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Abstract: Neuroblastoma is an aggressive pediatric malignancy with significant 

chemotherapeutic resistance. In order to obtain new compounds active on neuroblastoma 

cell lines, we investigated the reactivity of carbanion formed via TDAE in quinoxaline 

series. The new synthesized compounds were tested for their anti-proliferative activity on 

two neuroblastoma cell lines, and seven oxirane derivatives obtained interesting activities. 
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1. Introduction  

Neuroblastoma is a neuroendocrine tumor that remains a major therapeutic challenge in pediatric 

oncology. Treating it requires aggressive multimodal therapy. As response rates to chemotherapy are 

low, surgery remains the only effective treatment. However, since many tumors have metastasized at 

the time of diagnosis, long-term survival rates for children with advanced disease are poor, and 
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undesirable side effects frequently occur. Accordingly, there is a substantial need for new 

therapeutic options. 

The quinoxaline derivatives show very interesting biological properties (anti-viral [1], anti-cancer [2], 

anti-leishmanial [3]) and are far from having revealed their full potential in medicinal chemistry [4]. 

Many drug candidates bearing quinoxaline core structures are in clinical trials in anti-viral [1],  

anti-cancer [2], anti-bacterial and CNS (central nervous system) therapeutic areas. Among them, 

XK469 and chloroquinoxaline sulfonamide (CQS) are known as anti-neoplastic quinoxaline 

topoisomerase II inhibitors [5–7] (see Scheme 1). XK469, or (±)-2-[4-(7-chloro-2-quinoxaliny)oxy] 

phenoxy propionic acid, is an analog of the herbicide, Assure®, synthesized by DuPont Company, 

which possesses anti-tumor activity. 

Scheme 1. Structures of XK469 and chloroquinoxaline sulfonamide (CQS). 

 

The quinoxaline anti-tumor agent, XK469, inhibited neuroblastoma tumor growth in a 14-year-old 

with relapsed neuroblastoma, who experienced disease stabilization for 14 months [8]. 

Tetrakis(dimethylamino)ethylene (TDAE) is a reducing agent, which reacts with halogenated 

derivatives to generate, under mild conditions, an anion via two sequential transfers of one electron [9–12]. 

We have shown that, from o- or p-nitrobenzyl chloride, TDAE can generate a nitrobenzyl carbanion, 

which is able to react with various electrophiles, such as aromatic aldehydes [13], ketones,  

α-keto-esters, α-ketolactams and diethyl ketomalonate [14–16]. 

In continuation of our research program centered on the design and synthesis of novel bioactive 

molecules [17–21], we decided to explore the anti-proliferative potential of quinoxaline compounds. 

2. Results and Discussion 

2.1. Chemistry 

In the present study, 13 quinoxalines were evaluated against human neuroblastoma (SK-N-SH and 

IMR-32—SK-N-SH and IMR-32 are not acronyms but the appellations of cell lines) cell lines, 12 of 

which were prepared in our lab (clinical compound XK469 was purchased). Apart from molecules 8, 

15, 16, all synthesized molecules bear an oxirane moiety. Compounds synthesized after molecules 3b 

and 4a were observed to have an interesting activity against SK-N-SH and IMR-32 cell lines. Thus, a 

structural homogeneous quinoxaline series was obtained, presenting a structural analogy with XK469.  

The 2-(dibromomethyl)quinoxaline 2 was synthesized in one step from 2-methylquinoxaline 1, as 

previously described (Scheme 2) [22]. 
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Scheme 2. Synthesis of 2-(dibromomethyl)quinoxaline 2. 

 

Oxiranes 3–4a–b resulted from the reaction of 2-(dibromomethyl)quinoxaline with aromatic 

aldehydes in the presence of TDAE (Scheme 3) [22]. 

Scheme 3. Reactivity of aromatic aldehydes in the presence of TDAE. 

