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Abstract: The incorporation of lipophilic nutrients, such as astaxanthin (a fat soluble 

carotenoid) in nanodispersion systems can either increase the water solubility, stability and 

bioavailability or widen their applications in aqueous food and pharmaceutical 

formulations. In this research, gelatin and its combinations with sucrose oleate as a small 

molecular emulsifier, sodium caseinate (SC) as a protein and gum Arabic as a polysaccharide 

were used as stabilizer systems in the formation of astaxanthin nanodispersions via an 

emulsification-evaporation process. The results indicated that the addition of SC to gelatin 

in the stabilizer system could increase the chemical stability of astaxanthin nanodispersions 

significantly, while using a mixture of gelatin and sucrose oleate as a stabilizer led to 

production of nanodispersions with the smallest particle size (121.4 ± 8.6 nm). It was also 

shown that a combination of gelatin and gum Arabic could produce optimal astaxanthin 

nanodispersions in terms of physical stability (minimum polydispersity index (PDI) and 

maximum zeta-potential). This study demonstrated that the mixture of surface active 

compounds showed higher emulsifying and stabilizing functionality compared to using 

them individually in the preparation of astaxanthin nanodispersions.  
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1. Introduction 

Astaxanthin is a fat-soluble pigment belonging to the xanthophyll family and is widely used in food 

and pharmaceutical applications due to its strong antioxidant activity. Enormous health benefits, such 

as cardiovascular disease prevention, immune system boosting, bioactivity against Helicobacter pylori, 

and cataract prevention have been associated with astaxanthin consumption [1–3]. However, as for 

other carotenoids, the insolubility of astaxanthin in water results in low bioavailability and seriously 

limits its applications in aqueous-based systems [4]. 

Nanotechnology has provided solutions for improving the water solubility and bioavailability of 

these bioactive lipophilic compounds. Emulsification-evaporation, emulsification-freeze-drying, 

emulsification-diffusion, solvent displacement, solvent evaporation within porous polymers and 

precipitation methods are some of the various methods that have been developed for the preparation of 

water-based functional lipid compound nanodispersions [5–8]. Emulsification-evaporation is one of the 

most favored techniques for preparing carotenoid nanodispersions. In this method, the organic phase, a 

lipophilic active compound dissolved in a water-immiscible solvent, is emulsified into an aqueous 

phase containing an emulsifier by appropriate high-pressure or high-shear emulsifying techniques, 

followed by converting the emulsion into nanodispersion by evaporating the solvent. The precipitation 

or crystallization of the active compound occurs in the O/W emulsion droplets during evaporation 

when the solubility limit is reached. The removal of the solvent from the emulsion droplets decreases 

the particle size to the nano-size range [5]. 

The bioactive-compound particles in nanodispersions are stabilized by an emulsifier or a mixture of 

emulsifiers. The emulsifiers are surface-active molecules that should be adsorbed at the interface of two 

phases, decrease the interfacial tension and prevent the aggregation and re-coagulation of particles [9–11]. 

Proteins are large, complex amphiphilic molecules with combinations of polar and non-polar regions 

that can be used to prepare food emulsions [12]. A major potential advantage of proteins as emulsifiers 

in foods is their ability to protect polyunsaturated lipids from oxidation [13,14]. 

Gelatin is a relatively high molecular weight protein derived from animal collagen [14]. It is 

prepared by hydrolyzing collagen by boiling in the presence of either acid (Type A gelatin) or alkaline 

(Type B gelatin). The relatively high isoelectric point (pI ≥ 7.0) of Type A gelatin means that it should 

be possible to create emulsions/dispersions that have a positive charge over a wider range of pH 

values. Consequently, Type A gelatin may be suitable for creating oil-in-water food emulsions with 

high oxidative stability, as it could repel iron ions from oil droplet surfaces over most of the pH range 

typically found in foods [15]. 

Therefore, the purpose of this study was to prepare astaxanthin nanodispersions using gelatin alone 

and in combination with other surface-active molecules (sucrose oleate, SC and gum Arabic) and to 

evaluate their effects on the formation and characteristics of the resulting nanodispersions. All three 

mentioned surface active compounds have proved to have the best emulsifying properties among other 

small molecular emulsifiers, proteins and polysaccharides, respectively [16]. 
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2. Results and Discussion 

Figure 1 shows the mean particle size of the astaxanthin nanodispersions prepared with different 

emulsifier (stabilizer) systems. The mean nanometer size range (122–209 nm) of the astaxanthin 

particles confirmed the suitability of all emulsifying and stabilizing systems in the preparation of 

astaxanthin nanodispersions through the emulsification-evaporation technique. The use of gelatin alone 

as a one-component stabilizer led to the production of astaxanthin nanodispersions with a mean 

particle size of 148 nm. The astaxanthin nanodispersions prepared with a mixture of gelatin and 

sucrose oleate had the smallest particle size (122 ± 6.1 nm). The interfacial behavior of the different 

emulsifier systems may contribute to the differences in droplet sizes [17]. Sucrose oleate is a small 

molecular emulsifier with much lower surface tension than water, showing low interfacial tension 

when mixed with the organic phase, which favors the formation of small droplets [16–18], therefore, 

the combination of this compound with gelatin produced nanodispersions with smaller particle sizes 

than using gelatin individually or in combination with SC and gum Arabic. In contrast, the large 

molecular structures of SC and gum Arabic would prevent close packing of the points of contact with 

the interface, resulting in relatively high interfacial tension [17,18], and these molecules also have low 

adsorption kinetics [17,19], so their inability to efficiently and quickly stabilize the newly produced 

droplets can lead to re-coalescence of the droplets [17,18]. For the blend of gelatin with SC and gum 

