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Abstract: A highly porous metal-organic framework (Cu-TDPAT), constructed from a paddle-wheel
type dinuclear copper cluster and 2,4,6-tris(3,5-dicarboxylphenylamino)-1,3,5-triazine (H6TDPAT),
has been tested in Ullmann and Goldberg type C–N coupling reactions of a wide range of primary
and secondary amines with halobenzenes, affording the corresponding N-arylation compounds in
moderate to excellent yields. The Cu-TDPAT catalyst could be easily separated from the reaction
mixtures by simple filtration, and could be reused at least five times without any significant
degradation in catalytic activity.
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1. Introduction

The N-aryl heterocycles are very important structural motifs in biological, pharmaceutical
and material science products [1–3]. Formation of C–N bonds by Ullmann and Goldberg
coupling reactions represents a powerful tool for the preparation of these nitrogen-containing
compounds on both laboratory and industrial scales [4–7]. However the classic Ullmann and
Goldberg coupling reactions suffer from drawbacks such as harsh reaction conditions, including
high reaction temperatures, extended reaction times, and the use of large amounts of copper.
Since two separate research groups achieved an important breakthrough with the discovery of
efficient copper/ligand systems that enable these cross coupling reactions to occur under much
milder conditions at the beginning of the 21st century [8,9], the formation of C–N bonds by
copper-mediated cross-coupling approaches has undergone a renaissance in the last decade [10–12].
Many classes of ligands, including diamines [4,13], amino acids [14–16], amino alcohols [17,18],
diols [19], diethylamine [20], diphosphines [21], phenanthrolines [22,23], pyridine N-oxide [24],
β-diketones [25–27] and metformin [28,29], have been used to promote the copper-catalyzed
cross-coupling C–N bond-forming reactions. Moreover, a few metal- and ligand-free [30–32],
and photoinduced [33–35] C–N coupling reactions have also been reported. Meanwhile, a few
mechanistic [36,37] and computational studies [38] have been conducted on these copper-mediated
cross-coupling reactions in order to understand these intriguing catalytic processes in detail.
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Because of the increasing concern regarding environmental impact, the heterogeneous
catalysis has received much attention recently due to its advantages of ease of product separation,
catalyst recovery and recyclability. Several categories of copper-based heterogeneous catalysts for
the Ullmann and Goldberg coupling reactions, including copper compound nanoparticles [39–41],
inorganic materials (e.g., mesoporous nitrogen-doped carbon [42], SiO2 [43,44], fluoroapatite [45]
and Fe3O4 [46,47])—supported catalytic systems, and organic polymer (e.g., polystyrene [48–50],
chitosan [51] and polytriallylamine [52])-supported catalytic systems, have been reported. In the past
decade, metal-organic frameworks (MOFs) have received much attention as catalytic materials in
addition to their applications in gas storage and separation due to their unique features, including
their crystallinity, porous structure, huge specific surface area and the high density of open metal sites
in the framework [53–55]. Several studies on the catalytic activity of MOFs with active open metal sites
have shown their potential applications in reactions like hydrogenation [56,57], isomerization [58],
cyanosilylation [59,60], oxidation [61–65], photocatalysis [66,67], Friedel-Crafts reaction [68–70], and
condensation reactions [71]. However, the Ullmann and Goldberg type C–O, C–N and C–S coupling
reactions over MOFs have barely been explored [72–75]. Cu-TDPAT [76] based on [Cu2(COO)4]
square paddle-wheel secondary building units (SBUs) with rht-topology is highly porous, with a large
surface area and pore volume, and should be a good potential copper-based heterogeneous catalyst.
Herein, we report the applications of Cu-TDPAT as an efficient and reusable heterogeneous catalyst
for Ullmann and Goldberg type C–N coupling reactions.

2. Results and Discussion

Cu-TDPAT catalyst was prepared by a solvothermal method according to the reported
procedure [76]. The SEM image of Cu-TDPAT sample clearly showed that most of the MOF particles
presented polyhedral shapes (Figure S1). The crystal size of the Cu-TDPAT sample was in the range
of 10–40 µm. The powder XRD pattern of the as-synthesized Cu-TDPAT (Figure 1) matched well with
the published results [76], confirming the formation of the intended crystalline framework. Nitrogen
physisorption measurements demonstrated the porosity and stability of Cu-TDPAT after removing
the included and coordinated solvents (Figure S2, Table S1). Its BET surface area was 1855 m2/g.
Thermogravimetric data showed that Cu-TDPAT was stable up to a temperature of 250 ˝C (Figure S4).
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Figure 1. X-ray diffraction patterns for Cu-TDPAT samples, as-synthesized (red); and used after five 
catalysis cycles (black). 

