section 3.1.1. 

We plotted LRFs for various numbers of Nocc for V0 = 25 in Figure 5 and V0 = 100 in Figure 6. For 

the plane of each plot, lines indicate the borders that divide the 1D space into three regions,

2 r(r ) 1′− ≤ ≤ − , 1 r(r ) 1′− ≤ ≤ , and 1 r(r ) 2′≤ ≤ . For V0 = 25, there are four orbitals that have lower 

energies than the height of the barrier, V0. We can see from Figure 5a,b that there are significant 

nonlocal responses for Nocc = 1 and Nocc = 3 (Figure 5a,c), while there is no nonlocal responses for 

Ek0
+ =6.737 =6.738

Energy
level

E-
k0

Ek1
=23.85+ Ek1

=24.45-

Ek2
=29.02+ Ek2

=35.92-
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E =63.08+

Ek2
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ψkn
+ ψkn

-
Ek0
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Energy
level

E-
k0

Ek1
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Ek2
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E =102.1+ Ek2
=107.7-

E =114.7+ Ek2
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ψkn
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Nocc = 2 and Nocc = 4 (Figure 5b,d). For Nocc = 5 shown in Figure 5e, an amplitude appears in the 

central region, 1 r 1− ≤ ≤ , that corresponds to the barrier region, because the electrons having energies 

higher than V0 = 25 exist. An interesting point is that the form of the amplitude within the central 

region, 1 r 1− ≤ ≤ , in Figure 5e is similar to that in Figure 1a. This nonlocality of the central region 

reduces as Nocc increases as shown in Figure 5f–i. The LRF for Nocc = 50 shown in Figure 5i is 

similar to that of the single-well potential shown in Figure 1i, implying that NEM is a result of 

destructive interference among density amplitudes also in this case. A noteworthy point is that NEM 

seems to hold also for small numbers of electrons as shown in Figure 5b,d, which must be caused by a 

different mechanism. Similar results are observed in Figure 6. In particular, “NEM of small numbers 

of electrons” is also observed in Figure 6b–f, because there are three pairs of quasi-degenerate levels as 

shown in Figure 4b.  

Figure 5. Plots of linear response functions of the double-well potential system (V0 = 25) 

for various numbers of occupied orbitals (Nocc). (a) Nocc = 1; (b) Nocc = 2; (c) Nocc = 3; 

(d) Nocc = 4; (e) Nocc = 5; (f) Nocc = 10; (g) Nocc = 20; (h) Nocc = 35; (i) Nocc = 50. 

 

 

Judging from these results, we could conjecture that, if there are fully occupied orbitals that are 

degenerate each other, NEM holds even for a few electrons systems. We will confirm that this 

conjecture holds also for molecular systems in the next section. 
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Figure 6. Plots of linear response functions of the double-well potential system (V0 = 100) 

for various numbers of occupied orbitals (Nocc). (a) Nocc = 1; (b) Nocc = 2; (c) Nocc = 3; 

(d) Nocc = 4; (e) Nocc = 5; (f) Nocc = 6; (g) Nocc = 7; (h) Nocc = 25; (i) Nocc = 50.  

 

 

 

3.2. Molecular Systems 

3.2.1. Molecular Systems’ Counterparts for the Model Systems 

We would like to proceed to molecular systems. First we would like to examine molecular system’s 

counterparts for the model systems described above. For this purpose, we computed LRF of molecular 

systems in terms of linear combination of atomic orbitals (LCAO) with using ab initio Kohn-Sham 

density functional solutions [25,26]: 

occ unocc X i i j
ji j

i j

( ) ( ) ( ) ( )( )
2 d C

v(X)

μ∈ μ
μμ

′ ′ψ ψ ψ χδρ ′=
δ ε − ε   

r r r rr
r  (14) 

here μχ  is a µ-th atomic orbital (AO), and Cjµ is a molecular coefficient of j-th MO and µ-th AO. We 

performed the following calculations of LRF for molecular systems with using an extended version of 

GAMESS [27], in which our module to compute LRF is implemented. The details are described in  

references [25,26]. In the following, B3LYP and 6-31G** are used for exchange-correlation functional 

and basis set respectively [28].  