Arabic, nanodispersions with smaller particle sizes were produced from SC (135 ± 1.2 nm) than from 

gum Arabic (209 ± 4.5 nm). This result could be explained by a possible conformation change of SC 

during and after homogenization, as the protein chain might unfold during adsorption, resulting in the 

exposure of more hydrophobic groups, which would facilitate emulsification [17,20]. It seems that the 

possible conformation changes for gelatin were considerably less than for the mixture of gelatin and 

SC. Therefore, it can be concluded that among all stabilizer systems, combination of gelatin and 

sucrose oleate was the best choice in terms of mean particle size of products. 

Figure 1. Mean particle size of freshly prepared astaxanthin nanodispersions stabilized 

with different gelatin based emulsifying systems. 

 
Notes: Values are means ± standard deviations (n = 4); a−d Different letters indicate statistically significant 

differences between treatments (p < 0.05). 
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Among the nanodispersions produced, the result of using a combination of gelatin with gum Arabic 

had the smallest polydispersity index (PDI, Figure 2). The PDI was calculated as the best fit between 

the measured scattered pattern and the pattern predicted by light-scattering theory [21]. The particle 

size distribution of nanodispersions produced by gelatin (0.381 ± 0.074) and mixtures of gelatin and 

gum Arabic (0.275 ± 0.012) were mono-modal, while the size distributions produced by a combination 

of gelatin with SC (0.312 ± 0.025) or sucrose oleate (0.454 ± 0.040) was bimodal. The systems with 

narrow size distributions exhibited high physical stability due to their low affinity for all 

destabilization phenomena, especially Oswald ripening, during the storage [17,22]. Consequently, the 

mixture of gelatin and gum Arabic was considered as the best stabilizer system in terms of the PDI of 

produced nanodispersions (0.275 ± 0.062). The particle size distribution of samples was shown in 

Figure 3. 

Figure 2. Mean PDI of freshly prepared astaxanthin nanodispersions stabilized with 

different gelatin-based emulsifying systems. 

 
Notes: Values are means ± standard deviations (n = 4); a−d Different letters indicate statistically significant 

differences between treatments (p < 0.05). 

Figure 3. Particle size distribution of freshly prepared astaxanthin nanodispersions 

stabilized using different gelatin-based emulsifying systems. 
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In this work, all nanodispersions produced showed a negative surface charge (zeta potential), and 

the mixture of gelatin and gum Arabic produced the nanodispersion with the highest net surface charge 

(15.3 ± 0.56 mV, Figure 4). The adsorption of OH species from the aqueous phase or cationic 

impurities from astaxanthin onto the interface could be responsible for the observed negative surface 

charges [16,17,23]. Therefore, the combination of gelatin and gum Arabic was the most desirable 

stabilizer system from either PDI or net zeta potential value, and consequently, total physical stability 

of the prepared astanxanthin nanodispersion. 

Figure 4. Mean zeta potential of freshly prepared astaxanthin nanodispersions stabilized 

with different gelatin based emulsifying systems. 

 
Notes: Values are means ± standard deviations (n = 4); a−d Different letters indicate statistically significant 

differences between treatments (p < 0.05). 

The chemical stability of functional lipid nanodispersions is one of the most important product 

quality issues. The HPLC results indicated that astaxanthin degradation occurred in all prepared 

nanodispersions due to the high sensitivity of the unsaturated astaxanthin chemical structure to thermal 

and oxidative stresses during the processing steps (Figure 5). The degradation of astaxanthin in 

nanodispersions during processing might be seriously accelerated by the large surface area of the 

prepared astaxanthin particles as a result of size reduction to the nanometer range as well as by the 

possible creation of free radicals during high-pressure homogenization process [8,9,17,24]. In this 

research, the chemical stability of astaxanthin nanodispersions was strongly influenced by the 

emulsifier systems used. The mixture of gelatin with SC showed the least degradation of astaxanthin 

(26.2% ± 3.1%) during the processing steps because of the antioxidant activity of SC due to the 

presence of cysteinyl residues, disulfide bonds and thiol functional groups on its structure, which can 

prevent lipid oxidation by scavenging free radicals [9,18]. Astaxanthin was less stable in 

nanodispersions prepared using the mixture of gelatin with either sucrose oleate (52.3% ± 5.22%) or 

gum Arabic (57.1% ± 2.18%). Thus, for better protection of astaxanthin in nanodispersed form, a 

mixture of gelatin and SC as stabilizer system was a good option. The HPLC chromatogram of 

extracted astaxanthin from the gelatin/SC stabilized nanodispersions is shown in Figure 6. 
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Figure 5. Mean astaxanthin loss (% w/w) of freshly prepared astaxanthin nanodispersions 

stabilized with different gelatin based emulsifying systems. 

