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Abstract

:

The mitochondrial cytochrome P450 enzymes inhibitor steroid 11β-hydroxylase (CYP11B1) can decrease the production of cortisol. Therefore, these inhibitors have an effect in the treatment of Cushing’s syndrome. A pharmacophore model generated by Genetic Algorithm with Linear Assignment for Hypermolecular Alignment of Datasets (GALAHAD) was used to align the compounds and perform comparative molecular field analysis (CoMFA) with Q2 = 0.658, R2 = 0.959. The pharmacophore model contained six hydrophobic regions and one acceptor atom, and electropositive and bulky substituents would be tolerated at the A and B sites, respectively. A three-dimensional quantitative structure-activity relationship (3D-QSAR) study based on the alignment with the atom root mean square (RMS) was applied using comparative molecular field analysis (CoMFA) with Q2 = 0.666, R2 = 0.978, and comparative molecular similarity indices analysis (CoMSIA) with Q2 = 0.721, R2 = 0.972. These results proved that all the models have good predictability of the bioactivities of inhibitors. Furthermore, the QSAR models indicated that a hydrogen bond acceptor substituent would be disfavored at the A and B groups, while hydrophobic groups would be favored at the B site. The three-dimensional (3D) model of the CYP11B1 was generated based on the crystal structure of the CYP11B2 (PDB code 4DVQ). In order to probe the ligand-binding modes, Surflex-dock was employed to dock CYP11B1 inhibitory compounds into the active site of the receptor. The docking result showed that the imidazolidine ring of CYP11B1 inhibitors form H bonds with the amino group of residue Arg155 and Arg519, which suggested that an electronegative substituent at these positions could enhance the activities of compounds. All the models generated by GALAHAD QSAR and Docking methods provide guidance about how to design novel and potential drugs for Cushing’s syndrome treatment.
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1. Introduction


Cortisol is a principal glucocorticoid [1] that is not only used in the treatment of inflammation, allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions, but also exhibits many physiological functions in the regulation of metabolism of life substances, blood pressure and cardiovascular function [2]. Biosynthesis of cortisol take place in the adrenal cortex whose final step (conversion from 11-deoxycortisol) is catalyzed by the mitochondrial cytochrome P450 enzyme steroid 11β-hydroxylase (CYP11B1) [1,3]. (Please reorder references numbers, you jumped 2 and 3 before 4)



The secretion of cortisol is precisely controlled by adrenocorticotropic hormone (ACTH) [2,4,5] within the negative feedback cycle of hypothalamic-pituitary-adrenal axis [1]. However, pathological changes in adrenals and the upstream regulating switches can cause an overproduction of cortisol, which is known as Cushing’s syndrome. Cushing’s syndrome patients mainly show a “moon face”, sanguine temperament appearance, obesity, acne, purple lines, high blood pressure, secondary diabetes and osteoporosis, etc. It’s a hormonal disorder caused by prolonged exposure to high levels of circulating glucocorticoids such as cortisol [6,7].



Normally, the surgical removal of adrenal or pituitary tumors is used for the treatment of hypercortisolism [8]. However, as mentioned above, CYP11B1 can promote the synthesis of cortisol. Therefore, inhibition of CYP11B1 as the pharmacological approach to block cortisol biosynthesis represents a treatment for Cushing’s syndrome [9]. Inhibitors of cortisol biosynthesis, such as ketoconazole, etomidate, and metyrapone have been used in the clinic [4], however, all of them show severe side effects due to the fact that they are unselective. Metyrapone is the only drug reported to be a relatively selective CYP11B1 inhibitor.



In recent years, a series of mitochondrial cytochrome P450 (CYP) superfamily receptors [10], such as CYP1A2, CYP17, CYP19, CYP11B2 [7,11,12], were used to analysis the combination of ligand compounds in different molecular docking studies [13]. Few studies published so far have used the pharmacophore modeling or 3D-QSAR approaches for modeling ligand interactions with the CYP11B1 receptor [14]. In addition, a three-dimensional model of CYP11B1 has not been published yet. Therefore, in the present study we aimed to build and validate homology models of CYP11B1 [15] and then run a docking procedure which indicates the active groups and atoms of inhibitory compounds. In order to analyse the molecular shape of CYP11B1 inhibitors [14], a series of compounds with good inhibitory activities synthesized by Hartmann [15] were collected to establish 3D-QSAR models using CoMFA and CoMSIA. The combination of the pharmacophore model [16] GALAHAD and CoMFA methods also helped establish the structure-activity relationship (SAR) of CYP11B1 inhibitors [17].




