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Abstract: The mitochondrial cytochrome P450 enzymes inhibitor steroid 11β-hydroxylase 

(CYP11B1) can decrease the production of cortisol. Therefore, these inhibitors have an 

effect in the treatment of Cushing’s syndrome. A pharmacophore model generated by 

Genetic Algorithm with Linear Assignment for Hypermolecular Alignment of Datasets 

(GALAHAD) was used to align the compounds and perform comparative molecular field 

analysis (CoMFA) with Q2 = 0.658, R2 = 0.959. The pharmacophore model contained six 

hydrophobic regions and one acceptor atom, and electropositive and bulky substituents 

would be tolerated at the A and B sites, respectively. A three-dimensional quantitative 

structure-activity relationship (3D-QSAR) study based on the alignment with the atom root 

mean square (RMS) was applied using comparative molecular field analysis (CoMFA) 

with Q2 = 0.666, R2 = 0.978, and comparative molecular similarity indices analysis 

(CoMSIA) with Q2 = 0.721, R2 = 0.972. These results proved that all the models have good 

predictability of the bioactivities of inhibitors. Furthermore, the QSAR models indicated 

that a hydrogen bond acceptor substituent would be disfavored at the A and B groups, 
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while hydrophobic groups would be favored at the B site. The three-dimensional (3D) 

model of the CYP11B1 was generated based on the crystal structure of the CYP11B2 

(PDB code 4DVQ). In order to probe the ligand-binding modes, Surflex-dock was 

employed to dock CYP11B1 inhibitory compounds into the active site of the receptor. The 

docking result showed that the imidazolidine ring of CYP11B1 inhibitors form H bonds 

with the amino group of residue Arg155 and Arg519, which suggested that an 

electronegative substituent at these positions could enhance the activities of compounds. 

All the models generated by GALAHAD QSAR and Docking methods provide guidance 

about how to design novel and potential drugs for Cushing’s syndrome treatment. 

Keywords: CYP11B1 inhibitors; 3D-QSAR; pharmacophore model; Cushing’s syndrome 

 

1. Introduction 

Cortisol is a principal glucocorticoid [1] that is not only used in the treatment of inflammation, 

allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions, 

but also exhibits many physiological functions in the regulation of metabolism of life substances, 

blood pressure and cardiovascular function [2]. Biosynthesis of cortisol take place in the adrenal cortex 

whose final step (conversion from 11-deoxycortisol) is catalyzed by the mitochondrial cytochrome 

P450 enzyme steroid 11β-hydroxylase (CYP11B1) [1,3]. (Please reorder references numbers, you 

jumped 2 and 3 before 4) 

The secretion of cortisol is precisely controlled by adrenocorticotropic hormone (ACTH) [2,4,5] 

within the negative feedback cycle of hypothalamic-pituitary-adrenal axis [1]. However, pathological 

changes in adrenals and the upstream regulating switches can cause an overproduction of cortisol, 

which is known as Cushing’s syndrome. Cushing’s syndrome patients mainly show a “moon face”, 

sanguine temperament appearance, obesity, acne, purple lines, high blood pressure, secondary diabetes 

and osteoporosis, etc. It’s a hormonal disorder caused by prolonged exposure to high levels of 

circulating glucocorticoids such as cortisol [6,7]. 

Normally, the surgical removal of adrenal or pituitary tumors is used for the treatment of 

hypercortisolism [8]. However, as mentioned above, CYP11B1 can promote the synthesis of cortisol. 

Therefore, inhibition of CYP11B1 as the pharmacological approach to block cortisol biosynthesis 

represents a treatment for Cushing’s syndrome [9]. Inhibitors of cortisol biosynthesis, such as 

ketoconazole, etomidate, and metyrapone have been used in the clinic [4], however, all of them show 

severe side effects due to the fact that they are unselective. Metyrapone is the only drug reported to be 

a relatively selective CYP11B1 inhibitor. 

