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Abstract: Choroidal neovascularization (CNV) is a common pathology in age-related macular
degeneration. In this study, we evaluated in a rat model the effect of an extract of Cinidium officinale
Makino and its bioactive compound, butylidenephthalide, on laser-induced CNV. Experimental
CNV was induced in Long-Evans rats by laser photocoagulation. C. officinale extract (COE)
and butylidenephthalide was intraperitoneally injected once per day for ten days after laser
photocoagulation. Choroidal flat mounts were prepared to measure CNV areas and macrophage
infiltration. We used a protein array to evaluate the expression levels of angiogenic factors. The CNV
area and macrophage infiltration in COE-treated rats were significantly lower than in vehicle-treated
rats. COE decreased the expression levels of IGFBP-1, MCP-1, PAI-1, and VEGF. Additionally,
butylidenephthalide also inhibited the laser-induced CNV formation and macrophage infiltration
and down-regulated the expression of IGFBP-1, MCP-1 and VEGF. These results suggest that COE
exerts anti-angiogenic effects on laser-induced CNV by inhibiting the expression of IGFBP-1, MCP-1,
and VEGF, indicating that anti-angiogenic activities of COE may be in part due to its bioactive
compound, butylidenephthalide.

Keywords: age-related macular degeneration; butylidenephthalide; choroidal neovascularization;
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1. Introduction

Age-related macular degeneration (AMD) is a leading cause of blindness in the elderly [1]. The
majority of patients with AMD have the dry form, which is characterized by the degeneration of
retinal pigment epithelial cells and photoreceptor cells. However, more severe vision loss is associated
with the wet (neovascular) form [2]. The wet form of AMD is characterized by the growth of blood
vessels from the choroid through Bruch’s membrane, resulting in choroidal neovascularization (CNV)
in sub-retinal pigment epithelium (RPE) space.

It has been proposed that vascular endothelial growth factor (VEGF) and its receptors play an
important role in the progression of AMD [3]. The inhibition of VEGF signaling pathway attenuated
the development of CNV in experimental animals [4] and human subjects [5]. Several anti-VEGF
agents, such as ranibizumab and bevacizumab, have been shown to markedly suppress neovascular
AMD [6]. These VEGF inhibitors have exhibited some efficacy in slowing disease progress and
improving vision. However, the intravitreal injection procedure for these drugs occasionally causes
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several adverse reactions, such as traumatic cataract, endophthalmitis, vitreous hemorrhage, and
retinal detachment [7,8]. Therefore, to identify novel agents that inhibit the development of CNV,
several drug candidates are under study for possible clinical usage [5,9,10].

Cinidium officinale Makino has been used in Asia for centuries as a medicinal plant to treat pain
and inflammation. In previous reports, C. officinale promoted blood circulation in inflammatory
diseases [11,12]. Haranaka et al. reported that C. officinale has antitumor and antimetastatic activities
in experimental animals [13]. Recently, Kwak et al. showed that the extract of C. officinale inhibited
suture-induced corneal neovascularization in rats [14]. In addition, C. officinale contains a variety
of volatile phthalide derivatives. Butylidenephthalide is one of the major compounds found in
C. officinale [15]. Butylidenephthalide inhibited human umbilical vein endothelial cell proliferation,
migration and capillary-like tube formation in vitro and suppressed the development of zebrafish
subintestinal vessels in vivo [16]. Although anti-angiogenic properties of C. officinale and its bioactive
ingredient, butylidenephthalide, have been reported, the effect on neovascular AMD is still unknown.
Therefore, in this study, we investigated the inhibitory effect of the extract of C. officinale and
butylidenephthalide on subretinal neovascularization in a rat laser-induced CNV model.

2. Results

2.1. C. officinale Extract (COE) Inhibits Laser-Induced CNV Formation and Macrophage Infiltration

The treatment of COE significantly inhibited CNV formation in the subretinal areas. The size of
CNV was measured using choroidal flat mounts 10 days after laser photocoagulation. As shown in
Figure 1, the mean CNV areas were 11,533 ˘ 3335 µm2 in the vehicle-treated rats and 5845 ˘ 1730 µm2

in the COE 100 mg/kg/day-treated rats.
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Figure 1. Effect of COE on CNV. (A) Choroidal flat mounts of laser-induced CNV. The CNV lesions 
were labeled with isolectin B4. White arrows indicate laser-induced CNV; (B) The areas of CNV 
lesions were measured in each group; (C) The presence of macrophages in CNV was evaluated by 
immunostaining for F4/80; (D) The immunoreactivity of F4/80 in CNV was measured in the choroidal 
flat mounts. The values in the bar graph represent the mean ± SE, n = 5. 