2. Results and Discussion


2.1. GALAHAD Modeling Results


Once GALAHAD modeling based on the training set compounds was completed (Figure 1a six hydrophobic regions and one acceptor atom (Figure 1b).
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Figure 1. The results generated using GALAHAD modeling method. (a) The alignment of 62 CYP11B1 inhibitors; (b) The best pharmacophore model generated by the GALAHAD method; (c) Observed versus predicted pIC50 values derived from CoMFA of both training and test sets; (d) CoMFA contour maps for the best pharmacophore model. 
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They are featured as the cyan balls and the green ball, respectively [18,19]. According to the principals, if all energy parameters had the same level, the Pareto rank would be taken into consideration. Thus, model 1 with a Pareto rank of 0 was selected as the best template to do the CoMFA analysis. The result of this model is Q2 = 0.658, R2 = 0.959, F = 82.102, SEE = 0.154 and had two components. The model obtained from combined method had an acceptable balance between energy, pharmacophoric coherence and pharmacosteric overlap statistically. Therefore model 1 was used as the template in aligning the full dataset and did partial least square (PLS) analysis [20,21]. The contour plots between observed and predicted activities of all compounds were shown in Table 1. Nearly, all of compounds were located on the trend line (Figure 1c), indicating that the proposed model was able to successfully predict compounds in test set. In the CoMFA study, the contour maps (Figure 1d) of the pharmacophore model indicated that the blue and yellow contours located around site A would be electropositive groups. The yellow contours located at the B site around the hydrophobe group indicated that a bulky substituent would not be tolerated. The green contours around acceptor atoms and hydrophobe groups indicated that a bulky substituent would be tolerated.
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Table 1. The observed and predicted activities of 62 CYP11B1 inhibitors generated from different modeling methods.
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Compounds