 

Our next step was to test whether the nature of the aldehyde changed the biological effect on 

neuroblastoma cell lines. Thus, we investigated the reaction of 2-(dibromomethyl)quinoxaline 2 with 

three equivalents of aldehydes 5–6 in the presence of TDAE at −20 °C for 1 h, followed by 2 h at room 

temperature. Only trans-oxirane 7 and unexpected 1-(quinoxalin-2-ylmethyl)-1H-pyrrole-2-carbaldehyde 

8 were isolated (Scheme 4).  

Scheme 4. Reactivity of heterocyclic aldehydes in the presence of TDAE. 

 

The α-bromo carbanion formed by the action of the TDAE could react as a base with the  

1H-pyrrole-2-carbaldehyde, leading to the corresponding pyrrolic anion and to the  

2-bromomethyl-quinoxaline. The formation of Compound 8 could thus result from a nucleophilic 

substitution between these two species (Scheme 5). 

To study the effect of steric hindrance, we investigated the reaction of  

2-(dibromomethyl)quinoxaline 2 with two isatin derivatives, 9–10, in the presence of TDAE under 
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classical TDAE conditions. These reactions led to a mixture of like/unlike-isomers of corresponding 

oxiranes 9–10a–b in good yields, as shown in Scheme 6.  

Scheme 5. Reactivity of 1H-pyrrole-2-carbaldehyde in the presence of TDAE. 

 

Scheme 6. Reactivity of various isatin derivatives in the presence of TDAE. 

 

Diastereoisomers were separable, and their configuration was identified by NMR-analysis from the 

γ-left effect, as previously described [23]. Finally, the impact of the oxirane group on biological 

activity was studied. Thus, the reaction observed with Compound 6 was extended to other pyrrole 

derivatives (Scheme 7). 

Scheme 7. Reactivity of various carbonyl pyrrole in the presence of TDAE. 
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2.2. In Vitro Anti-Proliferative Activity of Quinoxalines Derivatives against Cancer Cell Lines 

Quinoxalines 3a–b, 4a–b, 7, 8, 9a–b, 10a–b, 15, 16 and clinical compound XK469 were evaluated 

for their in vitro anti-proliferative activity on a panel of SK-N-SH and IMR-32 cancer cell lines, using 

the conventional microculture tetrazolium reduction assay [24–26]. 

Results of these evaluations are summarized in Table 1. 

Table 1. Anti-proliferative activity of quinoxaline derivatives. 

N° Structure 
SK-N-SH Cell Line IMR-32 Cell Line

IC50 ± SD (μM) IC50 ± SD (μM) 

XK469 4.6 ± 1.0 13.0 ± 2.9 

3a 
cis-isomer 

93.0 ± 10.5 64.5 ± 9.7 

3b 
trans-isomer 

16.0 ± 1.2 14.7 ± 1.4 

4a 
cis-isomer 

32.5 ± 1.9 25.9 ± 2.4 

4b 
trans-isomer 

> 100 45.9 ± 7.2 

7 
trans-isomer 

3.9 ± 0.2 5.0 ± 0.9 

8 >100 >100 

9a 
like-isomer 

25.0 ± 3.1 15.4 ± 4.8 

9b 
unlike-isomer 

27.2 ± 6.4 14.0 ± 2.8 
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Table 1. Cont. 

N° Structure 
SK-N-SH Cell Line IMR-32 Cell Line

IC50 ± SD (μM) IC50 ± SD (μM) 

10a 
like-isomer 

21.8 ± 1.5 7.3 ±1.6 

10b 
unlike-isomer 

18.9 ± 4.1 9.7 ± 2.7 

15 >100 >100 

16 >100 >100 

The IC50 (concentration that inhibits 50% of cell proliferation) values show clearly that the presence 

of an oxirane nucleus is necessary to obtain anti-proliferative activity on the two tested neuroblastoma 

cell lines. The reaction between the 2-(dibromomethyl)quinoxaline 2 and the pyrrole derivatives led to 

three compounds, 8, 15, 16, for which no activity was observed on either of the cell lines at the 

maximal tested dose. All oxirane derivatives displayed substantial anti-proliferative activity towards 

neuroblastoma cell lines. These results confirm that the oxirane group played a key role in the  

anti-proliferative activity [27–30].  