In recent years, a series of mitochondrial cytochrome P450 (CYP) superfamily receptors [10], such 

as CYP1A2, CYP17, CYP19, CYP11B2 [7,11,12], were used to analysis the combination of ligand 

compounds in different molecular docking studies [13]. Few studies published so far have used the 

pharmacophore modeling or 3D-QSAR approaches for modeling ligand interactions with the 

CYP11B1 receptor [14]. In addition, a three-dimensional model of CYP11B1 has not been published 

yet. Therefore, in the present study we aimed to build and validate homology models of CYP11B1 [15] 
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and then run a docking procedure which indicates the active groups and atoms of inhibitory 

compounds. In order to analyse the molecular shape of CYP11B1 inhibitors [14], a series of 

compounds with good inhibitory activities synthesized by Hartmann [15] were collected to establish 

3D-QSAR models using CoMFA and CoMSIA. The combination of the pharmacophore model [16] 

GALAHAD and CoMFA methods also helped establish the structure-activity relationship (SAR) of 

CYP11B1 inhibitors [17]. 

2. Results and Discussion  

2.1. GALAHAD Modeling Results 

Once GALAHAD modeling based on the training set compounds was completed (Figure 1a), a total 

of 20 pharmacophore models were generated using common feature hypothesis generation approach. 

The generated pharmacophore model contained six hydrophobic regions and one acceptor atom 

(Figure 1b).  

(a) (b)

(d)(c)

 

Figure 1. The results generated using GALAHAD modeling method. (a) The alignment of 

62 CYP11B1 inhibitors; (b) The best pharmacophore model generated by the GALAHAD 

method; (c) Observed versus predicted pIC50 values derived from CoMFA of both training 

and test sets; (d) CoMFA contour maps for the best pharmacophore model. 
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They are featured as the cyan balls and the green ball, respectively [18,19]. According to the 

principals, if all energy parameters had the same level, the Pareto rank would be taken into 

consideration. Thus, model 1 with a Pareto rank of 0 was selected as the best template to do the 

CoMFA analysis. The result of this model is Q2 = 0.658, R2 = 0.959, F = 82.102, SEE = 0.154 and had 

two components. The model obtained from combined method had an acceptable balance between 

energy, pharmacophoric coherence and pharmacosteric overlap statistically. Therefore model 1 was 

used as the template in aligning the full dataset and did partial least square (PLS) analysis [20,21]. The 

contour plots between observed and predicted activities of all compounds were shown in Table 1. 

Nearly, all of compounds were located on the trend line (Figure 1c), indicating that the proposed 

model was able to successfully predict compounds in test set. In the CoMFA study, the contour maps 

(Figure 1d) of the pharmacophore model indicated that the blue and yellow contours located around 

site A would be electropositive groups. The yellow contours located at the B site around the 

hydrophobe group indicated that a bulky substituent would not be tolerated. The green contours around 

acceptor atoms and hydrophobe groups indicated that a bulky substituent would be tolerated. 

Table 1. The observed and predicted activities of 62 CYP11B1 inhibitors generated from 

different modeling methods. 

Compounds 

pIC50 

Observed 
Predicted 

Pharmacophore RMS 
CoMFA CoMFA CoMSIA 

1 6.460 6.795 6.503 6.267 
2 6.650 6.442 6.724 6.837 
3 5.910 5.872 6.383 7.355 
4 6.854 6.476 6.216 6.870 
5 5.848 6.147 7.039 6.978 
6 6.128 6.049 6.027 5.972 
7 5.268 5.174 5.294 5.237 
8 6.559 6.608 6.635 6.589 
9 5.595 5.521 5.605 5.488 
10 6.092 6.773 6.594 6.809 
11 6.274 6.038 6.286 6.199 
12 7.056 6.781 7.047 7.100 
13 6.190 5.883 5.569 5.832 
14 7.036 6.638 7.112 7.184 
15 5.874 5.991 5.820 5.838 
16 6.125 6.082 6.059 6.145 
17 7.387 7.493 7.384 7.462 
18 8.398 8.059 8.256 8.199 
19 7.167 6.846 6.657 6.474 
20 5.644 6.111 5.710 5.526 
21 5.914 6.131 6.081 6.216 
22 7.444 7.493 7.465 7.332 
23 7.108 7.679 7.499 7.460 
24 7.770 7.936 8.755 8.459 
25 8.187 8.317 8.456 8.444 
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Table 1. Cont. 