	
pIC50




	
Observed

	
Predicted




	
Pharmacophore

	
RMS




	
CoMFA

	
CoMFA

	
CoMSIA






	
1

	
6.460

	
6.795

	
6.503

	
6.267




	
2

	
6.650

	
6.442

	
6.724

	
6.837




	
3

	
5.910

	
5.872

	
6.383

	
7.355




	
4

	
6.854

	
6.476

	
6.216

	
6.870




	
5

	
5.848

	
6.147

	
7.039

	
6.978




	
6

	
6.128

	
6.049

	
6.027

	
5.972




	
7

	
5.268

	
5.174

	
5.294

	
5.237




	
8

	
6.559

	
6.608

	
6.635

	
6.589




	
9

	
5.595

	
5.521

	
5.605

	
5.488




	
10

	
6.092

	
6.773

	
6.594

	
6.809




	
11

	
6.274

	
6.038

	
6.286

	
6.199




	
12

	
7.056

	
6.781

	
7.047

	
7.100




	
13

	
6.190

	
5.883

	
5.569

	
5.832




	
14

	
7.036

	
6.638

	
7.112

	
7.184




	
15

	
5.874

	
5.991

	
5.820

	
5.838




	
16

	
6.125

	
6.082

	
6.059

	
6.145




	
17

	
7.387

	
7.493

	
7.384

	
7.462




	
18

	
8.398

	
8.059

	
8.256

	
8.199




	
19

	
7.167

	
6.846

	
6.657

	
6.474




	
20

	
5.644

	
6.111

	
5.710

	
5.526




	
21

	
5.914

	
6.131

	
6.081

	
6.216




	
22

	
7.444

	
7.493

	
7.465

	
7.332




	
23

	
7.108

	
7.679

	
7.499

	
7.460




	
24

	
7.770

	
7.936

	
8.755

	
8.459




	
25

	
8.187

	
8.317

	
8.456

	
8.444




	
26

	
8.854

	
8.274

	
8.730

	
8.643




	
27

	
8.658

	
8.598

	
8.663

	
8.569




	
28

	
8.469

	
8.105

	
8.332

	
8.414




	
29

	
7.721

	
7.929

	
7.230

	
8.223




	
30

	
7.398

	
7.690

	
7.280

	
7.521




	
31

	
7.538

	
7.430

	
7.158

	
7.394




	
32

	
7.569

	
7.715

	
7.188

	
7.315




	
33

	
6.959

	
7.089

	
7.352

	
7.539




	
34

	
7.398

	
7.810

	
6.608

	
7.151




	
35

	
6.842

	
6.483

	
7.030

	
7.225




	
36

	
7.155

	
7.205

	
7.335

	
7.278




	
37

	
7.301

	
7.494

	
7.316

	
7.284




	
38

	
7.699

	
7.662

	
7.777

	
7.700




	
39

	
7.886

	
7.515

	
7.693

	
7.596




	
40

	
6.146

	
6.438

	
5.974

	
6.149




	
41

	
6.607

	
6.435

	
6.367

	
6.426




	
42

	
6.801

	
5.847

	
6.021

	
6.082




	
43

	
6.987

	
7.134

	
7.057

	
6.944




	
44

	
5.689

	
6.125

	
5.698

	
5.658




	
45

	
5.890

	
5.949

	
5.699

	
6.199




	
46

	
6.851

	
6.518

	
6.369

	
7.034




	
47

	
7.886

	
7.768

	
6.820

	
6.869




	
48

	
4.544

	
5.135

	
5.004

	
4.603




	
49

	
5.683

	
5.329

	
5.408

	
5.758




	
50

	
7.237

	
7.156

	
7.095

	
7.108




	
51

	
7.367

	
7.385

	
7.244

	
7.113




	
52

	
6.310

	
6.264

	
6.075

	
6.183




	
53

	
7.398

	
7.178

	
7.525

	
7.237




	
54

	
6.738

	
6.753

	
6.844

	
6.712




	
55

	
6.305

	
6.128

	
6.510

	
6.321




	
56

	
5.757

	
5.695

	
5.681

	
5.796




	
57

	
6.893

	
7.405

	
7.022

	
7.331




	
58

	
5.862

	
6.085

	
6.465

	
7.034




	
59

	
7.678

	
7.524

	
7.821

	
7.828




	
60

	
7.357

	
7.294

	
6.605

	
6.842




	
61

	
5.687

	
5.917

	
5.705

	
5.600




	
62

	
5.333

	
5.648

	
5.336

	
5.397










2.2. 3D-QSAR Modeling Result


The superimposition of all molecules aligned with a common substructure is shown in Figure 2. The aligned molecules were used to generate CoMFA and CoMSIA models which were developed using a combination of different fields, and the statistically significant models were reported with statistical parameters shown in Table 2.
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Figure 2. Molecular alignment based on atom root mean square (RMS) was used in the 3D-QSAR studies. 
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Table 2. Summary of validation statistics for CoMFA and CoMSIA Models generated based on the RMS.
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Method