Figure 1. Effect of COE on CNV. (A) Choroidal flat mounts of laser-induced CNV. The CNV lesions
were labeled with isolectin B4. White arrows indicate laser-induced CNV; (B) The areas of CNV
lesions were measured in each group; (C) The presence of macrophages in CNV was evaluated by
immunostaining for F4/80; (D) The immunoreactivity of F4/80 in CNV was measured in the choroidal
flat mounts. The values in the bar graph represent the mean ˘ SE, n = 5.
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Rats treated with COE exhibited 49.3% reduction in the extent of CNV lesions compared with
the vehicle-treated rats. These results indicate that COE helps to inhibit the laser-induced CNV in
rats. To examine how COE suppresses CNV formation, we analyzed the infiltration of macrophages
in CNV by immunostaining for the macrophage marker F4/80 (Figure 1C,D). The COE-treated rats
showed less immunoreactivity for F4/80 in the RPE-choroid complex compared with vehicle-treated
animals. These results suggest that the macrophage infiltration during the process of CNV formation
was suppressed by COE.

2.2. COE Regulates the Expression of Angiogenesis-Associated Factors

We investigated the expression levels of angiogenesis-related factors in the RPE-choroidal
complexes using a protein array to evaluate the direct effects of COE on CNV. As shown in Figure 2,
COE decreased the expression of pro-angiogenic factors (insulin-like growth factor binding protein-1
(IGFBP-1), monocyte chemoattractant protein-1 (MCP-1), plasminogen activator inhibitor 1 (PAI-1)
and VEGF) compared with the vehicle-treated rats. The expression of insulin-like growth factor-2
(IGF-2) was significantly increased in the vehicle-treated rats, but this pro-angiogenic factor remained
unaffected by COE treatment. The several weak spots in the protein array may be due to low
sensitivity of this antibody on the array. These results indicate that COE might exert anti-angiogenic
effects by inhibiting the expression of IGFBP-1, MCP-1, PAI-1 and VEGF.
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Figure 2. Effects of COE on the expression levels of angiogenesis-related proteins. The positive 
controls are located in three corners of each array, and the negative control is located in the lower 
right corner of each array. Modulated proteins in the PRE-choroidal complexes treated with COE are 
highlighted with squares and indicated by numbers. The values in the bar graph represent the  
mean ± SE, n = 5. * p < 0.05 vs. normal rats, # p < 0.05 vs. vehicle-treated rats. 

2.3. Butylidenephthalide Blocks Laser-Induced CNV Formation 

To determine whether butylidenephthalide is a bioactive ingredient of C. officinale as an  
anti-angiogenic agent, this compound was also administered in the rat laser-induced CNV model.  
As shown in Figure 3, the mean CNV areas were 12,003 ± 4746 μm2 in the vehicle-treated rats  
and 6291 ± 2504 μm2 in the butylidenephthalide 5 mg/kg/day-treated rats. Rats treated with 
butylidenephthalide exhibited 48.6% reductions in the extent of CNV lesions compared with the 
vehicle-treated rats. 

In the immunostaining for the macrophage marker F4/80 (Figure 3C, D), the immunoreactivity 
for F4/80 tended to be lower in the butylidenephthalide-treated rats than in the vehicle-treated rats. 

Figure 2. Effects of COE on the expression levels of angiogenesis-related proteins. The positive
controls are located in three corners of each array, and the negative control is located in the lower
right corner of each array. Modulated proteins in the PRE-choroidal complexes treated with COE
are highlighted with squares and indicated by numbers. The values in the bar graph represent the
mean ˘ SE, n = 5. * p < 0.05 vs. normal rats, # p < 0.05 vs. vehicle-treated rats.