A first example is hydrogen molecule with fixing the interatomic distance (R) at the equilibrium value 

(0.72 Å). Figure 7a shows the equivalue surface of the LRF, ( ) v(X)δρ δr . Here v(X)δ  is a virtual 
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repulsive perturbation applied to the right-atom. The blue surface indicates ( ) v(X) 0.01δρ δ = −r  and 

the red surface ( ) v(X) 0.01δρ δ = +r . The antisymmetric feature of LRF of H2 can be explained as 

follows: first, we could approximate the LRF of H2 as: 

HOMO HOMO LUMO LUMO

HOMO LUMO

( ) ( ) ( ) ( )( )
2

v( )

′ ′ψ ψ ψ ψδρ ≅
′δ ε − ε

r r r rr

r
 (15) 

because the orbital energy of the next LUMO is 0.569 Hartree, which is higher than that of LUMO 

(0.107Hartree) and that of HOMO (−0.436 Hartree). Thus, the spatial distribution of ( ) v(X)δρ δr  is 

determined with HOMO LUMO( ) ( )ψ ψr r , which is obviously an antisymmetric function, resulting in the 

antisymmetric LRF shown in Figure 7a. This LRF is obviously parallel with that of two electrons in 

the square well potential shown in Figure 2b,c: the density at the left side increases and that at the right 

side decreases. Obviously, NEM does not hold for this case as Prodan and Kohn excluded few-electron 

systems from the target of NEM [4].  

A second example is He2
2+ with the interatomic distance, R = 3.0 Å. Because this interatomic 

distance is too far to form the covalent-bonding between He atoms, we can consider that the vacant 

space between atoms is the energy barrier for the electrons’ movement and that the two regions around 

He nuclei form a double-well-like potential. The LRF of He2
2+ indicated by the equivalue surfaces, 

( ) v(X) 0.1δρ δ = ±r , is shown in Figure 7b, which is, in fact, similar to that of Figures 5a and 6a. A reason 

why the amplitudes of LRF of He2
2+ become larger than those of H2

 is that the HOMO and LUMO are 

degenerate as in the case of double-well potential with Nocc = 1. In fact, the HOMO-LUMO gap of 

He2
2+ with this geometry, 0.0367 Hartree, is one order of magnitude smaller than that of H2, resulting 

in the larger amplitude of LRF. Since the phases of HOMO and LUMO of He2
2+ are similar to those of 

H2, the LRF of He2
2+ is qualitatively similar to that of H2 as obviously observed from Figure 7a,b.  

Next, we calculated LRF of He2 with the interatomic distance, R = 3.0 Å. As shown in Figure 7c, 

the equivalue surfaces show no amplitude even if we set ( ) v(X) 0.001δρ δ = ±r . In fact, the maximum 

value of ( ) v( )δρ δ μr  is ± 0.00001, which is a result of large HOMO-LUMO gap (1.745 Hartree). In 

the Section 3.1.1, this LRF is similar to those shown in Figure 5b,d, and Figure 6b,d,f: NEM of small 

numbers of electrons holds for closed shell systems without any covalent bond.  

Figure 7. Equivalue surfaces of linear response functions for (a) H2 , (b) He 2
2+ , and (c) 

He2. The threshold of isosurfaces are (a) ( ) v(X) 0.01δρ δ = ±r ; (b) ( ) v(X) 0.1δρ δ = ±r , and 

(c) ( ) v(X) 0.001δρ δ = ±r , respectively. 

 

3.2.2. Dissociation of the Hydrogen Molecule: A Possible Mott-insulator Counterpart to NEM  

From the comparison between LRFs of He2 and He2
2+, the energy gap between highest occupied 

and lowest unoccupied orbitals seems to be closely related to NEM of the systems. In fact, the 
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magnitude of the linear response varies along the dissociation profile of covalent bonds, as was 

previously reported [25,26]. We will describe it again here for completeness of our discussion. 