Compound 7 demonstrated a better activity than XK469, used as the reference drug, on SK-N-SH 

cells (IC50 = 3.9 ± 0.2 μM vs. 4.6 ± 1.0 μM, respectively) and IMR-32 cells (IC50 = 5.0 ± 0.9 μM vs. 

13.0 ± 2.9 μM, respectively). 

This first study on only four couples of stereoisomers does not allow us to end on the importance of 

the stereochemistry on the activity. The synthesis and the evaluation of new couples of stereoisomers 

with an oxirane group can allow one to appreciate the importance of the stereochemistry. 

This initial structure activity relationship (SAR) study will be pursued. The nature of the heterocyclic 

aldehyde and the use of azaheterocycles other than quinoxaline are currently under investigation.  
  



Molecules 2014, 19 14993 

 

 

3. Experimental Section  

3.1. General 

Melting points were determined on a Büchi B-540 and are uncorrected. Elemental analyses were 

carried out on an Interscience Flash EA 1112 series (Thermo Finnigan, San Jose, CA, USA) elemental 

analyzer at the Spectropole, Faculté des Sciences, site de Saint-Jérôme. Both 1H- and 13C-NMR spectra 

were determined on a Bruker Avance 200 spectrometer (operating at 200 MHz for 1H and 50 MHz  

for 13C). 1H and 13C-NMR shifts (δ) were reported in parts per million (ppm) with respect to CDCl3  

7.26 ppm for 1H and 77.0 ppm for 13C and DMSO-d6 2.50 for 1H and 39.7 ppm for 13C. Multiplicities 

were represented by s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet). The adsorbent 

used for column chromatography was: silica gel 60 (Merck, Darmstadt, Germany, 230–400 mesh). 

Thin-layer chromatography was performed with Merck 60F-254 silica gel (0.25 mm layer thickness) in 

an appropriate solvent. 

The general procedure for the reaction of 2-(dibromomethyl)-quinoxaline 2 with various aldehydes 

3–6 or isatin and pyrrolic derivatives 9–13, using TDAE:  

To a two-necked flask equipped with a silica-gel drying tube and a nitrogen inlet was added, under 

nitrogen at –20 °C, 10 mL of anhydrous DMF solution of 2-(dibromomethyl)-quinoxaline 2 (0.45 g, 

1.5 mmol) and various aldehydes 3–6 or isatin and pyrrolic derivatives 9–13, (4.5 mmol, 3 equivalents). 

The solution was stirred and maintained at this temperature for 30 min, and then the TDAE (0.3 g,  

1.5 mmol) was added dropwise (via a syringe). A red color immediately developed with the formation 

of a white fine precipitate. The solution was vigorously stirred at −20 °C for 1 h and then warmed up 

to room temperature for 2 h. After this time, TLC analysis (dichloromethane) clearly showed that 

Compound 2 was totally consumed. The orange-red turbid solution was filtered and hydrolyzed with 

80 mL of H2O. The aqueous solution was extracted with chloroform (3 × 40 mL), and the combined 

organic layers were washed with H2O (3 × 40 mL) and dried over MgSO4. Evaporation of the solvent left 

an orange solid as a crude product. Purification by silica gel chromatography (5/5 dichloromethane/ethyl 

acetate) and recrystallization from ethanol gave the corresponding derivatives.  

4-(3-quinolanin-2-yl-oxiranyl)benzonitrile 4a, pink solid, m.p. 161.5 °C; 1H-NMR (CDCl3): δ 4.24 (d, 

J = 4.3 Hz, 1H, CH); 4.33 (d, J = 4.3 Hz, 1H, CH); 7.52 (d, J = 8.6 Hz, 2H, 2×CH); 7.72 (d, J = 8.6 Hz, 

2H, 2×CH); 7.84 (m, 2H, 2×CH); 8.14 (m, 2H, 2×CH); 8.88 (s, 1H, CH); 13C-NMR (CDCl3): δ 59.2 

(2×CH), 112.2 (C), 118.2 (C); 127.4 (2×CH); 128.8 (CH), 129.4 (CH); 130.2 (CH); 130.6 (CH); 132.0 

(2×CH); 138.5 (C); 141.5 (C); 142.0 (CH); 142.8 (C); 151.0 (C). Elemental analysis calculated: C, 

74.71; H, 4.06; N, 15.38; elemental analysis found: C, 74.47; H, 4.22; N, 15.05. 

