
 

Supplementary Materials 

S1. Linear Response Functions of a Harmonic Oscillator System 

We also computed linear response functions (LRFs) of a harmonic oscillator system, of which the 

potential is given by, 
2U(r) x 2 . However we did not present the results in the text, because these are 

essentially similar to those of the infinite square well potential systems. Still, as there are still differences 

in LRFs between these two systems, we plotted the LRFs of the harmonic oscillator system in Figure S1. 

As we can see from these plots, the spatial region over which LRF distributes becomes larger as Nocc 

increases. This is because the higher energies of electrons become, the broader the region that the 

electrons in exist becomes. However we should also note that, δρ(r)/δv(r′) decays rapidly for the 

distance, |r − r′| as Nocc increases. This conclusion is similar to that from the infinite square well 

potential described in the text.  

Figure S1. LRFs of harmonic oscillator systems for various numbers of occupied orbitals 

(Nocc). (a) Nocc = 1, (b) Nocc = 2, (c) Nocc = 5, (d) Nocc = 10, (e) Nocc = 20, and  

(f) Nocc = 50. 

  

S2. Solutions of Double-well Potential Systems 

We describe how to obtain eigenvalues and analytical forms of eignfunctions.  

For k 0E V , the symmetric function is given by, 
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and the asymmetric functions by 
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here 
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n 0 k
k V E 

   , where 
nk

E   is the eigenvalue of the n-th symmetric (+) or antisymmetric (−) 

eigenfunction,  
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From the continuously differentiable conditions,  

n n n nk cot k k tanh(k )       (S4)  

and  

n n n nk cot(k ) k coth k       (S5)  

we determined the kn
±  values for symmetric (+) and antisymmetric (−) cases. 

For Ek <V0 , the equations are slightly changed.  
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From the continuously differentiable conditions,  

n n n nk cot k k tan(k )       (S4)  

and  

n n n nk cot(k ) k cot k       (S5)  

we determined the nk
 values for symmetric (+) and antisymmetric (−) cases. 

The energies of the lowest-lying 20 states are listed in Tables S1 and S2 for V0 = 25.0 and V0 = 100.0 

respectively. 
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Table S1. Energy levels of lowest-lying 20 symmetric (
nk

E  ) and antisymmetric (
nk

E  ) states 

for V0 = 25.0. 

Principal Quantum 

Number (n) nk
E 

 nk
E 

 

0 6.737136611241714  6.738586329623146 

1 23.85268979853237 24.45828371131453 

2 29.02476750506050 35.92020877590885 

3 44.69052075564606 53.850993048370069 

4 63.07266603809249 74.021976028317598 

5 87.57397077271618 102.40275031296936 

6 117.3299647023210 133.20897457515955 

7 151.3144849061653 171.07637476244874 

8 191.2659933651678 212.21266805659995 

9 235.0781885644307 259.68213865408501 

10 284.9495480989314 310.94680417402724 

11 338.6670847478374 368.11961813658054 

12 398.3885518478544 429.40854140215914 

13 462.0256928221838 496.34429193922553 

14 531.5803957116293 567.60137168748467 

15 605.1353735676119 644.33513174499887 

16 684.5216795438358 725.52808432128687 

17 767.9889987187931, 812.08137221390233 

18 857.2097266149157 903.19047882543600 

19 950.5835962825196 999.57709334509814 

20 1049.642608083979 1100.5896890165435 

Table S2. Energy levels of lowest-lying 20 symmetric (
nk

E  ) and antisymmetric (
nk

E  ) states 

for V0 = 100.0.  

