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Abstract: The syntheses of quinoxalines derived from 1,2-diamine and 1,2-dicarbonyl compounds
under mild reaction conditions was carried out using a nanoparticle-supported cobalt catalyst. The
supported nanocatalyst exhibited excellent activity and stability and it could be reused for at least
ten times without any loss of activity. No cobalt contamination could be detected in the products by
AAS measurements, pointing to the excellent activity and stability of the Co nanomaterial.
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1. Introduction

Quinoxaline derivatives are attractive N-containing heterocycles and these scaffolds have
attracted much attention, not only in synthetic chemistry [1–3] but also in the medicinal field [4–11].
These compounds exhibit diverse biological activities, such as antiviral [4,5], antibacterial [6],
anti-inflammatory [7], antitumoral [8,9] and anti-HIV properties [10,11]. Examples of quinoxaline-
containing pharmacological entities are shown in Figure 1. In addition, quinoxalines have been
applied as building blocks for the development of macrocyclic molecular receptors [12,13],
semiconducting materials [14–20], dyes [21], cavitands [22] and luminescent materials [23].
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1. Introduction 

Quinoxaline derivatives are attractive N-containing heterocycles and these scaffolds have 
attracted much attention, not only in synthetic chemistry [1–3] but also in the medicinal field [4–11].  
These compounds exhibit diverse biological activities, such as antiviral [4,5], antibacterial [6],  
anti-inflammatory [7], antitumoral [8,9] and anti-HIV properties[10,11]. Examples of quinoxaline- 
containing pharmacological entities are shown in Figure 1. In addition, quinoxalines have been applied 
as building blocks for the development of macrocyclic molecular receptors [12,13], semiconducting 
materials [14–20], dyes [21], cavitands [22] and luminescent materials [23]. 
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Figure 1. Biologically important quinoxalines. 

Generally, quinoxalines can be prepared via a double condensation of 1,2-phenylenediamines 
with 1,2-diketones [24–28]. A number of reagents have been shown to catalyze these reactions such as 
acidic alumina [29], citric acid [30], magnetic Fe3O4 nanoparticles in H2O [31], silica-bonded sulfonic 

Figure 1. Biologically important quinoxalines.

Generally, quinoxalines can be prepared via a double condensation of 1,2-phenylenediamines
with 1,2-diketones [24–28]. A number of reagents have been shown to catalyze these reactions such
as acidic alumina [29], citric acid [30], magnetic Fe3O4 nanoparticles in H2O [31], silica-bonded
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sulfonic acid [32], among others [33,34]. Other protocols to synthesize quinoxalines mainly
involve the oxidative trapping of vicinal diols or α-hydroxy ketones with 1,2-diamines [35–42],
1,4-addition of 1,2-diamines to diazenylbutenes [43], coupling of epoxides with ene-1,2-diamines [44,45],
2-nitroanilines with phenethylamines [46], alkynes or ketones with 1,2-diamines via a key oxidation
process [47–51]. Therefore, the development of efficient methods for accessing quinoxalines
derivatives continues to be an active area of research.

Nanoparticle-supported catalysts can offer important advantages as compared to homogeneous
transition metal systems and colloidal nanoparticles. These include a good reusability coupled
with high activities and specificities in different chemistries based on their excelling properties
(high surface areas, degenerated density of energy states and plasmon) [52–54]. In this regard,
Co/supported catalysts were previously reported to be highly active and versatile for acid and redox
catalyzed processes [54,55].