4-(3-quinolanin-2-yl-oxiranyl)benzonitrile 4b, pink solid, m.p. 178.5 °C 1H-NMR (CDCl3): δ 4.61 (d,  

J = 1.9 Hz, 1H, CH); 4.71 (d, J = 1.9 Hz, 1H, CH); 7.48 (m, 2H, 2×CH); 7.74 (m, 4H, 4×CH); 8.01 (m, 

2H, 2×CH); 8.66 (s, 1H, CH); 13C-NMR (CDCl3): δ 60.8 (CH); 62.1 (CH); 112.7 (C); 118.4 (C); 126.4 

(2×CH); 129.2 (CH); 129.5 (CH); 130.4 (CH); 130.8 (CH); 132.6 (2×CH); 141.3 (C); 141.9 (C); 142.1 

(CH); 142.7 (C); 150.3 (C). Elemental analysis calculated: C, 74.71; H, 4.06; N, 15.38; elemental 

analysis found: C, 74.29; H, 4.23; N, 15.07. 
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2-[3-(5-Nitrofuran-2-yl)oxiran-2-yl]quinoxaline 7, maroon solid, m.p. 171 °C 1H-NMR (CDCl3):  

δ 4.44 (d, J = 1.9 Hz, 1H, CH); 4.74 (d, J = 1.9 Hz, 1H, CH); 6.77 (d, J = 3.7 Hz, 1H, CH); 7.34 (d,  

J = 3.7 Hz, 1H, CH); 7.81 (m, 2H, 2×CH); 8.12 (m, 2H, 2×CH); 8.89 (s, 1H, CH); 13C-NMR (CDCl3): 

δ 54.0 (CH); 59.4 (CH); 112.2 (CH); 112.5 (CH); 129.2 (CH); 129.5 (CH); 130.6 (CH); 130.9 (CH); 

141.9 (CH); 142.4 (C); 142.8 (C);149.1 (C); 152.5 (C). Elemental analysis calculated: C, 59.37; H, 

3.20; N, 14.84; elemental analysis found: C, 59.75; H, 3.23; N, 14.52. 

1-(quinoxalin-2-ylmethyl)-1H-pyrrole-2-carbaldehyde 8, black solid, m.p. 275 °C 1H-NMR (DMSO): 

δ 5.88 (s, 2H, CH2); 6.32 (m, 1H, CH); 7.01 (m, 1H, CH); 7.18 (s, 1H, CH); 7.72 (m, 2H, 2×CH); 8.04 

(m, 2H, 2×CH); 8.63 (s, 1H, CH); 9.55 (s, 1H, CH); 13C-NMR (DMSO): δ 54.1 (CH2); 110.7 (CH); 

125.1 (CH); 129.1 (CH); 129.2 (CH); 130.0 (C); 130.2 (CH); 131.4 (C); 132.0 (CH); 141.7 (C); 142.0 

(C); 144.0 (CH); 151.8 (C); 179.7 (CH=O). Elemental analysis calculated: C, 70.87; H, 4.67; N, 17.71; 

elemental analysis found: C, 70.90; H, 4.81; N, 17.71. 