2.3. Butylidenephthalide Blocks Laser-Induced CNV Formation

To determine whether butylidenephthalide is a bioactive ingredient of C. officinale as an
anti-angiogenic agent, this compound was also administered in the rat laser-induced CNV model.
As shown in Figure 3, the mean CNV areas were 12,003 ˘ 4746 µm2 in the vehicle-treated rats
and 6291 ˘ 2504 µm2 in the butylidenephthalide 5 mg/kg/day-treated rats. Rats treated with
butylidenephthalide exhibited 48.6% reductions in the extent of CNV lesions compared with the
vehicle-treated rats.
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In the immunostaining for the macrophage marker F4/80 (Figure 3C,D), the immunoreactivity
for F4/80 tended to be lower in the butylidenephthalide-treated rats than in the vehicle-treated rats.Molecules 2015, 20, page–page 
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Figure 3. Effect of butylidenephthalide on CNV. (A) The CNV lesions were labeled with the 
endothelial cell marker isolectin B4. White arrows indicate laser-induced CNV; (B) The areas of CNV 
lesions were measured in each group; (C) The presence of macrophages in CNV was evaluated by 
immunostaining for F4/80; (D) The immunoreactivity of F4/80 in CNV was measured in the choroidal 
flat mounts. The values in the bar graph represent the mean ± SE, n = 5.  
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the expression levels of these proteins were also examined by western blot analysis. Similarly, the 
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Figure 3. Effect of butylidenephthalide on CNV. (A) The CNV lesions were labeled with the
endothelial cell marker isolectin B4. White arrows indicate laser-induced CNV; (B) The areas of CNV
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2.4. Butylidenephthalide also Regulates the Expression of Angiogenesis-Associated Factors, Similar to Those
Seen in the COE-Treated Rats

In the protein array, butylidenephthalide decreased the expression of pro-angiogenic factors
(angiopoietin-like 3 (ANGPTL-3), endocan, IGFBP-1, lipocalin-2, MCP-1, PAI-1 and VEGF) compared
with the vehicle-treated rats (Figure 4). Among these pro-angiogenic factors, IGFBP-1, MCP-1 and
VEGF-1 displayed a >2-fold up-regulation in the vehicle-treated group and a <2-fold down-regulation
in the butylidenephthalide-treated group, similar to those seen in the COE-treated rats. These results
suggest that butylidenephthalide mediated anti-angiogenic effects by inhibiting the expression of
IGFBP-1, MCP-1 and VEGF, indicating that anti-angiogenic activities of COE may be in part due to
its bioactive compound, butylidenephthalide.

To confirm the effect of COE and butylidenephthalide on IGFBP-1, MCP-1 and VEGF in CNV,
the expression levels of these proteins were also examined by western blot analysis. Similarly, the
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protein levels of IGFBP-1, MCP-1, and VEGF were increased compared with the normal control. The
decreased levels of these proteins were detected in the COE and butylidenephthalide-treated rats
compared with the vehicle-treated rats (Figure 5).Molecules 2015, 20, page–page 
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Figure 4. Effects of butylidenephthalide on the expression levels of angiogenesis-related proteins. 
Modulated proteins in the PRE-choroidal complexes treated with butylidenephthalide are highlighted 
with squares and indicated by numbers. The values in the bar graph represent the mean ± SE, n = 5.  
* p < 0.05 vs. normal rats, # p < 0.05 vs. vehicle-treated rats. 

 
Figure 5. COE and butylidenephthalide suppressed IGFBP-1, MCP-1, and VEGF expression in the 
RPE-choroidal complex. Protein levels of IGFBP-1, MCP-1, and VEGF were analyzed by Western 
blotting. The values in the bar graph represent the mean ± SE, n = 5. * p < 0.05 vs. normal rats, # p < 0.05 
vs. vehicle-treated rats. 