To the best of our knowledge, there is no protocol describing the preparation of quinoxaline
derivatives using a nanoparticle-supported cobalt catalyst. In view of the explained above, we
decided to examine the synthesis of substituted quinoxalines by reaction of 1,2-diketones with
1,2-phenylenediamines using a nanoparticle-supported cobalt catalyst (Scheme 1).
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2. Results and Discussion 

Initially, we chose 1,2-diphenylethanedione (1a)and 1,2-diamino-4-nitrobenzene (2a) as model 
substrates to establish the best conditions for this reaction and some experiments were performed to 
synthesize the corresponding quinoxaline 3a (Table 1). We started our studies reacting 1,2-diketone 
1a (1.0 mmol) with 1,2-phenylenediamine 2a (1.0 mmol) at 100 °C for 2 h, without catalyst and solvent. 
Under these conditions, product 3a was not obtained (Table 1, entry 1). Good results were obtained 
however when the reactions of substrates 1a and 2a were carried out using H2O as solvent in the 
presence of Co NPs (2 mol %) as catalyst. Reactions performed at 100 °C and 50 °C gave the desired 
product in 87% and 57% yield, respectively (Table 1, entries 2 and 3). A similar result was obtained 
when the reaction was conducted at 100 °C, however using 1 mol% of Co NPs (86% yield) (Table 1, 
entry 4). Good results were also found when the reactions were performed using EtOH as solvent 
(Table 1, entry 5–9). Excellent yields of product 3a were achieved in reactions carried out in EtOH at 
78 °C using 1 mol% of catalyst (Table 1, entries 7–8). When the amount of catalyst was reduced to  
0.5 mol %, a decrease in the yield of product 3a was observed (Table 1, entry 9). Finally, the reaction 
performed using 1 mol % of Co NPs at 100 °C and in absence of EtOH yielded the quinoxaline 3a in 
72% yield (Table 1, entry 10). 

Analyzing the results shown in Table 1, we established the best reaction conditions reacting  
1,2-diphenylethanedione (1a, 1.0 mmol, 0.033 g) with 1,2-diamino-4-nitrobenzene (2a, 1.0 mmol) 
using supported CoNPs (1 mol %) as catalyst and EtOH (5 mL) as solvent. After that, the mixture was 
stirred at reflux for 90 min in open atmosphere, affording 6-nitro-2,3-diphenylquinoxaline(3a) in 92% 
yield after crystallization. 
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2. Results and Discussion

Initially, we chose 1,2-diphenylethanedione (1a)and 1,2-diamino-4-nitrobenzene (2a) as model
substrates to establish the best conditions for this reaction and some experiments were performed to
synthesize the corresponding quinoxaline 3a (Table 1). We started our studies reacting 1,2-diketone 1a
(1.0 mmol) with 1,2-phenylenediamine 2a (1.0 mmol) at 100 ˝C for 2 h, without catalyst and solvent.
Under these conditions, product 3a was not obtained (Table 1, entry 1). Good results were obtained
however when the reactions of substrates 1a and 2a were carried out using H2O as solvent in the
presence of Co NPs (2 mol %) as catalyst. Reactions performed at 100 ˝C and 50 ˝C gave the desired
product in 87% and 57% yield, respectively (Table 1, entries 2 and 3). A similar result was obtained
when the reaction was conducted at 100 ˝C, however using 1 mol% of Co NPs (86% yield) (Table 1,
entry 4). Good results were also found when the reactions were performed using EtOH as solvent
(Table 1, entry 5–9). Excellent yields of product 3a were achieved in reactions carried out in EtOH at
78 ˝C using 1 mol% of catalyst (Table 1, entries 7–8). When the amount of catalyst was reduced to
0.5 mol %, a decrease in the yield of product 3a was observed (Table 1, entry 9). Finally, the reaction
performed using 1 mol % of Co NPs at 100 ˝C and in absence of EtOH yielded the quinoxaline 3a in
72% yield (Table 1, entry 10).