Principal Quantum 

Number (n) nk
E   

nk
E   

0 8.135854269472983 8.13585429619729 

1 32.25340052217796 32.25340186525873 

2 70.95009585920174 70.95063314337901 

3 102.1164019712885 107.72888719571438 

4 114.6772275841585 121.55218645459998 

5 130.5279861984107 143.8814437261952 

6 160.6432406009162 178.1895246847984 

7 194.2447029736519 210.3921198528759 

8 230.2683322281207 253.6459425343700 

9 277.1063977760075 299.2070863045833 

10 322.8249575631072 350.2985196899664 

11 379.5046166941854, 407.6867628400308 

12 436.0974830259074 467.7111367422718 

13 501.9033978777250 535.7686163834129 

14 569.3337305404052 605.3886595419620 

15 644.3223149282313 683.5513370682773 

16 722.3419381761522 763.0618747369907 

17 806.6915148276904 851.0854959366932 

18 895.0797346089407 940.6004134960433 

19 988.9455576312383 1038.388405913195 

20 1087.542080170761 1137.941451482828 



 S4 

 

S3. Geometry of the α-Helix Structure of Trialanine Peptide 

We shall describe briefly how to determine the geometry of αhelix structure of the trialanine 

peptide. We consider the trialanine capped with CH3CO- and CH3NH- for N and C terminals, 

respectively. Choosing the interatomic distance between the O atom of the carobonyl group in a terminal 

amide and the H atom in the other terminal amide plane, , as the reaction coordinate, the umbrella 

sampling calculation was performed. The number of sampling windows is 13, each for which we 

imposed a harmonic restraining potential, . For 13 windows,  ranges from 

1.8 to 13.8 Å with spacing 1.0 Å and k is fixed to be 1.2 kcal·mol
−1

·Å
−2

. The ff12SB and the Velocity 

Verlet method [1] were used for the force field and the integration of molecular dynamics runs, 

respectively. The solvent effect is included using a modified generalized Born (GB) model [2]. The 

dielectric constant is 1.0, which is more lipophilic than the usual constant (4.0). This is for enhancing the 

stability of the -helix structure of trialanine peptide, of which there is only one hydrogen bond of the 

-helix structure, resulting in fragileness of the structure as described below. Temperature was kept 

constant at 300 K, which was controlled with using the Berendsen thermostat [3]. In addition, the 

SHAKE algorithm [4] was employed to fix all bonds involving hydrogen atoms. For each window, we 

first minimize the geometry with the specific constraint, and then followed by 200 ps of heating, 500 ps 

of equilibration, and 1ns of production MD runs. The data were collected for every 100 steps during 

production runs. All MD calculations and the preparations of initial geometries were carried out with the 

Amber12 and Amber12 tools packages, respectively. Using the histogram constructed by the umbrella 

sampling runs, the wham equation is solved using WHAM [5]. We found that the potential mean force 

(PMF) has a local minimum at approximately 2.0 Å and a global minimum at approximately 4.0 Å for 

. Although the details of the PMF profile we obtained are different from those in the previous  

study [6]:(i) The  value of the global minimum we obtained is much smaller than that of the 

previous study and (ii) the energy difference between the -helix structure and the global minimum 

structure is approximately 2.0 kcal/mol, which is much larger than at most 0.5 kcal/mol in [6], our result 

is consistent with the previous report [6] that the -helix structure is not the global minimum, but a local 

minimum. The  value of the local minimum is also similar to the value reported in [6]. The α-helix 

structure we obtained is shown in Figure 8 in the text.  
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S4. Linear Response Functions of Molecules for the Perturbations that are Applied to all Atoms  

Figure S2. Isosurfaces of linear response functions of tripeptide molecule for the 

perturbations on the atomic sites. dr r( ) dvX = 0.01 and = -0.01 are described as blue 

and red surfaces, respectively. For carbons and hydrogens, we indicated the atomic types as 

follows. H(CT) = H of the terminal methyl group. H(C) = H in the amide plane. H(Cβ) = H 

of the methyl residue. C ,Cβ,and C(0) are  carbon, β carbon and carbon of the carbonyl 

group, respectively. 
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Figure S2. Cont. 
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Figure S2. Cont. 
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Figure S3. Isosurfaces of linear response functions of butane molecule for the 

perturbations on the atomic sites.   Xv 0.035  r  and 

  

= -0.035 are described as 

blue and red surfaces, respectively. 
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Figure S3. Cont. 
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Figure S4. Isosurfaces of linear response functions of butadiene molecule for the 

perturbations on the atomic sites.   Xv 0.035  r  and 

  

= -0.035 are described as 

blue and red surfaces, respectively.  
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