	
Q2

	
R2

	
N

	
SEE

	
F






	
CoMFA + SE

	
0.666

	
0.978

	
6

	
0.159

	
270.441




	
CoMSIA + S

	
0.510

	
0.833

	
6

	
0.441

	
29.904




	
CoMSIA + E

	
0.416

	
0.869

	
5

	
0.385

	
49.217




	
CoMSIA + H

	
0.446

	
0.852

	
6

	
0.414

	
34.641




	
CoMSIA + D

	
-

	
-

	
-

	
-

	
-




	
CoMSIA + A

	
0.219

	
0.729

	
6

	
0.562

	
16.074




	
CoMSIA + SE

	
0.531

	
0.955

	
6

	
0.229

	
126.791




	
CoMSIA + SH

	
0.626

	
0.890

	
6

	
0.357

	
48.766




	
CoMSIA + SA

	
0.487

	
0.830

	
6

	
0.445

	
29.213




	
CoMSIA + EH

	
0.446

	
0.882

	
6

	
0.361

	
70.933




	
CoMSIA + EA

	
0.520

	
0.924

	
6

	
0.298

	
72.500




	
CoMSIA + HA

	
0.443

	
0.873

	
6

	
0.384

	
41.344




	
CoMSIA + SEH

	
0.547

	
0.912

	
6

	
0.312

	
98.306




	
CoMSIA + SEA

	
0.699

	
0.962

	
6

	
0.211

	
150.046




	
CoMSIA + SHA

	
0.595

	
0.916

	
6

	
0.312

	
65.746




	
CoMSIA + EHA

	
0.632

	
0.958

	
6

	
0.220

	
138.387




	
CoMSIA + SEHA

	
0.721

	
0.972

	
6

	
0.180

	
209.908









The CoMFA model using both steric and electrostatic fields gave Q2 of 0.666, R2 of 0.978, F of 270.441 and SEE of 0.159 values with six components. In the CoMSIA study, the first five models using a single field indicated that the steric field is the most important one. The combination of the steric, electrostatic, hydrophobic, and electrostatic fields led to the S + E + H + A model (Q2 = 0.721, N = 6), providing the best overall model. The best model led to the highest R2, F and the lowest SEE (R2 = 0.972, F = 209.908 and SEE = 0.180). For these reasons, we considered S+E+H+A to be the best possible combination.




2.3. Predictive Power of 3D-QSAR Analyses


CoMFA and CoMSIA analysis developed QSAR models using the training set of CYP11B1 inhibitors. The predicted and observed activities of these compounds were obtained by using the best model that was given in Table 1. The contour plots between observed and predicted bioactivities of training and test set were shown in Figure 3. Most of compounds were located near the trend line, implying the proposed model is able to successfully predict the activities of compounds, which indicated that these 3D-QSAR models are reliable and powerful in predicting pIC50 values.
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Figure 3. Observed versus predicted pIC50 values of both training and test sets using CoMFA and CoMSIA in 3D-QSAR mode. 
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The 3D contour maps were generated to represent the 3D-QSAR results produced by the CoMFA and CoMSIA methods. The different field contributions of COMFA and COMSIA models were illustrated with compound 26 (Figure 4). The results indicated that most of the contours were located at the right side of the compound structures (A and B groups). In the CoMFA model, the contributions of the steric and electrostatic fields to activity were 40.9% and 59.1%. The yellow and blue contours located at the A site indicated that a bulky substituent would not be tolerated and electropositive groups would be favorable [22]. However, bulky substituents and electropositive groups would not be favorable to the B group (Figure 4a) [23]. In the CoMSIA model, the contributions of the steric, electrostatic, hydrophobic and acceptor fields were 13.2%, 40.7%, 22.0% and 24.2%, respectively. The percentages of different fields indicated that the steric and electrostatic fields almost make the same contribution. The combination of these four fields provided the most predictive model for CYP11B1 inhibitors, and the electrostatic field was the most significant for bioactivity prediction. The contour maps of the steric and electrostatic fields of CoMSIA (Figure 4b) were generally in accordance with the field distribution of the CoMFA maps (Figure 4a). The hydrophobic and hydrogen bond acceptor field contour maps of CoMSIA implied that hydrogen bond acceptor substituents were disfavored at the A and B sites, while, hydrophobic groups were favored at the B site (Figure 4c) [24]. The small and electropositive substituent such as an aliphatic amine group would be tolerated at the A site. Small, electronegative and hydrophobic substituent such as trifluoromethanesulfonamide group would be tolerated at B site.
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Figure 4. CoMFA and CoMSIA contour maps displayed using the most potent compound 26. (a) CoMFA steric and electrostatic contour map (green indicates favored, yellow indicates disfavored, blue indicate favoreds, red indicates disfavored); (b) CoMSIA steric and electrostatic contour map (green indicates favored, yellow indicates disfavored, blue indicates favored, red indicates disfavored); (c) CoMSIA hydrophobic and acceptor contour map (yellow indicates favored, white indicates disfavored, magenta indicates favored, red indicates disfavored). 
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2.4. Homology Modeling Result