Compounds 

pIC50 

Observed 

Predicted 

Pharmacophore RMS 

CoMFA CoMFA CoMSIA 

26 8.854 8.274 8.730 8.643 
27 8.658 8.598 8.663 8.569 
28 8.469 8.105 8.332 8.414 
29 7.721 7.929 7.230 8.223 
30 7.398 7.690 7.280 7.521 
31 7.538 7.430 7.158 7.394 
32 7.569 7.715 7.188 7.315 
33 6.959 7.089 7.352 7.539 
34 7.398 7.810 6.608 7.151 
35 6.842 6.483 7.030 7.225 
36 7.155 7.205 7.335 7.278 
37 7.301 7.494 7.316 7.284 
38 7.699 7.662 7.777 7.700 
39 7.886 7.515 7.693 7.596 
40 6.146 6.438 5.974 6.149 
41 6.607 6.435 6.367 6.426 
42 6.801 5.847 6.021 6.082 
43 6.987 7.134 7.057 6.944 
44 5.689 6.125 5.698 5.658 
45 5.890 5.949 5.699 6.199 
46 6.851 6.518 6.369 7.034 
47 7.886 7.768 6.820 6.869 
48 4.544 5.135 5.004 4.603 
49 5.683 5.329 5.408 5.758 
50 7.237 7.156 7.095 7.108 
51 7.367 7.385 7.244 7.113 
52 6.310 6.264 6.075 6.183 
53 7.398 7.178 7.525 7.237 
54 6.738 6.753 6.844 6.712 
55 6.305 6.128 6.510 6.321 
56 5.757 5.695 5.681 5.796 
57 6.893 7.405 7.022 7.331 
58 5.862 6.085 6.465 7.034 
59 7.678 7.524 7.821 7.828 
60 7.357 7.294 6.605 6.842 
61 5.687 5.917 5.705 5.600 
62 5.333 5.648 5.336 5.397 
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2.2. 3D-QSAR Modeling Result 

The superimposition of all molecules aligned with a common substructure is shown in Figure 2. The 

aligned molecules were used to generate CoMFA and CoMSIA models which were developed using a 

combination of different fields, and the statistically significant models were reported with statistical 

parameters shown in Table 2. 

 

Figure 2. Molecular alignment based on atom root mean square (RMS) was used in the  

3D-QSAR studies. 

Table 2. Summary of validation statistics for CoMFA and CoMSIA Models generated 

based on the RMS. 

Method Q2 R2 N SEE F 

CoMFA + SE 0.666 0.978 6 0.159 270.441 
CoMSIA + S 0.510 0.833 6 0.441 29.904 
CoMSIA + E 0.416 0.869 5 0.385 49.217 
CoMSIA + H 0.446 0.852 6 0.414 34.641 
CoMSIA + D - - - - - 
CoMSIA + A 0.219 0.729 6 0.562 16.074 
CoMSIA + SE 0.531 0.955 6 0.229 126.791 
CoMSIA + SH 0.626 0.890 6 0.357 48.766 
CoMSIA + SA 0.487 0.830 6 0.445 29.213 
CoMSIA + EH 0.446 0.882 6 0.361 70.933 
CoMSIA + EA 0.520 0.924 6 0.298 72.500 
CoMSIA + HA 0.443 0.873 6 0.384 41.344 
CoMSIA + SEH 0.547 0.912 6 0.312 98.306 
CoMSIA + SEA 0.699 0.962 6 0.211 150.046 
CoMSIA + SHA 0.595 0.916 6 0.312 65.746 
CoMSIA + EHA 0.632 0.958 6 0.220 138.387 