Analyzing the results shown in Table 1, we established the best reaction conditions reacting
1,2-diphenylethanedione (1a, 1.0 mmol, 0.033 g) with 1,2-diamino-4-nitrobenzene (2a, 1.0 mmol)
using supported CoNPs (1 mol %) as catalyst and EtOH (5 mL) as solvent. After that, the mixture
was stirred at reflux for 90 min in open atmosphere, affording 6-nitro-2,3-diphenylquinoxaline(3a) in
92% yield after crystallization.
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8 1 EtOH 78 1.5 92 
9 0.5 EtOH 78 1.5 80 

10 1 - 100 2 72 
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In order to extend the scope of the reaction, the best conditions were employed in reactions of  
1,2-diamino-4-nitrobenzene (2a) with other 1,2-diketones 1b–e with different patterns of substitution 
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Entry 1,2-Diketone 1 1,2-Diamines 2 Product 3 Yield (%)b M.P. (°C)
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1a 
 

2a   
3a 
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2 
  

1b 

2a 
 

3b 

92 195–197 

Entry Catalyst (mol %) Solvent Temperature (˝C) Time (h) Yield 3a (%) b
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2 2 H2O 100 2 87
3 2 H2O 50 2 57
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8 1 EtOH 78 1.5 92
9 0.5 EtOH 78 1.5 80
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a Reactions are performed using, 1,2-diphenylethanedione 1a (1.0 mmol) and 1,2-diamino-4-nitrobenzene 2a
(1.0 mmol) in open atmosphere. b Yields are given for isolated product 3a after crystallization.

In order to extend the scope of the reaction, the best conditions were employed in reactions of
1,2-diamino-4-nitrobenzene (2a) with other 1,2-diketones 1b–e with different patterns of substitution
and the results are summarized in Table 2. As it can be seen on Table 2 (Entries 1–5), our methodology
is suitable to a range of substituted 1,2-diketones containing electron-withdrawing groups, affording
excellent yields to desired products in all examples. In addition, the possibility of performing
the reaction of 1,2-diketones 1a–e with o-phenylenediamine (2b) was also investigated (Table 2,
entries 6–10). Using these substrates, a range of substituted quinoxalines was obtained in excellent
yields using the nanoparticle-supported cobalt catalyst under optimized reaction conditions.

Table 2. Generality of the reaction of 1,2-diketones with 1,2-diamines a.
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a Reactions were performed using 1,2-diketones 1a–e (1.0 mmol), 1,2-diamines 2a–b (1.0 mmol), 
supported CoNPs (1 mol %, 0.033 g) and EtOH (5 mL) at reflux in open flask for 90 min. b Yields are 
given for isolated products after crystallization. 
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a Reactions were performed using 1,2-diketones 1a–e (1.0 mmol), 1,2-diamines 2a–b (1.0 mmol), 
supported CoNPs (1 mol %, 0.033 g) and EtOH (5 mL) at reflux in open flask for 90 min. b Yields are 
given for isolated products after crystallization. 
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Entry 1,2-Diketone 1 1,2-Diamines 2 Product 3 Yield (%)b M.P. (°C)
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a Reactions were performed using 1,2-diketones 1a–e (1.0 mmol), 1,2-diamines 2a–b (1.0 mmol), 
supported CoNPs (1 mol %, 0.033 g) and EtOH (5 mL) at reflux in open flask for 90 min. b Yields are 
given for isolated products after crystallization. 

1d

2a

Molecules 2015, 20, page–page 

4 

Table 2.Cont. 

Entry 1,2-Diketone 1 1,2-Diamines 2 Product 3 Yield (%)b M.P. (°C)
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a Reactions were performed using 1,2-diketones 1a–e (1.0 mmol), 1,2-diamines 2a–b (1.0 mmol), 
supported CoNPs (1 mol %, 0.033 g) and EtOH (5 mL) at reflux in open flask for 90 min. b Yields are 
given for isolated products after crystallization. 
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Entry 1,2-Diketone 1 1,2-Diamines 2 Product 3 Yield (%)b M.P. (°C)
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a Reactions were performed using 1,2-diketones 1a–e (1.0 mmol), 1,2-diamines 2a–b (1.0 mmol), 
supported CoNPs (1 mol %, 0.033 g) and EtOH (5 mL) at reflux in open flask for 90 min. b Yields are 
given for isolated products after crystallization. 