The length of the CYP11B1 sequence was 574 aa and the most suitable template was the A chain of the CYP11B2 protein (PDB code: 4DVQ). The BLASTP alignment between the CYP11B2 template and CYP11B1 sequences is shown in Figure 5a, revealing 81% identity and 95% consensus similarity. Then, after the structural-based alignment of CYP11B1 from 4DVQ-A, the initial 3D structure of CYP11B1 was obtained from a homology modeling procedure shown in Figure 5d. Evaluation of the homology models consists of Profiles_3D scores and Ramachandran plot analysis [25] (Figure 5c).
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Figure 5. Structural-based alignment of CYP11B1 and the template PDB ID: 4DVQ-A. (a) The sequence shaded in cyan represents sequence similarity; (b) Superposition of the predicted CYP11B1model onto to the template PDB ID: 4DVQ-A, yellow indicates template, blue indicates predicted model; (c) Ramachandran Plot of the best CYP11B1 model; (d) Structure of the best predicted model. 






Figure 5. Structural-based alignment of CYP11B1 and the template PDB ID: 4DVQ-A. (a) The sequence shaded in cyan represents sequence similarity; (b) Superposition of the predicted CYP11B1model onto to the template PDB ID: 4DVQ-A, yellow indicates template, blue indicates predicted model; (c) Ramachandran Plot of the best CYP11B1 model; (d) Structure of the best predicted model.



[image: Molecules 20 01014 g005a][image: Molecules 20 01014 g005b]





Profiles_3D scores shown in the Ramachandran Plot of the CYP11B1 model showed a good distribution of 574 amino acid residues of CYP11B1. About 97.0% of the residues featured with green plots were most favored and an additionally allowed region, and only 3.0% residues featured with red plots were an erroneously allowed region.




2.5. Docking Analysis


Sixty two (62) CYP11B1 inhibitors were evaluated by docking scores after Surflex-dock. According to the rule, compounds with scores above 7 were considered as active in the docking study. In this paper compounds 33 and 37 scored 7.8544 and 7.1932 (Figure 6a,b) and showed a similar docking mode in the active site of the receptor. The binding cavity of CYP11B1 is formed by residues Arg155, Phe175, Arg519, Cys521, Leu522. Hydrogen atoms of the amino group of residue Arg155 and Arg519 are found near N3 of the imidazolidine ring, thus suggesting that electronegative substituents at these positions could enhance the activities of compounds binding to CYP11B1 [26,27].





[image: Molecules 20 01014 g006a 550][image: Molecules 20 01014 g006b 550] 





Figure 6. The Surflex-dock result. (a) The docking complex of compounds 33, 37 with CYP11B1; (b) Binding mode of compounds 33, 37 with CYP11B1. 
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These results matched well with the electrostatic contour maps of the CoMFA and CoMSIA models suggesting that an electronegative substituent such as a trifluoromethanesulfonamide would be positive at the B site as mentioned above (Figure 1d and Figure 4a,b).





3. Experimental Section


3.1. Data Set


The structures of 62 CYP11B1 inhibitors and their biological activities were taken from Hartmann et al. [1,12,18]. The inhibitory activity IC50 values (nM) were converted to the reciprocal logarithmic values (pIC50 = −log IC50) which range from 5.26 to 8.52. All the calculations and analyses of CYP11B1 inhibitors were performed using Discovery Studio 3.0 (Accelrys Software Inc., San Diego, CA, USA, 2011) and SYBYL-X2.1 software (Tripos Inc., St. Louis, MO, USA, 2014) [17,28].




3.2. GALAHAD


Pharmacophore modeling by GALAHAD [11,29] alignment and CoMFA analysis serve as useful tools to produce pharmacophore models of CYP11B1 inhibitors and predict the inhibitory properties of compounds [30,31]. Ten structurally representative compounds with high activities marked with “#” were selected as training set (Table 3) to generate pharmacophore models using the GALAHAD program. The default parameters were used for the GALAHAD runs with the population size turned to 75 and max generations turned to 30. The generated models were evaluated by the test set of CoMFA modeling based on the pharmacophore alignment [30,32]. Therefore the most reasonable pharmacophore model was selected to predict the bioactivities of components and analyse the structures of CYP11B1 inhibitors [33].
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Table 3. The structures and bioactivity values of active compounds.
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Compound

	
Skeleton

	
R

	
IC50 (nM)

	
pIC50






	
1

	
 [image: Molecules 20 01014 i001]