CoMSIA + SEHA 0.721 0.972 6 0.180 209.908 

The CoMFA model using both steric and electrostatic fields gave Q2 of 0.666, R2 of 0.978, F of 

270.441 and SEE of 0.159 values with six components. In the CoMSIA study, the first five models 

using a single field indicated that the steric field is the most important one. The combination of the 

steric, electrostatic, hydrophobic, and electrostatic fields led to the S + E + H + A model (Q2 = 0.721,  

N = 6), providing the best overall model. The best model led to the highest R2, F and the lowest SEE 



Molecules 2015, 20 1020 

 

 

(R2 = 0.972, F = 209.908 and SEE = 0.180). For these reasons, we considered S+E+H+A to be the best 

possible combination. 

2.3. Predictive Power of 3D-QSAR Analyses 

CoMFA and CoMSIA analysis developed QSAR models using the training set of CYP11B1 

inhibitors. The predicted and observed activities of these compounds were obtained by using the best 

model that was given in Table 1. The contour plots between observed and predicted bioactivities of 

training and test set were shown in Figure 3. Most of compounds were located near the trend line, 

implying the proposed model is able to successfully predict the activities of compounds, which 

indicated that these 3D-QSAR models are reliable and powerful in predicting pIC50 values. 

  

Figure 3. Observed versus predicted pIC50 values of both training and test sets using 

CoMFA and CoMSIA in 3D-QSAR mode.  

The 3D contour maps were generated to represent the 3D-QSAR results produced by the CoMFA 

and CoMSIA methods. The different field contributions of COMFA and COMSIA models were 

illustrated with compound 26 (Figure 4). The results indicated that most of the contours were located at 

the right side of the compound structures (A and B groups). In the CoMFA model, the contributions of 

the steric and electrostatic fields to activity were 40.9% and 59.1%. The yellow and blue contours located 

at the A site indicated that a bulky substituent would not be tolerated and electropositive groups would 

be favorable [22]. However, bulky substituents and electropositive groups would not be favorable to 

the B group (Figure 4a) [23]. In the CoMSIA model, the contributions of the steric, electrostatic, 

hydrophobic and acceptor fields were 13.2%, 40.7%, 22.0% and 24.2%, respectively. The percentages 

of different fields indicated that the steric and electrostatic fields almost make the same contribution. 

The combination of these four fields provided the most predictive model for CYP11B1 inhibitors, and 

the electrostatic field was the most significant for bioactivity prediction. The contour maps of the steric 

and electrostatic fields of CoMSIA (Figure 4b) were generally in accordance with the field distribution 

of the CoMFA maps (Figure 4a). The hydrophobic and hydrogen bond acceptor field contour maps of 

CoMSIA implied that hydrogen bond acceptor substituents were disfavored at the A and B sites, while, 

hydrophobic groups were favored at the B site (Figure 4c) [24]. The small and electropositive 

substituent such as an aliphatic amine group would be tolerated at the A site. Small, electronegative 

and hydrophobic substituent such as trifluoromethanesulfonamide group would be tolerated at B site. 
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(a) (b) 

(c) 

Figure 4. CoMFA and CoMSIA contour maps displayed using the most potent  

compound 26. (a) CoMFA steric and electrostatic contour map (green indicates favored, 

yellow indicates disfavored, blue indicate favoreds, red indicates disfavored); (b) CoMSIA 

steric and electrostatic contour map (green indicates favored, yellow indicates disfavored, 

blue indicates favored, red indicates disfavored); (c) CoMSIA hydrophobic and acceptor 

contour map (yellow indicates favored, white indicates disfavored, magenta indicates 

favored, red indicates disfavored). 

