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Abstract: In the last decades, organic azides haven proven to be very useful precursors in
organic chemistry, for example in 1,3-dipolar cycloaddition reactions (click-chemistry). Likewise,
azides can be introduced into graphene oxide with an almost intact carbon framework, namely
oxo-functionalized graphene (oxo-G1), which is a highly oxidized graphene derivative and a
powerful precursor for graphene that is suitable for electronic devices. The synthesis of a
graphene derivative with exclusively azide groups (graphene azide) is however still a challenge.
In comparison also hydrogenated graphene, called graphene or halogenated graphene remain
challenging to synthesize. A route to graphene azide would be the desoxygenation of azide
functionalized oxo-G1. Here we show how treatment of azide functionalized oxo-G1 with HCl
enlarges the π-system and removes strongly adsorbed water and some oxo-functional groups. This
development reflects one step towards graphene azide.
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1. Introduction

Graphene is a 2D nanomaterial consisting out of exclusively sp2 hybridized carbon atoms
arranged in a honeycomb lattice. Intriguing properties like a high flexibility, transparency of 97.7%
(visible regime) [1–3], charge carrier mobility values ranging from 103 up to 106 cm2/Vs [4,5] and
a superior mechanical strength were discovered that originate from the honeycomb lattice [6–9].
In addition to pure graphene it can also be expected that novel properties can be discovered or
engineered by the development of the chemistry on graphene. Therefore, the chemical modification
is very promising for future medical and technical applications. Up to now, chemistry on the
surface of graphene, edges and defect sites is just emerging. However, a complex task for the
controlled chemistry of graphene results due to the inhomogeneity of natural graphite and related
graphene [10–15]. The oxidation of graphite is known to yield graphene oxide in high yield, however
lattice defects due to over-oxidation hamper the development of its controlled chemistry. In contrast,
oxo-functionalized graphene (oxo-G1) bears defined amounts of lattice defects and they play therefore
a minor role and surface chemistry is enabled. A typical density of lattice defects of about 0.3%–0.8%
is achieved [14]. C-O bonds dominate the chemical motives in oxo-G1, but recently we succeeded
in converting C-O bonds to C-N bonds by introducing the azide group [13]. We could show that
organosulfate is substituted in solids by treatment of oxo-G1 with sodium azide and the major
chemical functional groups of that derivative are hydroxyl and azide groups. Consequently, hydroxyl
and azide functionalized graphene was produced with hydroxyl groups in majority. While graphene
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oxide is known for a long time, graphene decorated with exclusively azide groups is completely
unknown. Also the synthesis of other “pure” derivatives, like graphane (fully hydrogenated
graphene) [16,17] and graphene halides are still challenging [18,19]. Such structures, except graphane,
would only bear an sp2-carbon lattice with only a single type of functional group attached to a
sp3-carbon atom. It can be expected that graphene azide could act as a precursor for nitrogen doped
graphene or functional graphene derivatives by introducing further addends.

Here we show how to functionalize single layers of oxo-G1 with azide groups (oxo-G1-N3)
followed by HCl treatment. We observe an increased amount of aromatic C=C bonds and a significant
removal of adsorbed water leading to a hydrophobic derivative of oxo-G1-N3. The product is
analyzed by thermogravimetric analysis coupled with mass spectrometry (TGA-MS), UV-Vis, FTIR,
Raman and elemental analysis (EA). Although hydroxyl groups are still present in HCl treated
oxo-G1-N3, the expanded π-system is one further step towards the synthesis of graphene azide
(Scheme 1).
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Scheme 1. Proposed reaction leading to graphene azide with some additional hydroxyl groups.

2. Results and Discussion

First, oxo-G1 was prepared by our previously introduced method [20]. Therefore, natural
graphite crystals were oxidized in concentrated sulfuric acid with potassium permanganate at
temperatures below 5 ˝C, followed by purification through repetitive centrifugation and redispersion
in water. Delamination by tip sonication yielded single layers of oxo-G1 with hydroxyl-, epoxy-
and organosulfate groups on both sides of the π-system. Carbonyl-, carboxyl- and ether groups
are introduced at edges and in plane defect sites, but play a minor role due to the large flake size
and the almost intact carbon lattice as determined by statistical Raman microscopy (SRM, defects
< 0.3%–0.8%). Oxo-G1 was subsequently treated with sodium azide to obtain azide-functionalized
oxo-G1. A nitrogen content of 3.3% was determined by EA and due to the carbon content of about
45% it can be calculated that one azide group is bound to around every 50th carbon atom (2% of
N3, Table 1). Accompanied with introducing azide, organosulfate is cleaved and thus, the sulfur
content decreases from 4.3% in oxo-G1 to 1.1% for oxo-G1-N3. Moreover the C-N3 bond formation
can be directly probed by FTIR spectroscopy and the stretching vibration is detected at 2121 cm´1