1e

2a

Molecules 2015, 20, page–page 

4 

Table 2.Cont. 

Entry 1,2-Diketone 1 1,2-Diamines 2 Product 3 Yield (%)b M.P. (°C)
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a Reactions were performed using 1,2-diketones 1a–e (1.0 mmol), 1,2-diamines 2a–b (1.0 mmol), 
supported CoNPs (1 mol %, 0.033 g) and EtOH (5 mL) at reflux in open flask for 90 min. b Yields are 
given for isolated products after crystallization. 
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Entry 1,2-Diketone 1 1,2-Diamines 2 Product 3 Yield (%)b M.P. (°C)
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a Reactions were performed using 1,2-diketones 1a–e (1.0 mmol), 1,2-diamines 2a–b (1.0 mmol), 
supported CoNPs (1 mol %, 0.033 g) and EtOH (5 mL) at reflux in open flask for 90 min. b Yields are 
given for isolated products after crystallization. 
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Entry 1,2-Diketone 1 1,2-Diamines 2 Product 3 Yield (%)b M.P. (°C)
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a Reactions were performed using 1,2-diketones 1a–e (1.0 mmol), 1,2-diamines 2a–b (1.0 mmol), 
supported CoNPs (1 mol %, 0.033 g) and EtOH (5 mL) at reflux in open flask for 90 min. b Yields are 
given for isolated products after crystallization. 
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Entry 1,2-Diketone 1 1,2-Diamines 2 Product 3 Yield (%)b M.P. (°C)
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a Reactions were performed using 1,2-diketones 1a–e (1.0 mmol), 1,2-diamines 2a–b (1.0 mmol), 
supported CoNPs (1 mol %, 0.033 g) and EtOH (5 mL) at reflux in open flask for 90 min. b Yields are 
given for isolated products after crystallization. 
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a Reactions were performed using 1,2-diketones 1a–e (1.0 mmol), 1,2-diamines 2a–b (1.0 mmol), 
supported CoNPs (1 mol %, 0.033 g) and EtOH (5 mL) at reflux in open flask for 90 min. b Yields are 
given for isolated products after crystallization. 
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a Reactions were performed using 1,2-diketones 1a–e (1.0 mmol), 1,2-diamines 2a–b (1.0 mmol), 
supported CoNPs (1 mol %, 0.033 g) and EtOH (5 mL) at reflux in open flask for 90 min. b Yields are 
given for isolated products after crystallization. 
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a Reactions were performed using 1,2-diketones 1a–e (1.0 mmol), 1,2-diamines 2a–b (1.0 mmol), 
supported CoNPs (1 mol %, 0.033 g) and EtOH (5 mL) at reflux in open flask for 90 min. b Yields are 
given for isolated products after crystallization. 
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a Reactions were performed using 1,2-diketones 1a–e (1.0 mmol), 1,2-diamines 2a–b (1.0 mmol), 
supported CoNPs (1 mol %, 0.033 g) and EtOH (5 mL) at reflux in open flask for 90 min. b Yields are 
given for isolated products after crystallization. 
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a Reactions were performed using 1,2-diketones 1a–e (1.0 mmol), 1,2-diamines 2a–b (1.0 mmol), 