For this purpose, we present LRF of H2 molecule with various interatomic distances that are 

obtained from spin-restricted (R) and spin-unrestricted B3LYP (UB3LYP) solutions. Figure 8 shows 

the magnitude of LRF, which is defined as d ( ) v(X)δρ δ r r  with X being the right-atom as in the 

previous section, for the dissociation profile. We can see from this figure that the magnitude of LRF 

monotonically increases as the interatomic distance (R) increases for RB3LYP solutions. This is 

because the HOMO-LUMO gap in the denominator of the right-hand of Equation (15) decreases as the 

interatomic distance increases. For R < 1.5 Å, UB3LYP solutions are the same as the RB3LYP 

solutions. However, for R ≥ 1.5 Å, the magnitude of LRF decreases for UB3LYP solutions. This can 

be explained as follows. LRF of UB3LYP solutions is a sum of α and β parts: 

, HOMO HOMO LUMO LUMO

HOMO LUMO

( ) ( ) ( ) ( )( )

v( )

σ σ σ σ
α β

σ σσ

′ ′ψ ψ ψ ψδρ ≅
′δ ε − ε r r r rr

r
 (16)

In the manner similar to the RB3LYP case, the HOMO-LUMO gap decreases as R increases. 

However, beyond R = 1.5 Å, the chemical bond breaks and α and β orbitals start to localize to the 

opposite sites in the hydrogen molecule. At the dissociation limit, they reduce to the atomic orbitals of 

opposite sides of the hydrogen molecule as: 

HOMO 1( ) ( )α αψ → χr r , LUMO 2( ) ( )α αψ → χr r   

HOMO 2( ) ( )β βψ → χr r , LUMO 2( ) ( )β βψ → χr r  
(17)

Figure 8. Interatomic distance of H2 versus magnitude of LRF ( d ( ) v(X)δρ δ r r ). 

 

Thus, the numerators of the right side of Equation (16) converge to zero more rapidly than the 

denominator diverges, and consequently the magnitude of LRF reduces to zero as R increases. In order 

to make the situation clear, we plotted equivalue surfaces of LRF of UB3LYP solutions for R = 0.8, 

1.5, 2.2, 2.5, and 3.5 Å in Figure 9. A noteworthy point is that the LRF for R = 3.5Å vanishes for this 

resolution, implying that the nearsightedness holds for the dissociated limit. Obviously, this is because 

occupied orbitals localize as described in Equation (17), which is parallel to the fundamental feature of 

the insulating state that was described by Kohn [5]. As for molecular systems, this could be the origin 

of NEM for molecular magnetic systems such as diradical and polyradical systems [29]. However we 

should note that usual closed-shell systems such as organic and inorganic stable compounds do not 



Molecules 2014, 19 13369 

 

usually exhibit such magnetism. In the next subsection, we shall disscuss an origin of NEM for usual 

molecular systems.  

Figure 9. Equivalue surfaces of LRF of UB3LYP solutions for various interatomic 
distances (Rs). The threshold is similar to that of Figure 7a ( ( ) v(X) 0.01δρ δ = ±r ).  

(a) R = 0.8 Å; (b) R = 1.5 Å; (c) R = 2.2 Å; (d) R = 2.5 Å, and (e) R = 3.5 Å.  

 

3.2.3. Trialanine Peptide System: sp3 Junctions as a Possible Origin of NEM of Molecular Systems 

Finally, we calculated LRF of trialanine peptide system with α-helix structure in order to show 

whether and how the nearsightedness holds for usual molecular systems that are treated with QM/MM 

calculations. The quasi-equilibrium geometry at 300 K is obtained with using the Amber molecular 

dynamics simulations program [30]. The umbrella sampling [31] with WHAM scheme [32] is 

employed. Computational details are described in Section S3 of the Supplementary Material. The 

geometry is illustrated in Figure 10.  

Figure 10. The selected geometry of the a-helix structure of trialanine peptide system.  

 

The isosurfaces of the LRFs to the perturbations that are applied to the atomic sites are shown in 

Figure S2 of the Supplementary Material. We selected a few isosurface plots in Figure 11. Here the 

isosurfaces for ( ) Xv 0.01δρ δ =r  and = −0.01 are described as blue and red surfaces, respectively. 