 
Notes: Values are means ± standard deviations (n = 4); a−c Different letters indicate statistically significant 

differences between treatments (p < 0.05). 

Figure 6. Representative HPLC chromatogram of extracted astaxanthin from the 

gelatin/SC stabilized nanodispersion. 

 

3. Experimental Section 

3.1. Materials 

Astaxanthin (>90%) was purchased from Kailu Ever Brilliance Biotechnology Co., Ltd. (Beijing, 

China). Sucrose oleate (OWA-1570) were donated by Mitsubishi Food Co. (Tokyo, Japan). Sodium 

caseinate (SC) and gum Arabic were provided by Merck Co. (Darmstadt, Germany). Gelatin type A 

(polyoxythylene sorbitan monolaurate) were bought from Sigma Aldrich (Steinheim, Germany). 
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Sodium azide, analytical and HPLC-grade dichloromethane, methanol and acetonitrile were provided 

by Fisher scientific (Leicestershire, UK). All chemicals were used without future purification. 

3.2. Preparation of Astaxanthin Nanodispersions 

Gelatin or a mixture of gelatin with sucrose oleate/SC/gum Arabic (1:1 w/w) were dissolved in 

deionized water (at 20 °C), containing 0.02 wt % sodium azide at a concentration of 1% w/w and 

thoroughly mixed by magnetic stirring for 4 h. The organic phase, consisting of dissolved astaxanthin 

in dichloromethane (1% w/w), was added to the aqueous phase, and coarse emulsions were formed by 

two-phase homogenization using a conventional homogenizer (Silverson, Buckinghamshire, UK) at 

5000 rpm for 5 min. By placing the system in a high-pressure homogenizer (APV, Crawley, UK)  

at 50 MPa twice, fine emulsions (nanoemulsion) were produced. The organic to aqueous phase ratio 

was set at 1:9. The sample volume of 300 mL was used for each sample.The dichloromethane was  

then removed from the system by rotary evaporation (Eyela NE-1001, Tokyo Rikakikai Co. Ltd., 

Tokyo, Japan) at 250 Pa and 47 °C and 100 rpm to convert the astaxanthin nanoemulsions into 

astaxanthin nanodispersions. 

3.3. Analytical Methods 

Measurement of the mean particle size, PDI, zeta potential, mobility and conductivity of produced 

astaxanthin particles were conducted by using Zetasizer Nano ZS (Malvern Instruments Ltd., 

Worcestershire, UK). The absorbance of the nanodispersion particles was set at 0.3. To avoid multiple 

scattering effects, the dispersions were diluted with deionized water prior to analysis and then directly 

placed into the module immediately after preparation. Measurements were performed at 25 °C in 

triplicate [24]. 

The measurement of astaxanthin concentration in prepared astaxanthin nanodispersions was 

performed using an Agilent liquid chromatography system (Agilent Technologies 1200 Series, 

Waldbroon, Germany), equipped with a Diode Array Detector G13150, a Nova-Pak® C18 (3.9 × 300 mm) 

Waters HPLC column and an isocratic mobile phase consisting of 85% methanol, 5% dichloromethane, 

5% acetonitrile and 5% water. The absorption spectra were in the range of 250–700 nm intervals, and 

detection was performed at 480 nm. The calibration of peak area versus astaxanthin concentration was 

linear in the measurement concentrations [25]. 

3.4. Statistical Analysis 

The physicochemical characteristics of astaxanthin nanodispersions were subjected to one-way 

analysis of variance using the Minitab v. 14 statistical package (Minitab Inc., University Park, PA, 

USA). All experiments and measurements were performed in duplicate and Tukey’s multiple range 

tests were used to determine significant differences (p < 0.05) between the responses. 

4. Conclusions 

Gelatin itself could successfully produce colloidal astaxanthin particles by the  

emulsification-evaporation method at nanometer sizes. The physicochemical characteristics of the 
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produced nanodispersions was less desirable compared to, for instance, sucrose oleate- or SC-stabilized 

nanodispersions, which could be explained by insufficient coverage of all particle surfaces created 

within the homogenizer, relatively low surface activity, the slow adsorption kinetics of the gelatin 

within the homogenizer and its disability to completely cover the freshly formed droplet surfaces and 

prevent their re-coalescence [17]. However, the combination of gelatin with other active compound 

molecules improved the physicochemical characteristics of obtained nanodispersions. Generally, 

suitable combinations of emulsifiers can enhance desired emulsion/dispersion properties compared to 

using them individually, due to the formation of intermolecular complexes at interfaces [17,26]. 
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