	
OH

	
347

	
6.4597




	
2

	
H

	
224

	
6.6498




	
3 *

	
=CH2

	
1230

	
5.9101




	
4 *

	
Me

	
140

	
6.8539




	
5 *

	
i-Pr

	
1420

	
5.8477




	
6

	
Ph

	
745

	
6.1278




	
7

	
Ph,OH

	
5399

	
5.2677




	
8

	
2-MeOPh

	
276

	
6.5591




	
9

	
3-MeOPh

	
2539

	
5.5953




	
10 *

	
4-MeOPh

	
810

	
6.0915




	
11

	
3-FPh

	
532

	
6.2741




	
12 #

	
4-FPh

	
88

	
7.0555




	
13 *

	
3-ClPh

	
646

	
6.1898




	
14 #

	
4-ClPh

	
92

	
7.0362




	
15

	
3-CH3Ph

	
1336

	
5.8742




	
16

	
 [image: Molecules 20 01014 i002]

	
OH

	
750

	
6.1249




	
17

	
=CH2

	
41

	
7.3872




	
18 #

	
Me

	
4

	
8.3979




	
19 *

	
Ph

	
68

	
7.1675




	
20

	
2-MeOPh

	
2270

	
5.6440




	
21 *

	
3-MePh

	
1220

	
5.9136




	
22 #

	
3-ClPh

	
36

	
7.4437




	
23 *

	
4-FPh

	
78

	
7.1079




	
24 *
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Me

	
17

	
7.7696




	
25

	
Et

	
6.5

	
8.1871




	
26 #

	
i-propyl

	
1.4

	
8.8539




	
27 #

	
c-propyl

	
2.2

	
8.6576




	
28 #

	
c-butyl

	
3.4

	
8.4685




	
29 *

	
=CH2

	
19

	
7.7212




	
30 *

	
2-FPh

	
40

	
7.3979




	
31 *

	
3-FPh

	
29

	
7.5376




	
32 *

	
4-FPh

	
27

	
7.5686




	
33 *

	
3-MeOPh

	
110

	
6.9586




	
34 *

	
4-MeOPh

	
40

	
7.3979




	
35

	
3-CNPh

	
144

	
6.8416




	
36 *

	
4-CNPh

	
70

	
7.1549




	
37

	
Ph

	
50

	
7.3010




	
38

	
2-furanyl

	
20

	
7.6990




	
39

	
2-thienyl

	
13

	
7.8861




	
40
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H

	
715

	
6.1457




	
41

	
OMe

	
247

	
6.6073




	
42 *

	
OEt

	
158

	
6.8013




	
43

	
OiPr

	
103

	
6.9872




	
44

	
OH

	
2045

	
5.6893




	
45

	
F

	
1288

	
5.8901




	
46

	
CF3

	
141

	
6.8508




	
47 #*

	
 [image: Molecules 20 01014 i005]

	
4-isoquinoline

	
13

	
7.8861




	
48

	
5-pyrimidine

	
28546

	
4.5445




	
49

	
1-imidazole

	
2077

	
5.6826




	
50

	
 [image: Molecules 20 01014 i006]

	
H

	
58

	
7.2366




	
51 #

	
2-F

	
43

	
7.3665




	
52

	
3-F

	
490

	
6.3098




	
53

	
4-F

	
40

	
7.3979




	
54

	
2,5-F

	
183

	
6.7375




	
55

	
3,4-F

	
496

	
6.3045




	
56

	
3,5-F

	
1748

	
5.7575




	
57

	
2-OMe

	
128

	
6.8928




	
58 *

	
3-OMe

	
1374

	
5.8620




	
59 #

	
4-OMe

	
21

	
7.6778




	
60 *

	
3-OH

	
44

	
7.3565




	
61

	
3-OCF3

	
2058

	
5.6866




	
62

	
3-CF3

	
4646

	
5.3329








Molecules marked with *: belong to the test set of 3D-QSAR method; Molecules marked with #: belong to the test set of GALAHAD method.