supported CoNPs (1 mol %, 0.033 g) and EtOH (5 mL) at reflux in open flask for 90 min. b Yields are 
given for isolated products after crystallization. 
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a Reactions were performed using 1,2-diketones 1a–e (1.0 mmol), 1,2-diamines 2a–b (1.0 mmol), 
supported CoNPs (1 mol %, 0.033 g) and EtOH (5 mL) at reflux in open flask for 90 min. b Yields are 
given for isolated products after crystallization. 
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Entry 1,2-Diketone 1 1,2-Diamines 2 Product 3 Yield (%)b M.P. (°C)
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a Reactions were performed using 1,2-diketones 1a–e (1.0 mmol), 1,2-diamines 2a–b (1.0 mmol), 
supported CoNPs (1 mol %, 0.033 g) and EtOH (5 mL) at reflux in open flask for 90 min. b Yields are 
given for isolated products after crystallization. 
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a Reactions were performed using 1,2-diketones 1a–e (1.0 mmol), 1,2-diamines 2a–b (1.0 mmol), 
supported CoNPs (1 mol %, 0.033 g) and EtOH (5 mL) at reflux in open flask for 90 min. b Yields are 
given for isolated products after crystallization. 
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a Reactions were performed using 1,2-diketones 1a–e (1.0 mmol), 1,2-diamines 2a–b (1.0 mmol), 
supported CoNPs (1 mol %, 0.033 g) and EtOH (5 mL) at reflux in open flask for 90 min. b Yields are 
given for isolated products after crystallization. 
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Entry 1,2-Diketone 1 1,2-Diamines 2 Product 3 Yield (%)b M.P. (°C)
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a Reactions were performed using 1,2-diketones 1a–e (1.0 mmol), 1,2-diamines 2a–b (1.0 mmol), 
supported CoNPs (1 mol %, 0.033 g) and EtOH (5 mL) at reflux in open flask for 90 min. b Yields are 
given for isolated products after crystallization. 
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Reused runs were carried out under similarly optimized conditions using 5 mmol
1,2-diphenylethanedione (1a), 5 mmol of 1,2-diamino-4-nitrobenzene (2a) and supported cobalt
catalyst (0.05 mmol, 0.165 g) at 78 ˝C in 10 mL of ethanol. The catalyst showed excellent recoverability
and reusability over ten successive runs under the same conditions as the first run. It is quite
remarkable that all materials discussed in this study exhibited outstanding structural stability by
TGA (results not shown). The cobalt catalyst was found to be highly stable and reusable under
the investigated conditions (up to 12 runs) without any significant loss of its catalytic activity
(Table 3). Indeed, ICP analysis of both reaction filtrate and catalyst showed no detectable Co leaching
(<0.5 ppm) in the reaction filtrate upon reaction completion, with an almost identical Co content for
both fresh and reused catalyst (0.30 vs. 0.29 mmol of Co per gram of catalyst for fresh and 10-time
reused material, respectively).