3'-(quinoxalin-2-yl)spiro[indoline-3,2'-oxiran]-2-on 9a, orange powder, m.p. 197 °C 1H-NMR 

(DMSO): δ 5.32 (s, 1H); 6.94 (m, 1H); 7.10 (m, 1H); 7.50 (m, 3H) 7.84 (m, 2H); 8.00 (m, 1H); 9.15 (s, 

1H); 10.82 (s, 1H); 13C-NMR (DMSO): δ 62.21 (C); 64.53 (CH); 112.67 (CH); 122.62 (C); 123.24 

(CH); 125.17 (CH); 129.04 (CH); 129.50 (CH); 130.88 (CH); 130.98 (CH); 138.85 (CH); 141.09 (C); 

141.73 (C); 143.80 (C); 144.72 (CH); 151.19 (C); 171.07 (C=O). Elemental analysis calculated: C, 

70.58; H, 3.83; N, 14.52; elemental analysis found: C, 70.58; H, 4.01; N, 14.24. 

3'-(quinoxalin-2-yl)spiro[indoline-3,2'-oxiran]-2-one 9b, orange powder, m.p. 212 °C 1H-NMR 

(DMSO): δ 5.00 (s, 1H); 6.64 (m, 2H); 6.92 (m, 1H); 7.21 (m, 1H); 7.93 (m, 2H); 8.14 (m, 2H); 9.19 

(s, 1H); 11.00 (s, 1H); 13C-NMR (DMSO): δ 62.65 (C); 63.75 (CH); 111.38 (CH); 120.53 (C); 122.25 

(CH); 123.98 (CH); 129.39 (CH); 129.63 (CH); 131.25 (CH) 131.28 (CH); 131.55 (CH); 141.28 (C); 

142.02 (C); 144.52 (C); 145.19 (CH); 149.32 (C); 171.91 (C=O). Elemental analysis calculated: C, 

70.58; H, 3.83; N, 14.52; elemental analysis found: C, 69.94; H, 3.99; N, 14.12. 

5-nitro-3'-(quinoxalin-2-yl)spiro[indoline-3,2'-oxiran]-2-one 10a, beige powder, m.p. 250 °C 1H-NMR 

(DMSO): δ 5.63 (s, 1H); 7.13 (m, 1H); 7.15 (m, 2H); 8.01 (m, 1H); 8.11 (m, 1H); 8.35 (m, 2H); 9.16 

(s, 1H); 11.50 (s, 1H); 13C-NMR (DMSO): δ 61.61 (C); 64.66 (CH); 111.52 (CH); 119.63 (CH); 

123.87 (C); 128.19 (C); 129.11 (CH); 129.52 (CH); 131.10 (CH); 141.13 (C); 141.82 (C); 143.17 (C); 

144.64 (CH); 148.75 (CH); 149.92 (CH); 171.53 (C=O). Elemental analysis calculated: C, 61.08; H, 

3.02; N, 16.76; elemental analysis found: C, 61.68; H, 3.06; N, 16.76. 

5-nitro-3'-(quinoxalin-2-yl)spiro[indoline-3,2'-oxiran]-2-one 10b, beige powder, m.p. 230 °C 1H-NMR 

(DMSO): δ 5.13 (s, 1H); 7.08 (m, 1H); 7.95 (m, 2H); 8.20 (m, 4H); 9.22 (s, 1H); 11.63 (s, 1H);  
13C-NMR (DMSO): δ 61.92 (C); 64.12 (CH); 111.21 (CH); 120.88 (CH); 121.95 (C); 127.82 (C); 

129.21 (CH); 129.67 (CH); 131.37 (CH); 140.99 (C); 142.20 (C); 142.47 (C); 146.77 (CH); 148.98 

(CH); 150.79 (CH); 156.47 (C-NO2); 172.58 (C=O). Elemental analysis calculated: C, 61.08; H, 3.02; 

N, 16.76; elemental analysis found: C, 61.08; H, 3.54; N, 16.54. 
  