2.1. Cu-TDPAT as a Solid Catalyst for the N-Arylation of 5-Methyl-2-(1H)-Pyridone 

To test the use of Cu-TDPAT as a catalytic copper complex, iodobenzene and 5-methyl-2-(1H)- 
pyridone were selected as coupling partners in the initial screening of optimal reaction conditions 
(Scheme 1) as the coupling product of these two substrates, 5-methyl-1-phenyl-2-(1H)-pyridone, also 
known as pirfenidone (1), has been a widely used drug for the treatment of idiopathic pulmonary 
fibrosis (IPF) [77,78]. 

Figure 1. X-ray diffraction patterns for Cu-TDPAT samples, as-synthesized (red); and used after five
catalysis cycles (black).

2.1. Cu-TDPAT as a Solid Catalyst for the N-Arylation of 5-Methyl-2-(1H)-Pyridone

To test the use of Cu-TDPAT as a catalytic copper complex, iodobenzene and 5-methyl-2-(1H)-
pyridone were selected as coupling partners in the initial screening of optimal reaction conditions
(Scheme 1) as the coupling product of these two substrates, 5-methyl-1-phenyl-2-(1H)-pyridone, also
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Scheme 1. Coupling reaction of iodobenzene and 5-methyl-2-(1H)-pyridone. 

The experimental results under various conditions are presented in Table 1. It was found that 
no product was observed after 2 h at 80 °C (Table 1, entry 2), indicating that the coupling reaction 
proceeded with difficulty at or below this temperature. With increasing temperature, the yields of 
pirfenidone (1) increased gradually (Table 1, compare entries 3, 4, 5). The highest yield of 1 was 
obtained at 140 °C. A further temperature increase to 160 °C only gave 1 in 14% yield after 2 h due to 
the decomposition of the MOF (Figure S5), revealing that the combined effects of temperature and 
reaction media, such as base and solvent molecules, reduced the stability of the MOF. Considering 
the stability of Cu-TDPAT, all the subsequent experiments were conducted at 120 °C. In the absence 
of Cu-TDPAT, no product was obtained (Table 1, entry 1), illustrating that Cu-TDPAT promoted the 
N-arylation reaction. 

Table 1. Goldberg-type C–N coupling reaction of iodobenzene and 5-methyl-2-(1H)-pyridone over 
copper MOFs and copper salts a. 

Entry Catalyst Solvent Base T (°C) 1 (%) 2 (%) 
1 \ DMSO K2CO3 120 n.r n.r 
2 Cu-TDPAT DMSO K2CO3 80 n.r n.r 
3 Cu-TDPAT DMSO K2CO3 100 9 1 
4 Cu-TDPAT DMSO K2CO3 120 63 (90 b) 3 (4 b) 
5 Cu-TDPAT DMSO K2CO3 140 70 3 
6 Cu-TDPAT DMSO K2CO3 160 14 1 
7 Cu-TDPAT Toluene K2CO3 120 n.r n.r 
8 Cu-TDPAT 1,2-Dichlorobenzene K2CO3 120 n.r n.r 
9 Cu-TDPAT DMF K2CO3 120 34 2 

10 Cu-TDPAT 1,4-Dioxane K2CO3 120 n.r n.r 
11 Cu-TDPAT DMSO KOH 120 61 3 
12 Cu-TDPAT DMSO Cs2CO3 120 57 3 
13 Cu-TDPAT DMSO Et3N 120 n.r n.r 
14 Cu-TDPAT DMSO NaOMe 120 49 4 
15 CuI DMSO K2CO3 120 80 4 
16 CuCl DMSO K2CO3 120 71 5 
17 Cu(OAc)2 DMSO K2CO3 120 38 4 
18 Cu(NO3)2 DMSO K2CO3 120 29 2 
19 CuBTC DMSO K2CO3 120 88 5 
20 Cu(NO3)2 + BTC DMSO K2CO3 120 43 2 
21 Cu(NO3)2 + TDPAT DMSO K2CO3 120 31 2 

a Reaction conditions: PhI (1 mmol), pyridone (1 mmol), MOFs (0.05 mmol, based on copper), base  
(2 mmol), solvent (5 mL), 2 h; b Data of reaction for 8 h; The symbol n.r represents no reaction. 

It has been found that the choice of solvent is crucial to the outcome of C–N coupling reactions 
[16,29]. In order to determine the best reaction medium, the coupling reaction was also conducted in 
other solvents (Table 1, entries 7–10). DMSO was found to be the best solvent for the N-arylation of 
5-methyl-2-(1H)-pyridone (Table 1, entry 4). Reaction in DMF gave the coupled product in a low 
yield. On the other hand, weakly polar solvents, like 1,2-dichlorobenzene and 1,4-dioxane, and 
non-polar solvents, such as toluene, were not suitable for this process, revealing the dramatic effects of 
the solvent on the C–N coupling reactions. Recent studies showed that DMSO acts as an oxidant for 

Scheme 1. Coupling reaction of iodobenzene and 5-methyl-2-(1H)-pyridone.