2.4. Homology Modeling Result 

The length of the CYP11B1 sequence was 574 aa and the most suitable template was the A chain of 

the CYP11B2 protein (PDB code: 4DVQ). The BLASTP alignment between the CYP11B2 template 

and CYP11B1 sequences is shown in Figure 5a, revealing 81% identity and 95% consensus similarity. 

Then, after the structural-based alignment of CYP11B1 from 4DVQ-A, the initial 3D structure of 

CYP11B1 was obtained from a homology modeling procedure shown in Figure 5d. Evaluation of the 

homology models consists of Profiles_3D scores and Ramachandran plot analysis [25] (Figure 5c).  

(a) (b) 

Figure 5. Cont. 



Molecules 2015, 20 1022 

 

 

 

(c) (d) 

Figure 5. Structural-based alignment of CYP11B1 and the template PDB ID: 4DVQ-A.  

(a) The sequence shaded in cyan represents sequence similarity; (b) Superposition of the 

predicted CYP11B1model onto to the template PDB ID: 4DVQ-A, yellow indicates 

template, blue indicates predicted model; (c) Ramachandran Plot of the best CYP11B1 

model; (d) Structure of the best predicted model. 

Profiles_3D scores shown in the Ramachandran Plot of the CYP11B1 model showed a good 

distribution of 574 amino acid residues of CYP11B1. About 97.0% of the residues featured with green 

plots were most favored and an additionally allowed region, and only 3.0% residues featured with red 

plots were an erroneously allowed region. 

2.5. Docking Analysis 

Sixty two (62) CYP11B1 inhibitors were evaluated by docking scores after Surflex-dock. 

According to the rule, compounds with scores above 7 were considered as active in the docking study. In 

this paper compounds 33 and 37 scored 7.8544 and 7.1932 (Figure 6a,b) and showed a similar docking 

mode in the active site of the receptor. The binding cavity of CYP11B1 is formed by residues Arg155, 

Phe175, Arg519, Cys521, Leu522. Hydrogen atoms of the amino group of residue Arg155 and Arg519 

are found near N3 of the imidazolidine ring, thus suggesting that electronegative substituents at these 

positions could enhance the activities of compounds binding to CYP11B1 [26,27].  

 
(a) 

Figure 6. Cont. 
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(b) 

Figure 6. The Surflex-dock result. (a) The docking complex of compounds 33, 37 with 

CYP11B1; (b) Binding mode of compounds 33, 37 with CYP11B1. 

These results matched well with the electrostatic contour maps of the CoMFA and CoMSIA models 

suggesting that an electronegative substituent such as a trifluoromethanesulfonamide would be positive 

at the B site as mentioned above (Figures 1d and 4a,b). 

3. Experimental Section 

3.1. Data Set 

The structures of 62 CYP11B1 inhibitors and their biological activities were taken from  

Hartmann et al. [1,12,18]. The inhibitory activity IC50 values (nM) were converted to the reciprocal 

logarithmic values (pIC50 = −log IC50) which range from 5.26 to 8.52. All the calculations and analyses 

of CYP11B1 inhibitors were performed using Discovery Studio 3.0 (Accelrys Software Inc., San Diego, 

CA, USA, 2011) and SYBYL-X2.1 software (Tripos Inc., St. Louis, MO, USA, 2014) [17,28]. 

3.2. GALAHAD  

Pharmacophore modeling by GALAHAD [11,29] alignment and CoMFA analysis serve as useful 

tools to produce pharmacophore models of CYP11B1 inhibitors and predict the inhibitory properties of 

compounds [30,31]. Ten structurally representative compounds with high activities marked with “#” 

were selected as training set (Table 3) to generate pharmacophore models using the GALAHAD 

program. The default parameters were used for the GALAHAD runs with the population size turned to 

75 and max generations turned to 30. The generated models were evaluated by the test set of CoMFA 

modeling based on the pharmacophore alignment [30,32]. Therefore the most reasonable 

pharmacophore model was selected to predict the bioactivities of components and analyse the 

structures of CYP11B1 inhibitors [33]. 
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Table 3. The structures and bioactivity values of active compounds. 