Molecules 2014, 19 14995 

 

 

1-(quinoxalin-2-ylmethyl)-1H-indole-3-carbaldehyde 15, black powder, m.p. 116 °C 1H-NMR 

(DMSO): δ 5.95 (s, 2H); 7.24 (s, 2H); 7.60 (m, 1H); 7.82 (m, 2H); 7.94 (m, 2H); 8.10 (m, 1H); 8.54 (s, 

1H); 8.97 (s, 1H); 9.97 (s, 1H); 13C-NMR (DMSO): δ 50.45 (CH2); 111.71 (CH); 118.20 (C); 121.61 

(CH); 123.15 (CH); 124.26 (CH); 125.24 (C); 129.31 (CH) 129.43 (CH); 130.79 (CH); 131.19 (CH); 

137.77 (C); 141.52 (C); 141.81 (C); 142.15 (CH); 145.25 (CH); 152.21 (C); 185.41 (C=O). Elemental 

analysis calculated: C, 75.25; H, 4.56; N, 14.63; elemental analysis found: C, 74.98; H, 4.68; N, 14.62. 

1-(1-(quinoxalin-2-ylmethyl)-1H-pyrrol-2-yl)ethanone 16, black powder, m.p. 72 °C 1H-NMR 

(DMSO): δ 2.28 (s, 3H); 5.83 (s, 2H); 7.20 (m, 1H); 7.41 (m, 1H); 7.81 (m, 2H); 7.95 (m, 1H); 8.04 

(m, 1H); 8.50 (s, 1H); 13C-NMR (DMSO): δ 27.27 (CH3); 52.79 (CH2); 109.11 (CH); 121.43 (CH); 

129.13 (CH); 129.35 (CH); 130.24 (CH); 130.27 (C); 130.91 (CH) ; 132.79 (CH); 141.45 (C); 141.48 

(C); 144.57 (CH); 154.12 (C); 188.22 (C=O). Elemental analysis calculated: C, 71.70; H, 5.21; N, 

16.72; elemental analysis found: C, 71.14; H, 5.17; N, 16.58. 

3.2. In Vitro Biological Evaluation 

Drugs: Stock solutions of quinoxaline were prepared in dimethylsulfoxide (Sigma). Stock solutions 

were aliquoted and stored at −20 °C. For culture and experiments in living cells, drugs were freshly 

diluted at appropriate concentrations in culture medium.  

Cell culture: Neuroblastoma cancer cells, namely SK-N-SH and IMR-32 cells, were routinely 

maintained in standard RPMI 1640 (L-glutamine +) culture medium (Invitrogen) supplemented with 

10% fetal bovine serum (Lonza) and 1% penicillin and streptomycin (Invitrogen). All cells were 

routinely maintained at 37 °C and 5% CO2. 

Growth experiments: Exponentially growing cells (37,500 cells/cm²) were seeded in 96-well 

plates for 24 h for SK-N-SH cells and for 72 h for IMR-32 cells and then incubated with the drugs 

for 72 h. The number of viable cells was estimated using the colorimetric 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide (MTT; Sigma) assay according to our previous work [17]. After drug 

treatment, the medium was replaced by fresh medium containing MTT (0.5 mg/mL), and cells were 

incubated at 37 °C for 2 h. Then, the MTT solution was removed, and DMSO was used to dilute the 

formazan crystals formed in the surviving cells. Finally, absorbance was measured at 600 nm with a 

Multiskan (Ascent) plate reader. Inhibiting concentrations were graphically determined. IC50 is defined 

as the concentration that inhibits 50% of cell proliferation. At least three independent experiments  

(in triplicate) were performed, and data were expressed as the mean ± SD. 

4. Conclusion 

Having previously demonstrated how the TDAE strategy can be used to obtain a series of highly 

functionalized quinoxalinic oxiranes, we present herein an original reactivity initiated by TDAE with 

compounds possessing labile hydrogen. Biological evaluation of these synthesized compounds 

revealed promising anti-proliferative activity toward SK-N-SH and IMR-32 cell lines for most of the 

compounds bearing an oxirane group. Biological results showed that Compound 7 is more active than 

XK-469, a quinoxaline derivative involved in clinical trials, confirming that the oxirane group plays a 

key role in the anti-proliferative activity.  



Molecules 2014, 19 14996 

 

 

Further investigation on SAR and the mechanism of the anti-proliferative activity of these 

compounds will be carried out in next works. Moreover, due to promising results observed with 

Compound 7, it will be tested as potential anti-tumor drug on other cell lines. 
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