(Figure 1). Also, TGA-MS supports that organosulfate was substituted by azide ions. As shown
in Figure 2A the weight-loss step of organosulfate between 200 and 300 ˝C is only detectable for
oxo-G1. This weight-loss step is accompanied with SO2 formation (m/z 64, Figure 2B) that originates
from the reaction of organosulfate with the carbon grid. However, oxo-G1-N3 also bears hydroxyl
groups and adsorbed water molecules. TGA-MS in Figure 2C reveals that water is released between
room temperature and about 120 ˝C and 150 ˝C, detected by m/z 18 and a weight-loss of about
3%. Assuming that the elemental composition of oxo-G1-N3 contains in first approximation only
C, H, N, S and O one can calculate a chemical formula of C47.5(OH)28.8(O)5.7N3(OH2)2.1(OSO3)0.5.
Labelling of azide by 15N enables the detection of 15N14N by TGA-MS at m/z 29 (Figure 2C) [12,21].
While oxo-G1 forms a yellow-brownish dispersion in water oxo-G1-N3 is darker. This darkening
comes along with an increased absorbance over the whole visible range spectrum and a shift of the
absorption maximum from 234 nm to 237 nm.

21051



Molecules 2015, 20, 21050–21057

Table 1. Elemental analysis of oxo-G1-14N3 and HCl treated derivatives.

Sample Name C (%) N (%) H (%) S (%) O * (%)

oxo-G1 45.9 0.0 2.4 4.3 47.4
oxo-G1-N3 44.8 3.3 2.6 1.1 48.2

oxo-G1-N3-(2 M HCl) 54.8 4.5 2.6 0.8 37.3
oxo-G1-N3-(12 M HCl) 57.7 4.1 2.4 0.4 35.4

* O content calculated to meet 100%.
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(green) and oxo-G1-15N3-(HCl) (blue); (B) TGA results of oxo-G1 with m/z traces of the most
important peaks (m/z 18: H2O; m/z 28: CO2; m/z 29: 15N14N; m/z 44: CO2; m/z 45:
H3CCOH+-fragment of 2-propanol and m/z 64: SO2-fragment from organosulfate); (C) TGA results
of oxo-G1-15N3; (D) TGA results of oxo-G1-15N3-(HCl).
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The addition of HCl(aq) to oxo-G1-N3 leads to a decreased solubility depending on the reaction
time and acid concentration (e.g., 0.5 M HCl treatment of 60 h at RT). Thus, structural changes must
be responsible for that observation. The product was therefore isolated and thoroughly washed with
water by centrifugation and redispersion in a 1/1 mixture of water and 2-propanol. Subsequent
analyses via FTIR spectroscopy, EA, TGA-MS, UV-Vis and Raman reveal that graphene azide is not
yet fully formed and hydroxyl groups are still present, but π-conjugated regions increased.

FTIR spectroscopy on aqueous HCl treated oxo-G1-N3 is depicted in Figure 1. For oxo-G1

FTIR features have been investigated since many years [22–28]. Regarding to the literature, peaks
of oxo-G1 and oxo-G1-N3 can be related to the following functional groups: 3600–3000 cm´1

(C-OH); 2360* cm´1 (CO2); 2123/2112 cm´1 (14N3/15N3) 1730 cm´1 (C=O); 1630 cm´1 (adsorbed
H2O); 1575 cm´1 (C=C); 1433 cm´1 (C-OH or carboxylate); 1254 cm´1 (C-O-C), 1060 cm´1 (C-O
or C-C) [22–28]. After addition of diluted HCl the oxo-G1-N3 dispersion began to precipitate within
minutes. A precipitate was immediately formed upon treatment with concentrated HCl. FTIR spectra
were recorded on drop casted samples on ZnSe-windows (Figure 1).

Interestingly, the peak at 1575 cm´1 develops with increasing reaction time and acid
concentration, whereas the peak at 1630 cm´1 declines and completely disappears (Figure 1). Since
the signal at 1575 cm´1 is assigned to C=C bonds it can be assumed that the sp2 carbon network is
growing. By the treatment of oxo-G1-N3 with HCl for 60 h, the FTIR spectra become less complex
in the region between 1000 cm´1 and 2250 cm´1 and the spectra are very similar to NaBH4 treated
oxo-G1-N3 and temperature annealed oxo-G1-N3 (140 ˝C), respectively. Moreover the absorption
at 1215 cm´1 of reduced oxo-G1 is different compared to 1254 cm´1 for HCl treated oxo-G1-N3

(oxo-G1-N3-HCl). Importantly, the azide-peak (14N3: 2123 cm´1; 15N3: 2112 cm´1) is preserved
upon treatment with diluted HCl (diluted 0.5 M–2 M for 60 h) and concentrated HCl treatment for
very short reaction times (minutes to few hours). Long reaction times and higher acid concentration
result both in cleavage of the azide group, e.g., 7 days treatment with 1 M HCl. Moreover the azide
group is not stable upon treatment with a reducing agent, such as NaBH4, as well as temperature
annealing [21].