Compound Skeleton R IC50 (nM) pIC50 
1 

 

OH 347 6.4597 
2 H 224 6.6498 

3 * =CH2 1230 5.9101 
4 * Me 140 6.8539 
5 * i-Pr 1420 5.8477 
6 Ph 745 6.1278 
7 Ph,OH  5399 5.2677 
8 2-MeOPh 276 6.5591 
9 3-MeOPh 2539 5.5953 

10 * 4-MeOPh 810 6.0915 
11 3-FPh 532 6.2741 

12 # 4-FPh 88 7.0555 
13 * 3-ClPh 646 6.1898 
14 # 4-ClPh 92 7.0362 
15 3-CH3Ph 1336 5.8742 
16 

 

OH 750 6.1249 
17 =CH2 41 7.3872 

18 # Me 4 8.3979 
19 * Ph 68 7.1675 
20 2-MeOPh 2270 5.6440 

21 * 3-MePh 1220 5.9136 
22 # 3-ClPh 36 7.4437 
23 * 4-FPh 78 7.1079 
24 * 

 

Me 17 7.7696 
25 Et 6.5 8.1871 

26 # i-propyl 1.4 8.8539 
27 # c-propyl 2.2 8.6576 
28 # c-butyl 3.4 8.4685 
29 * =CH2 19 7.7212 
30 * 2-FPh 40 7.3979 
31 * 3-FPh 29 7.5376 
32 * 4-FPh 27 7.5686 
33 * 3-MeOPh 110 6.9586 
34 * 4-MeOPh 40 7.3979 
35 3-CNPh 144 6.8416 

36 * 4-CNPh 70 7.1549 
37 Ph 50 7.3010 
38 2-furanyl 20 7.6990 
39 2-thienyl 13 7.8861 
40 

 

H 715 6.1457 
41 OMe 247 6.6073 

42 * OEt 158 6.8013 
43 OiPr 103 6.9872 
44 OH 2045 5.6893 
45 F 1288 5.8901 
46 CF3 141 6.8508 



Molecules 2015, 20 1025 

 

 

Table 3. Cont. 

Compound Skeleton R IC50 (nM) pIC50

47 #* 4-isoquinoline 13 7.8861 
48 5-pyrimidine 28546 4.5445 
49 1-imidazole 2077 5.6826 

50 

 

H 58 7.2366 
51 # 2-F 43 7.3665 
52 3-F 490 6.3098 
53 4-F 40 7.3979 
54 2,5-F 183 6.7375 
55 3,4-F 496 6.3045 
56 3,5-F 1748 5.7575 
57 2-OMe 128 6.8928 

58 * 3-OMe 1374 5.8620 
59 # 4-OMe 21 7.6778 
60 * 3-OH 44 7.3565 
61 3-OCF3 2058 5.6866 
62 3-CF3 4646 5.3329 

Molecules marked with *: belong to the test set of 3D-QSAR method; Molecules marked with #: belong to 

the test set of GALAHAD method.  

3.3. 3D-QSAR Modeling 

The structures of CYP11B1 inhibitors used for the 3D-QSAR study were randomly divided into a 

training set (42 molecules) and a test set (20 molecules) [34] (Table 1). All structures were energy 

minimized using the Powell gradient algorithm under the Tripos force field with Gasteiger-Marsili 

atomic partial charges. The most potent CYP11B1 inhibitor (compound 26) was selected as the 

alignment template (Figure 7), which was also used as template to build all the other inhibitors with 

the atom root mean square (RMS) approach.  

 

Figure 7. The compound with the highest activity of CYP11B1 inhibition (compound 26) 

combined with A and B groups.  