3.3. 3D-QSAR Modeling


The structures of CYP11B1 inhibitors used for the 3D-QSAR study were randomly divided into a training set (42 molecules) and a test set (20 molecules) [34] (Table 1). All structures were energy minimized using the Powell gradient algorithm under the Tripos force field with Gasteiger-Marsili atomic partial charges. The most potent CYP11B1 inhibitor (compound 26) was selected as the alignment template (Figure 7), which was also used as template to build all the other inhibitors with the atom root mean square (RMS) approach.
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Figure 7. The compound with the highest activity of CYP11B1 inhibition (compound 26) combined with A and B groups. 






Figure 7. The compound with the highest activity of CYP11B1 inhibition (compound 26) combined with A and B groups.
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3D-QSAR models were constructed by using CoMFA and CoMSIA methods based on the molecular alignment. The default values of the parameters of the CoMFA and CoMSIA methods were used. The CoMFA method was performed using steric and electrostatic fields with standard 30 kcal/mol cutoffs. In the CoMSIA study, besides steric and electrostatic fields, three other different fields were calculated: hydrophobic, hydrogen bond donor, and hydrogen bond acceptor [34,35,36]. A series of models were constructed with an increasing number of partial least squares (PLS) analysis factors. The numbers of components in the PLS models were optimized by using the cross-validated correlation coefficient (Q2), non-cross-validated correlation coefficient (R2), standard error estimate (SEE) and F-statistic values (F), etc., which were obtained from the leave-one-out (LOO) cross-validation procedures [37,38]. According these parameters, the best model was chosen to predict bioactivities of compounds. In this work the best 3D-QSAR model was graphically represented by field contour maps, and the coefficients were generated using the StDev⁄Coeff field type.




3.4. Homology Modeling and Docking Analysis


The amino acid sequence of CYP11B1 (GenBank: AAH96285.1) was obtained from the National Center for Biotechnology Information Database (NCBI) [39]. Identification of candidate templates was performed by sequence similarity search using BLAST search (NCBI Sever) protocol with default values and each target was searched and downloaded from the NCBI database. The CYP11B1 sequence was aligned to the templates and homology models of CYP11B1 built with the default parameters. Subsequently, the models were analyzed based on Profiles_3D scores and Ramachandran plots which indicate the percentage of amino acids located in the disallowed regions. The interaction of small molecule ligands with a protein, which implied atomic-detail accuracy including position and conformation, was obtained from the docking procedure. Docking and scoring were performed using the Sybyl-X2.1 software (Tripos Inc., St. Louis, MO, USA, 2014) Surflex-Dock method. The docking receptor CYP11B1 was constructed as described in Homology modeling, while the ligands set consisted of all 62 inhibitors. Polar hydrogen atoms were added to both protein and ligand structures. The other parameters of Surflex-Dock methods were used as default values. The best docking pose was selected according to the total score.





4. Conclusions


CYP11B1 plays a crucial role in the biosynthesis of cortisol which can cause a series of diseases known as Cushing’s syndrome. Therefore, CYP11B1 inhibitors that can be regarded as a pharmacological approach to block cortisol biosynthesis have become another treatment for Cushing’s syndrome. GALAHAD is a novel pharmacophore screening module, which generates models to analyse the pharmacophore features of ligands. A CoMFA study based on the pharmacophore (GALAHAD) alignment has been developed to derive the structure-activity relationships, which also indicate the interaction between CoMFA fields and pharmacophore features of ligands.



In this study, CoMFA and CoMSIA models were built using the alignment based on the atom root mean square (RMS), which explored the structure-activity relationship of the CYP11B1 inhibitors. These models with excellent consistency manifested good predictive ability for the test compounds. The contour maps also identified the important features contributing to interactions between the different fiedls and the active site of CYP11B1 inhibitors.



Homology modeling method was used to construct a 3D model of the CYP11B1 protein. Then, the Surflex-Dock analysis was used to evaluate the binding activities between the protein and ligand compounds. The binding site indicated the interaction and combination between ligand groups and amino acid residues, which acted as a guide in the prediction and design of CYP11B1 inhibitors.



The combined pharmacophore modeling and 3D-QSAR modeling methods indicated that small and electropositive substituents would be tolerated at the A site. Meanwhile, small, electronegative and hydrophobic substituents would be better at the B site. The docking results indicated that electronegative substituents at the B position could enhance the activities of compounds binding to CYP11B1.
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