Table 3. Reuses of the supported CoNP catalyst in the reaction of 1,2-diphenylethanedione (1a) with
1,2-diamino-4-nitrobenzene (2a).

Run No. a 1 2 3 4 5 6 7 8 9 10

Yield (%) b 94 94 92 92 92 90 91 90 90 87
a Reaction conditions: 1,2-diphenylethanedione (5.0 mmol) and 1,2-diamino-4-nitrobenzene (5.0 mmol),
supported CoNPs ( 0.05 mmol, 0.165 g) in EtOH (10 mL) at reflux conditions for 90 min. b Isolated yields.

The study of the scale-up reaction (from 1 to 20 mmol of substrate) was also investigated under
the optimized reaction conditions. When the amount of 1a and 2a was increased to 20 mmol, the same
conversion was obtained after 90 min under optimized conditions.

The catalytic performance of our system was eventually compared to reported literature data.
As can be seen in Table 4, our recoverable catalytic system possesses remarkably improved activities
as compared to those of related previously reported heterogeneous systems.

Table 4. Comparison of the result in the reaction of 1,2-diphenylethanedione (1a) with
1,2-diaminobenzene (2a) with our method and the previous literature.

Entry Condition Time (min) Yield (%) Reference

1 Polyaniline-sulfate salt (5 wt %), DCE, r.t. 20 95 [25]
2 CAN (5 mol %), H2O, r.t. 10 98 [26]
3 I2 (10 mol %), DMSO, r.t. 35 95 [27]
4 MeOH:AcOH (9:1), MW, 160 ˝C 5 99 [28]
5 Acidic alumina, 80 ˝C 2 96 [29]
6 Citric acid (10 mol %), EtOH, r.t. 1 94 [30]
7 Fe3O4NPs (10 mol %), H2O, r.t. 150 95 [31]
8 Silicabonded S-sulfonicacid (3.4 mol %), EtOH/H2O (70/30), r.t. 5 96 [32]
9 Ga(OTf)3 (1 mol %), EtOH, r.t. 5 99 [33]
10 Bi(OTf)3 (10 mol %), H2O, r.t. 5 97 [34]
11 CoNP (1mol %), EtOH, reflux 90 92 Our work

3. Experimental Section

3.1. General Information

Unless otherwise stated, all reagents and chemicals in this study were used as received and
were not further purified (Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany). Melting point
recorded on a RY-1 microscopic melting apparatus (Hangzhou Chincan Trading Co., Shanghai, China)
and uncorrected. 1H-NMR and 13C-NMR spectra were respectively recorded on 500 MHz and 125
MHz by using a Bruker Avance 500 spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany).
Metal content in the materials was determined using inductively coupled plasma (ICP) in a Philips
PU 70000 sequential spectrometer (Philips, Almelo, The Netherlands) equipped with an Echelle
monochromator (0.0075 nm resolution). Samples were digested in HNO3 and subsequently analyzed
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by ICP Nitrogen adsorption measurements (Philips) were carried out at 77 K using an ASAP 2000
volumetric adsorption analyzer from Micromeritics (Micromeritics, Norcross, GA, USA). The samples
were outgassed for 24 h at 100 ˝C under vacuum (p b 10–2 Pa) and subsequently analyzed.

3.2. Preparation of the Supported Cobalt Catalyst

CoNPs was synthesized as previously reported [55]. Briefly, salicylaldehyde (2 mmol, 0.244 g)
was added to an excess of absolute MeOH, to which 3-aminopropyl(trimethoxy)silane (2 mmol,
0.352 g) was subsequently added. The color of the solution instantly changed to yellow indicating
imine formation. After 3 h, cobalt (II) acetate, Co(OAc)2¨ 2H2O (1 mmol, 0.248 g) was added to the
solution, and the mixture stirred for three additional hours to allow the new ligands to complex the
cobalt. A color change from pink to olive green is observed. SBA-15 (3 g) was activated by refluxing
in concentrated hydrochloric acid (6 M) and then washed thoroughly with deionized water and
dried before undergoing chemical surface modification. This activation treatment readily hydrolyses
the siloxane Si-O-Si bonds to Si-OH species which will be key to anchor the cobalt complex. Both
complex and activated silica were then mixed and the mixture was stirred overnight. The solvent
was removed using a rotary evaporator, and the resulting olive green solid dried at 80 ˝C overnight.
The final product was washed with MeOH and water (to remove all physisorbed metal species) until
the washings were colourless. Further drying of the solid product was carried out in an oven at 80 ˝C
for 8 h. The loading of cobalt was calculated about 0.3 mmol¨ g´1 and surface analysis showed cobalt
oxide species well dispersed on the surface of SBA-15 with 450 m2¨ g´1 surface area and pore size of
3.6 nm with 0.77 cm3¨ g´1 mesoporous pore volume.

3.3. General Reaction Procedure

To a mixture of 1,2-dicarbonyl compound 1a–e (1.0 mmol) and 1,2-diamine 2a–b (1.0 mmol) in
ethanol (5 mL), supported CoNP (0.033g, 1 mol%) was added and the mixture was refluxed in an
open flask for 90 min. Reactions were monitored by thin layer chromatography (TLC) until total
disappearance of the starting material. After completion of the reaction, the reaction mixture was
cooled to room temperature, and resulting solid was collected by filtration and dissolved in ethyl
acetate (10 mL). The supported catalyst was recovered by filtration. After evaporation of solvent, the
resulting solid product was purified by crystallization in ethanol.