To clear up a potential loss of moieties, we further analyzed washed and freeze-dried
oxo-G1-N3-(HCl) by EA (Table 1) and and TGA-MS (Figure 2D). EA indicates an increased carbon
content for oxo-G1-N3-(HCl) (2M HCl treatment) of 54.8%, a decreased sulfur content to 0.4% and
4.5% nitrogen. Interestingly, the hydrogen content remained constant with 2.6%. TGA-MS reveals
that the m/z 18 peak up to a temperature of 120 ˝C is smaller compared to oxo-G1 or oxo-G1-N3.
This detection is in line with the observation that oxo-G1-N3 is almost not dispersible in water
but in a mixture 1/1 mixture of 2-propanol. Also for purification, by means of centrifugation
and redispersion, 2-propanol was necessary as an additional solvent. Consequently, the powder of
isolated oxo-G1-N3-(HCl) (freeze-fried) still contains some 2-propanol, as indicated by the m/z 45
signal, that relates to the H3COH+ mass fragment of 2-propanol, with cleaved methyl radical
(Figure 2D, green). Therefore, it is difficult to assign the 3% weight-loss up to 120–150 ˝C to a single
solvent, despite water can also be cleaved from 2-propanol. Anyhow, since the hydrogen content
in oxo-G1-N3-(HCl) is quite high, it seems likely that some 2-propanol is still present that consist
of 1 oxygen and 8 hydrogen atoms. With that in mind we can calculate a molecular formula of
C42(OH)20.4N3(OSO3)0.2(2-propanol)0.5. Within the experimental error, one can conclude that at least
epoxy- and some hydroxyl groups were removed from the carbon lattice of oxo-G1-N3, leaving azide
bound to the graphene lattice. A growing π-system upon HCl treatment of oxo-G1-N3 is also apparent
by comparing UV-Vis spectra. As depicted in Figure 3B the absorption maximum shifts to 242 nm,
what is another indication for the restoration of graphene patches.

Raman spectroscopy is a tool that developed to the major characterization technique for
graphene materials and the ratio of the intensity of the defect induced D peak at about 1340 cm´1 to
the G peak at about 1580 cm´1 can be used to determine the size of intact graphene patches [29–31].
As depicted in Figure 3A the intensity ratio of the D and G peak is roughly 1.1 for GO and the
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peaks appear very broad typical for oxo-G1 and GO in general. For comparison, oxo-G1 was
chemically reduced by vapor of hydriodic acid and trifluoroacetic acid and the spectrum indicated
graphene with a density of defects between roughly 0.3%–0.8% (ID/IG ratio of 3.0) [29,30,32]. Raman
spectra of oxo-G1-N3-(HCl), treated with 12M HCl, indicate the growth of graphene like patches
by the increased ID/IG from 1.1 to 1.4. By measuring unreduced and so highly functionalized
oxo-G1-N3-(HCl) an increase of ID/IG ratio indicates a reduction of defect sites as we are in the high
defect regime [29,32].
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yellow-brownish oxo-G1 dispersion with main flake sizes of 1 µm to 20 µm. The concentration of
0.488 mg/mL was calculated by freeze-drying a small amount of the dispersion.

To obtain oxo-G1-N3, the dispersion containing 100 mg oxo-G1 was stirred with 80 mg of Na14N3

for 1 h followed by freeze-drying. Purification was accomplished by repetitive centrifugation (3 times,
13,000 RCF, 45 min). The yield after lyophilization was 77.6 mg [13]. Oxo-G1-15N3 was produced
similarly, but on half scale (yield: 38.8 mg).

3.3. Preparation of Oxo-G1-N3-(HCl)

All dried samples had been dispersed in pure water to obtain dispersions with a concentration of
1 mg/mL (10 mg, 10 mL) before the treatment with HCl(aq). To this, 10 mL of differently concentrated
HCl solutions (0.5 M; 1.0 M; 2.0 M; 12 M) were added. The samples were centrifuged for purification
(3 times, 13,000 RCF, 45 min) and redispersed with water or 50:50 water/isopropanol.

To obtain a temperature annealed oxo-G1-N3 samples, few drops of the dispersion had been
dropped onto a ZnSe window and put onto a heated magnetic stirrer to obtain a temperature
annealed sample (140 ˝C, 10 s). For a chemical reduced reference, a few mL of the dispersion (10 mg
oxo-G1-N3) were treated with a small excess of sodium borhydride (16 mg), purified by repetitive
centrifugation and dropped on ZnSe windows after redispersion.

4. Conclusions

We observed changes of the physical properties of HCl treated oxo-G1-N3. FTIR spectroscopy
confirmed an enlarging of aromatic areas due to assumed rearrangement and reduction. A reduction
is plausible if chloride can be oxidized by protonated oxo-G1-N3. Regular reduction protocols of
oxo-G1-N3 samples as for examples NaBH4 or HI/TFA lead to an unselective cleavage of all surface
moieties resulting in graphene [14,33]. Therefore, the here presented investigation preserves most
of azide groups on the carbon lattice, while oxo-functional groups are removed. However, the
HCl treatment of oxo-G1-N3 does not lead to a complete cleavage of oxygen containing moieties,
but at least the π-system enlarged as evidenced by TGA-MS, EA, Raman, FTIR and UV/Vis. The
regiochemistry of hydroxyl groups and azide groups remains, however, speculative. Thus, the work
presented here represents one step towards the synthesis of graphene azide, a derivative of graphene
that stands in line with graphene or halogenated graphene.
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