The experimental results under various conditions are presented in Table 1. It was found that
no product was observed after 2 h at 80 ˝C (Table 1, entry 2), indicating that the coupling reaction
proceeded with difficulty at or below this temperature. With increasing temperature, the yields of
pirfenidone (1) increased gradually (Table 1, compare entries 3, 4, 5). The highest yield of 1 was
obtained at 140 ˝C. A further temperature increase to 160 ˝C only gave 1 in 14% yield after 2 h due
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a Reaction conditions: PhI (1 mmol), pyridone (1 mmol), MOFs (0.05 mmol, based on copper), base (2 mmol),
solvent (5 mL), 2 h; b Data of reaction for 8 h; The symbol n.r represents no reaction.

It has been found that the choice of solvent is crucial to the outcome of C–N coupling
reactions [16,29]. In order to determine the best reaction medium, the coupling reaction was also
conducted in other solvents (Table 1, entries 7–10). DMSO was found to be the best solvent for
the N-arylation of 5-methyl-2-(1H)-pyridone (Table 1, entry 4). Reaction in DMF gave the coupled
product in a low yield. On the other hand, weakly polar solvents, like 1,2-dichlorobenzene and
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1,4-dioxane, and non-polar solvents, such as toluene, were not suitable for this process, revealing the
dramatic effects of the solvent on the C–N coupling reactions. Recent studies showed that DMSO
acts as an oxidant for metal species in the formation of C–S and C–Se bonds by cross coupling
reactions [79,80], but in our experiments, no dimethyl sulfide, the reduction product of DMSO, was
detected, implying that here DMSO is only acting as an effective polar solvent. The effects of bases
on the C–N coupling reaction was also investigated. Among the bases tested potassium carbonate,
cesium carbonate, potassium hydroxide and sodium methoxide were effective for the formation of
the desired product and gave similar results (Table 1, compare entries 4, 11, 12 and 14). On the other
hand, triethylamine (Table 1, entry 13) did not effectively improve the N-arylation reaction, contrary
to previously reported results [79]. One possibility is that the interaction of substrate molecules with
catalyst was impeded due to the coordination of triethylamine with the copper ion on the MOF.

According to the above results, we conducted the C–N coupling reactions in DMSO at 120 ˝C
for 8 h in the presence of K2CO3 as the standard reaction conditions. The coupling reaction afforded
1 as the main product in 90% yield and the by-product 2 in 4% yield, respectively (Figure 2, Table 1,
entry 4). The existence of small amount of 2 reflected the fact that 5-methyl-2-(1H)-pyridone has an
accessible tautomer, 5-methyl-2-hydroxypyridine, in the reaction system [81].

2.2. Heterogeneity of the Reaction

To verify whether the catalysis of Cu-TAPAT is truly heterogeneous or, on the contrary, is
due to some leached copper species present in the reaction solutions, we performed a hot-filtration
experiment: the Cu-TAPAT solid catalyst was removed from a hot solution by filtration one hour after
initiating the catalytic test. The filtrate was further reacted for another 7 h. No significant catalytic
conversion was observed (Figure 2), indicating that the reaction was terminated upon removal of the
catalyst. On the other hand, inductively coupled plasma atomic emission spectroscopy (ICP-AES)
analysis of the filtrate showed that there was only about 1 ppm of copper in the solution. These
results suggested that the reaction proceeded over the MOF surface in a heterogeneous fashion, with
the open copper sites on the axis of paddle-wheel SBUs within the MOF being responsible for the
promotion of the C–N coupling reaction [82].
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Figure 2. Yield as a function of reaction time in the coupling reaction of 5-methyl-2-(1H)-pyridone 
and iodobenzene with Cu-TDPAT as catalyst at 120 °C. □: catalyst present throughout; ○: catalyst 
removed from the suspension after 1 h. Reaction conditions: PhI (1 mmol), pyridone (1 mmol),  
Cu-TDPAT (0.05 mmol, based on copper), K2CO3 (2 mmol), DMSO (5 mL). 

2.3. Comparison with Other Homogeneous Copper Catalysts 

For comparison, several copper salts, CuI, CuCl, Cu(OAc)2 and Cu(NO3)2, were used as 
homogeneous catalysts for the same reaction (Table 1, entries 15–18). The experimental results 
showed that both copper(I) salts—CuI and CuCl—produced pirfenidone in high yield, while the 
copper(II) salts resulted in relative low yields of coupled product. A widely used MOF, namely 
CuBTC [83] (Figures S6 and S7) that was constructed from paddle-wheel type copper clusters and  
1,3,5-benzenetricarboxylate molecules, also exhibited high activity in the C–N coupling reaction 
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and iodobenzene with Cu-TDPAT as catalyst at 120 ˝C. ˝: catalyst removed from the suspension after
1 h. Reaction conditions: PhI (1 mmol), pyridone (1 mmol), Cu-TDPAT (0.05 mmol, based on copper),
K2CO3 (2 mmol), DMSO (5 mL).