3D-QSAR models were constructed by using CoMFA and CoMSIA methods based on the 

molecular alignment. The default values of the parameters of the CoMFA and CoMSIA methods were 

used. The CoMFA method was performed using steric and electrostatic fields with standard 30 kcal/mol 

cutoffs. In the CoMSIA study, besides steric and electrostatic fields, three other different fields were 
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calculated: hydrophobic, hydrogen bond donor, and hydrogen bond acceptor [34–36]. A series of 

models were constructed with an increasing number of partial least squares (PLS) analysis factors. The 

numbers of components in the PLS models were optimized by using the cross-validated correlation 

coefficient (Q2), non-cross-validated correlation coefficient (R2), standard error estimate (SEE) and  

F-statistic values (F), etc., which were obtained from the leave-one-out (LOO) cross-validation 

procedures [37,38]. According these parameters, the best model was chosen to predict bioactivities of 

compounds. In this work the best 3D-QSAR model was graphically represented by field contour maps, 

and the coefficients were generated using the StDev⁄Coeff field type. 

3.4. Homology Modeling and Docking Analysis 

The amino acid sequence of CYP11B1 (GenBank: AAH96285.1) was obtained from the National 

Center for Biotechnology Information Database (NCBI)[39]. Identification of candidate templates was 

performed by sequence similarity search using BLAST search (NCBI Sever) protocol with default 

values and each target was searched and downloaded from the NCBI database. The CYP11B1 

sequence was aligned to the templates and homology models of CYP11B1 built with the default 

parameters. Subsequently, the models were analyzed based on Profiles_3D scores and Ramachandran 

plots which indicate the percentage of amino acids located in the disallowed regions. The interaction of 

small molecule ligands with a protein, which implied atomic-detail accuracy including position and 

conformation, was obtained from the docking procedure. Docking and scoring were performed using 

the Sybyl-X2.1 software (Tripos Inc., St. Louis, MO, USA, 2014) Surflex-Dock method. The docking 

receptor CYP11B1 was constructed as described in Homology modeling, while the ligands set 

consisted of all 62 inhibitors. Polar hydrogen atoms were added to both protein and ligand structures. 

The other parameters of Surflex-Dock methods were used as default values. The best docking pose 

was selected according to the total score. 

4. Conclusions 

CYP11B1 plays a crucial role in the biosynthesis of cortisol which can cause a series of diseases 

known as Cushing’s syndrome. Therefore, CYP11B1 inhibitors that can be regarded as a 

pharmacological approach to block cortisol biosynthesis have become another treatment for Cushing’s 

syndrome. GALAHAD is a novel pharmacophore screening module, which generates models to 

analyse the pharmacophore features of ligands. A CoMFA study based on the pharmacophore 

(GALAHAD) alignment has been developed to derive the structure-activity relationships, which also 

indicate the interaction between CoMFA fields and pharmacophore features of ligands. 

In this study, CoMFA and CoMSIA models were built using the alignment based on the atom root 

mean square (RMS), which explored the structure-activity relationship of the CYP11B1 inhibitors. 

These models with excellent consistency manifested good predictive ability for the test compounds. 

The contour maps also identified the important features contributing to interactions between the 

different fiedls and the active site of CYP11B1 inhibitors. 

Homology modeling method was used to construct a 3D model of the CYP11B1 protein. Then, the 

Surflex-Dock analysis was used to evaluate the binding activities between the protein and ligand 
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compounds. The binding site indicated the interaction and combination between ligand groups and 

amino acid residues, which acted as a guide in the prediction and design of CYP11B1 inhibitors. 

The combined pharmacophore modeling and 3D-QSAR modeling methods indicated that small and 

electropositive substituents would be tolerated at the A site. Meanwhile, small, electronegative and 

hydrophobic substituents would be better at the B site. The docking results indicated that electronegative 

substituents at the B position could enhance the activities of compounds binding to CYP11B1. 
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