3. Discussion 

In the present study, we demonstrated for the first time that COE inhibited experimental CNV 
in a rat model. CNV area and macrophage infiltration were significantly reduced in COE-treated rats 
compared with vehicle-treated rats. The expression levels of IGFBP-1, MCP-1, PAI-1 and VEGF in the 
RPE-choroidal complex were lowered by the administration of COE. Furthermore, butylidenephthalide, 
a bioactive compound found in COE, also significantly suppressed CNV formation and macrophage 
infiltration and decreased the expression of IGFBP-1, MCP-1, and VEGF-1. In the protein, the expression 
levels of various angiogenic factors were changed by COE and butylidenephthalide. However, when 
considering 2-fold change thresholds, IGFBP-1, MCP-1 and VEGF-1 displayed a >2-fold up-regulation 
in the vehicle-treated rats and a <2-fold down-regulation in the COE and butylidenephthalide-treated 
group. Taken together, our results suggest that the CNV inhibitory effect of C. officinale is primarily 
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Modulated proteins in the PRE-choroidal complexes treated with butylidenephthalide are highlighted
with squares and indicated by numbers. The values in the bar graph represent the mean ˘ SE, n = 5.
* p < 0.05 vs. normal rats, # p < 0.05 vs. vehicle-treated rats.
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3. Discussion

In the present study, we demonstrated for the first time that COE inhibited experimental CNV
in a rat model. CNV area and macrophage infiltration were significantly reduced in COE-treated
rats compared with vehicle-treated rats. The expression levels of IGFBP-1, MCP-1, PAI-1 and
VEGF in the RPE-choroidal complex were lowered by the administration of COE. Furthermore,
butylidenephthalide, a bioactive compound found in COE, also significantly suppressed CNV
formation and macrophage infiltration and decreased the expression of IGFBP-1, MCP-1, and
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VEGF-1. In the protein, the expression levels of various angiogenic factors were changed by COE and
butylidenephthalide. However, when considering 2-fold change thresholds, IGFBP-1, MCP-1 and
VEGF-1 displayed a >2-fold up-regulation in the vehicle-treated rats and a <2-fold down-regulation
in the COE and butylidenephthalide-treated group. Taken together, our results suggest that the CNV
inhibitory effect of C. officinale is primarily via down-regulation of IGFBP-1, MCP-1, and VEGF, and
that butylidenephthalide is a potent antiangiogenic bioactive compound of C. officinale.

Angiogenesis plays an important role in CNV formation. However, the complex pathogenesis
of CNV remains unclear. Normally, the balance between angiogenic and anti-angiogenic factors is
tightly controlled [17]. In neovascular AMD, this balance is destroyed, and the overexpressions of
pro-angiogenic factors such as VEGF, activate angiogenic pathways and trigger CNV formation [18].
Although the laser-induced CNV rat model is not the same as the CNV secondary to wet AMD
in patients, this experimental model shares several same aspects with CNV in patients with wet
AMD, including the increased VEGF level, the disruption of Bruch’s membrane and subretinal
neovascularization [19]. The murine laser-induced CNV model has been widely used to study
neovascular AMD [20]. In this study, we evaluated the therapeutic potential of COE and
butylidenephthalide for the treatment of CNV using this animal model.

VEGF inhibitors provide great benefits in patients with neovascular AMD and diabetic
retinopathy [21]. However, increasing evidence suggests that MCP-1 and IGFBP-1 also have
a role in retinal and choroidal neovascularization. Our protein array indicated that COE and
butylidenephthalide markedly suppressed the expression of MCP-1 and IGFBP-1. MCP-1 expression
is increased in both wet AMD and diabetic retinopathy. MCP-1 deficiency prevented the development
of laser-induced CNV in MCP´{´ mice [22]. Moreover, MCP-1 has been shown to contribute
to the recruitment of inflammatory cells into the retina [23] and indirectly induces apoptosis in
retinal pigment epithelial cells by infiltrating inflammatory cells [24]. Increased expression of
IGFBP-1 in the retina also plays an important role in the pathogenesis of retinal neovascularization.
Vitreal expression levels of IGFBP-1 were increased in patients with ischemic central retinal vein
occlusion [25]. IGFBP-1 shows large increases in neovascular tufts in ischemic retinopathy compared
with normal vessels [26]. Based on these findings, we can hypothesize that IGFBP-1 and MCP-1
may be a second validated target against CNV formation [21]. In the present study, COE and
butylidenephthalide prevented subretinal neovascularization through down-regulation of IGFBP-1
and MCP-1.