This threshold is similar to that of H2 shown in Figure 7a. The number described below each isosurface 

corresponds to the atom number shown in Figure 10. From these plots (and more comprehensive plots 

shown in Figure S2), we can see that the density deviations do not propagate over the other side of the 

Cα atom: for instance, if we perturb the oxygen atom of carbonyl group (the atom number is 6), the 
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effects localize within the amide plane. We can see similar behaviors in 5, 6, 7, 14, 15, 16, 28, 37, 38, 42 

in Figure 11.  

In other words, the sp3 junctions block the propagations of the errors of the QM/MM modeling. In 

addition, it was also observed that the LRFs do not propagate via the hydrogen bond of the α helix 

structure between O(6) and H(38). Further, the perturbations on hydrogen atoms of the methyl group 

(14, 42) do not affect the main chain. In other words, NEM holds for this system. However, we should 

note that the mechanism to exhibit NEM is different from those of simple model systems, which are 

shown in Figures 1i, 5i and 6i. In this system, the sp3 junction seems to be the main cause to prevent 

the propagation of LRFs, which is caused by an orbital dependent mechanism rather than by a 

destructive interference among density amplitudes [4].  

In order to more clearly exemplify this “sp3 junction mechanism” for NEM of molecular systems, 

we considered more simple systems: butane and butadiene molecules. We showed the LRFs of butane 

and butadiene in Figure 12a,b, respectively. Here the perturbation is applied to the right terminal C 

atom for both molecules (we listed all other plots for the LRFs, in which the perturbation are applied 

for other atoms, in Figures S3 and S4, respectively, for butane and butadiene). Obviously, the density 

deviations propagate over the whole carbon framework via the π − conjugated channel for the 

butadiene case, while the density deviations are blocked with the sp3 junction at the carbon atom next 

to the terminal carbon atom. This is why the boundaries for QM/MM calculations should be set on 

single bonds, but not on π − bonds [25,26].  

Figure 11. Isosurfaces of linear response functions for the perturbations on atomic sites. 

( ) Xv 0.01δρ δ =r  and 0.01= −  are indicated as blue and red surfaces, respectively. For 

carbons and hydrogens, we indicate the atomic types as follows. H(CT) = H of the terminal 

methyl group. H(Cα) = H in the amide plane. H(Cβ) = H of the methyl residue. Cβ, and C(0) are 

β carbon and carbon of the carbonyl group, respectively. 

5 C(O) 6 O 7N 14 H(Cβ) 15 C(O) 

16 O 28 H(N) 37 N 38 H(N) 42 H(CT) 
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Figure 12. Isosurfaces of linear response functions for the perturbations on the right 

terminal C atoms. ( ) Xv 0.035δρ δ =r  and 0.035= −  are presented as blue and red surfaces, 

respectively; (a) butane and (b) butadiene. 

 

4. Conclusions  

We examined nearsightedness of electronic matter (NEM) of finite model and molecular systems on 

the basis of linear response function (LRF). From the computational results of both the single-and-double 

square-well model systems, we found that, as N increases, LRF, δρ(r)/δv(r′), decays rapidly for the 

distance, |r − r′|, being consistent with the principle suggested by Kohn and Prodan: the cause of NEM 

is destructive interference among electron density amplitudes [4]. For a few electrons systems of 

double-well model systems, we observed that there are two cases: the cases of the half-filled and of 

full-filled in low-lying degenerate levels. The response for the former is delocalized, while that of the 

later is localized even if the systems contain only a few electrons. These behaviors are discussed in 

relation to the molecular systems’ counterparts, H2, He2
2+, and He2 systems. In addition, we also 

present that NEM holds for dissociated H2 because of the localized feature of α and β electrons, which 

is essentially similar to that of insulating states [5]. Finally, we examined LRF of alanine tripeptide 

system as well as butane and butadiene systems, and found that NEM of these organic systems is 

mainly caused by sp3 junctions at Cαs that prevent propagation of amplitudes of LRF. In other words, 

the cause of NEM of these organic systems is critically different from that of NEM for finite and 

infinite homogeneous systems. 

Supplementary Materials  

Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/19/9/13358/s1. 
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