3.4. Selected Spectroscopic Data

6-Nitro-2,3-diphenylquinoxaline (Table 2, Entry 1, 3a). Yellow solid; m.p. 188–190 ˝C (lit. [56]
193–194 ˝C). 1H-NMR (CDCl3): δ 7.38 (m, 6H, Ar-H), 7.56 (m, 4H, Ar-H), 8.28 (m, 1H, Ar-H), 8.45
(m, 1H, Ar-H), 9.02 (m, 1H, Ar-H); 13C-NMR (CDCl3): δ 123.27, 125.51, 128.45, 129.67, 129.85, 129.95,
130.66, 137.95, 139.87, 143.39, 147.80, 155.62, 156.18.

2,3-Diphenylquinoxaline (Table 2, Entry 6, 3f). White solid; m.p. 127–129 ˝C (lit. [26] 126–127 ˝C).
1H-NMR (CDCl3): δ 7.35 (m, 6H, Ar-H), 7.56 (m, 4H, Ar-H), 7.76 (m, 2H, Ar-H), 8.20 (m, 2H, Ar-H);
13C-NMR (CDCl3): δ 128.29, 128.89, 129.13, 129.915, 130.10, 138.92, 141.15, 154.38.

2,3-Bis(4-Fuorophenyl)quinoxaline (Table 2, Entry 8, 3h). White solid; m.p. 133–135 ˝C (lit. [56]
135–137 ˝C). 1H-NMR (CDCl3): δ 7.06 (m, 4H, Ar-H), 7.52 (m, 4H, Ar-H), 7.80 (q, J = 9.5 Hz, 1H,
Ar-H), 8.16 (q, J = 9.1 Hz, 1H, Ar-H); 13C-NMR (CDCl3): δ 115.45, 115.61, 129.14, 130.22, 131.70,
131.82, 134.90, 135.02, 141.21, 152.16, 161.54, 164.80.

2,3-Bis(4-Chlorophenyl)quinoxaline (Table 2, Entry 9, 3i).White solid; m.p. 190–192 ˝C (lit. [32]
195–196 ˝C). 1H-NMR (CDCl3): δ 7.32 (m, 4H, Ar-H), 7.49 (m, 4H, Ar-H), 7.72 (m, 2H, Ar-H), 8.11 (m,
2H, Ar-H); 13C-NMR (CDCl3): δ 128.50, 128.62, 129.05, 129.11, 129.17, 130.05, 130.13, 130.26, 131.30,
134.12, 137.36, 138.62, 140.09, 141.11, 153.02, 153.18.
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6-Methyl-2,3-diphenylquinoxaline (Table 2, Entry 11, 3k). Brown solid; m.p. 116–118 ˝C (lit. [33]
117–118 ˝C). 1H-NMR (CDCl3): δ 2.61 (s, 3H, Ar-CH3 ), 7.35 (s, 6H, Ar-H), 7.55 (d, J = 6.5, 4H, Ar-H),
7.60 (s, 1H, Ar-H) 7.98 (s, 1H, Ar-H), 8.09 (d, J = 8.4, 1H, Ar-H); 13C-NMR (CDCl3): δ 21.95, 128.04,
128.24, 128.67, 128.73, 129.90, 129.92, 132.32, 139.24, 139.73, 140.49, 141.29, 152.55, 153.29.

4. Conclusions

In summary, we have developed an environmentally friendly and highly active cobalt
nanoparticle on mesoporous SBA-15 material for the synthesis of quinoxalinesin excellent yields from
1,2-diamine and 1,2-dicarbonyl compounds. Reactions could efficiently afford the target products
after short reaction times and were run under air and mild reaction conditions and require low
loadings of the supported catalyst. The catalyst was found to be highly reusable for at least ten
reaction runs under the investigated conditions.
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