COE has been shown to have multifunctional properties in various experimental models [11–14].
Onishi et al. showed that COE significantly inhibited liver metastasis by colon 26-L5 carcinoma
cells and lung metastasis by B16-BL6 melanoma cells in vivo [27]. Kwak et al. suggested that
anti-tumor and anti-metastatic effects of COE might be mediated by its angiogenic activities against
neovascularization [14]. Our results suggest that the effects of COE and its bioactive compound,
butylidenephthalide, are mediated by IGFBP-1, MCP-1 and VEGF. VEGF acts as a major factor of
CNV formation. Other signaling pathways may also be involved in CNV formation. Several previous
studies have shown that drugs targeting multiple pathways have more potent anti-angiogenic
activities [10]. In this regard, COE and butylidenephthalide are promising agents that may inhibit
CNV formation through blocking multiple angiogenic pathways.

Regarding cellular mechanisms for suppressing CNV by the treatment with COE and
butylidenephthalide, the present data showed that the treatment led to significant suppression
of macrophage infiltration. In previous reports, macrophages, a rich source of VEGF, have been
shown to facilitate the development of CNV [28]. It has been reported that C. officinale and
butylidenephthalide have anti-inflammatory activities [11,12,29]. Collectively, the currently observed
suppression of CNV by the treatment with COE and butylidenephthalide is likely attributable to
the inhibition of macrophage infiltration and subsequent macrophage-derived VEGF secretion. In
conclusion, COE and butylidenephthalide exhibited an anti-angiogenic effect in a rat model of
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laser-induced CNV. COE and butylidenephthalide suppressed the expression of IGFBP-1, MCP-1 and
VEGF. Therefore, COE may serve as a valuable agent to treat human neovascular AMD.

4. Experimental Section

4.1. Preparation of C. officinale Extract

A standardized COE was purchased from a plant extract bank at that Korea Research Institute
of Bioscience & Biotechnology (Daejeon, Korea). A collection of voucher specimens is available for
confirmation in that plant extract bank. Briefly, dried and grinded rhizome of C. officinale (4.6875 g)
was boiled with distilled water for 2 h at 100 ˝C, and the extract was condensed using freeze-drying
(yield: 33.3%). COE was standardized using a reference compound, butylidenephthalide (Sigma,
St. Louis, MO, USA), by high-performance liquid chromatography (HPLC, Agilent Technologies,
Snata Clara, CA, USA).

4.2. Animals and Experimental Design

Seven-week-old male Long-Evans rats were purchased from Japan SLC (Hamamatsu, Japan).
Rats were anesthetized using zolazepam (Zoletil, Virbac, Carros, France), and pupils were dilated
with 0.5% tropicamide (Santen Pharmaceutical, Osaka, Japan). Experimental CNV was created by
laser photocoagulation. Briefly, the fundus was visualized using a microscope cover slip with 0.3%
hydroxypropyl methylcellulose (Sigma). A diode laser (Oculight Slx, IRIS Medical, Mountain View,
CA, USA) was used for photocoagulation (577 nm wavelength, 0.1 s duration, 100 µm spot size,
150 mW intensity). Four laser spots at equal distance from the optic nerve head were created per
eye. Rats that developed cavitation bubbles, indicating rupture of Bruch’s membrane and creation
of a sufficient injury to induce CNV, were included in the study. Laser spots with hemorrhagic
complications were excluded from further evaluation. The rats in normal control group were
maintained without laser photocoagulation. All procedures were approved by the Institutional
Animal Care and Use Committee of the Korea Institute of Oriental Medicine (Daejeon, Korea).

4.3. Administration of COE and Butylidenephthalide

The laser-treated rats were randomly assigned to three groups: vehicle-only (CNV), COE
(100 mg/kg/day) and butylidenephthalide (5 mg/kg/day). The COE and butylidenephthalide
was dissolved in 5% DMSO immediately before use, and 100 µL of this solution was injected
intraperitoneally once per day for 10 days after laser photocoagulation. The normal control rats
(NOR) were injected with the vehicle solution for 10 days. After the treatment with COE and
butylidenephthalide, no evidence of systemic adverse effects was observed in any study group.

4.4. Preparation of Choroidal Flat Mounts and Lectin Staining

Ten days after laser photocoagulation, rats in each group were anesthetized with zolazepam
(Virbac), and eyes were enucleated and fixed in 4% paraformaldehyde for 1 h. The anterior segment
was removed and the entire retina was carefully dissected from the eye cup. RPE-choroidal complex
was flattened by making four radial incisions with the sclera facing down. The size of CNV
lesions was measured in RPE-choroid flat mounts labeled with tetramethylrhodamine isothiocyanate
(TRITC)-conjugated isolectin B4 (Sigma). Briefly, the flat mounts were incubated with PBS containing
5% Triton X-100 and 1% bovine serum albumin for 3 h at 37 ˝C. The flat mounts were then washed
3 times with PBS and labeled with TRITC-conjugated isolectin B4 from Bandeiraea simplicifolia (1:50)
diluted in PBS. The CNV was viewed with a BX51 microscope (Olympus, Tokyo, Japan). The Image J
software (NIH, Bethesda, MD, USA) was used to measure the CNV area.
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4.5. Angiogenesis-Related Protein Array

To investigate the expression levels of angiogenesis-related proteins in the RPE-choroidal
complex, an antibody array analysis (Proteome Profiler™ Rat Adipokine Antibody Array Kit, R & D
Systems, Minneapolis, MN, USA) was performed according to the manufacturer’s instructions. Ten
days after laser photocoagulation, rats were anesthetized and sacrificed. Each RPE-choroidal complex
was carefully isolated under a microscope. The RPE-choroidal complexes were homogenized in PBS
using protease inhibitors and centrifuged at 10,000ˆ g for 5 min, and the total protein concentrations
were quantified. The lysates were added to a membrane spotted with antibodies against
angiogenesis-related proteins. After being incubated overnight at 4 ˝C, the membranes were treated
with streptavidin-horseradish peroxidase and visualized using an enhanced chemiluminescence
detection system (Amersham Bioscience, Piscataway, NJ, USA) on image analyzer (LAS-3000,
Fujifilm, Tokyo, Japan). Optical density measurements were obtained using the Image J software.
A list of the antibodies can be found on the manufacturer’s web page [30].

4.6. Immunostaining for Infiltrating Macrophages

Ten days after laser photocoagulation, rats were anesthetized and sacrificed. Eyes were
enucleated and fixed in 4% paraformaldehyde for 1 h. The anterior segment was removed and the
entire retina was carefully dissected from the eye cup. Each RPE-choroidal complex was carefully
isolated under a microscope. Whole-mount RPE-choroid complex was incubated with a rabbit
polyclonal antibody against macrophage marker F4/80 (Santa Cruz Biotechnology, Paso Robles, CA,
USA). The whole mounts were washed for 30 min at room temperature and then incubated for 2 h at
4 ˝C with fluorescein isothiocyanate-conjugated donkey anti-rabbit immunoglobulin G (Santa Cruz
Biotechnology). The RPE-choroid complex was viewed with an Olympus BX51 microscope. Image J
software was used to measure the immunoreactivity for F4/80.

4.7. Western Blot Analysis

Ten days after laser photocoagulation, rats were anesthetized and sacrificed. Each RPE-choroidal
complex was carefully isolated under a microscope. The RPE-choroidal complexes were
homogenized in PBS using protease inhibitors and centrifuged at 10,000ˆ g for 5 min, and the
total protein concentrations were determined by Bradford assay. Exactly equal amounts of protein
(50 µg/lane) were loaded, separated by 10% sodium dodecyl sulfate–polyacrylamide gel
electrophoresis, and transferred to polyvinylidene difluoride membranes (Bio-Rad, Hercules,
CA, USA). The membranes were labeled with mouse anti-IGFBP-1 (Santa Cruz Biotechnology),
mouse anti-MCP-1 antibody (Santa Cruz Biotechnology) and mouse anti-VEGF antibody (Abcam,
Cambridge, MA, USA). The immunoreactive bands were detected using chemiluminescence
detection reagents (Pierce, Rockford, IL, USA), and the density of the bands-of-interest was further
measured using a LAS-3000 machine (Fujifilm).

4.8. Statistical Analysis

The data are expressed as the mean ˘ SE. Statistical significance was determined by one-way
analysis of variance (ANOVA) followed by Tukey’s multiple comparison test. Differences with
p < 0.05 were considered statistically significant.
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