2.3. Comparison with Other Homogeneous Copper Catalysts

For comparison, several copper salts, CuI, CuCl, Cu(OAc)2 and Cu(NO3)2, were used as
homogeneous catalysts for the same reaction (Table 1, entries 15–18). The experimental results
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showed that both copper(I) salts—CuI and CuCl—produced pirfenidone in high yield, while the
copper(II) salts resulted in relative low yields of coupled product. A widely used MOF, namely
CuBTC [83] (Figures S6 and S7) that was constructed from paddle-wheel type copper clusters and
1,3,5-benzenetricarboxylate molecules, also exhibited high activity in the C–N coupling reaction
between iodobenzene and 5-methyl-2-(1H)-pyridone (Table 1, entry 19), but the poor stability of
CuBTC under the reaction conditions prevented its recycling. Similar phenomena were reported
by Garcia [75] and Kantam [84]. In the case of CuBTC, a high yield (88%) of 1 was obtained, which
was much higher than that of the homogeneous catalytic processes catalyzed by Cu(NO3)2 or both
Cu(NO3)2 and BTC (Table 1, entries 18 and 20). Moreover, the same result was also observed in the
comparison of Cu-TDPAT and Cu(NO3)2/TDPAT (Table 1, entries 4 and 21). Owing to the same
amount of copper species being used in the heterogeneous and homogeneous reaction systems, the
above results further reveal that the high density of open copper sites within the MOF were the active
sites of the MOF catalyst and responsible for the enhanced C–N coupling reaction rates.

2.4. Reusability of the Cu-TDPAT Catalyst

A marked advantage of heterogeneous catalysis is the possibility of recovering and reusing
the catalysts after the reaction. The recycle of the Cu-TDPAT catalyst was further examined in
the coupling reaction of 5-methyl-2-(1H)-pyridone with iodobenzene (Figure 3). Pirfenidone was
obtained in 85%, 83%, 85%, 81% and 81% yields in successive 4 h cycles. The results demonstrated
that Cu-TDPAT exhibited good reusability in the Goldberg-type C–N coupling reaction. The image
(Figure S1b) and XRD patterns (Figure 1) of the Cu-TDPAT catalyst after five reaction runs indicated
that the particle shape, the crystallinity and the chemical structure of Cu-TDPAT were almost
completely maintained. The presence of a little bit of powder can be attributed to the degradation
of a few crystal particles induced by the stirring and the effect of the reaction medium. The nitrogen
physisorption measurements further demonstrated the porosity and stability of Cu-TDPAT after use
(Figure S3). The changes in surface area and pore volume of the used Cu-TDPAT (Table S1) are
probably due to the adsorption of a few reactant or product molecules in the MOF cavities [85,86].
This hypothesis was supported by the changes of thermogravimetric data, in which more weight loss
(about 2%) was observed for the used Cu-TDPAT sample (Figure S4).
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5-methyl-2-(1H)-pyridone. Reaction condition: PhI (1 mmol), pyridone (1 mmol), Cu-TDPAT  
(0.05 mmol, based on copper), K2CO3 (2 mmol), DMSO (5 mL), 4 h, temperature 120 °C. 

2.5. Generality of the N-Arylation Reaction 

The generality of the C–N coupling reaction was investigated under the standard reaction 
conditions. Initially various halobenzenes were subjected to the reaction conditions. It was found that 
bromobenzene provided the corresponding N-arylated pyridone (Table 2, entry 1) and N-arylated 
pyrrolidone (Table 2, entry 2) derivatives in moderate yield, while chlorobenzene was unreactive 
under these conditions (Table 2, entry 3). Then, the N-arylation reactions of other primary and 
secondary amines with iodobenzene were examined (Table 2, entries 4–12). The results showed that 
a wide range of amines, including aliphatic amines, aryl amines and N–H heterocycles, could undergo 
the C–N coupling reactions smoothly to afford the expected N-arylation products in moderate yields.  
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(0.05 mmol, based on copper), K2CO3 (2 mmol), DMSO (5 mL), 4 h, temperature 120 ˝C.
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2.5. Generality of the N-Arylation Reaction

The generality of the C–N coupling reaction was investigated under the standard reaction
conditions. Initially various halobenzenes were subjected to the reaction conditions. It was found that
bromobenzene provided the corresponding N-arylated pyridone (Table 2, entry 1) and N-arylated
pyrrolidone (Table 2, entry 2) derivatives in moderate yield, while chlorobenzene was unreactive
under these conditions (Table 2, entry 3). Then, the N-arylation reactions of other primary and
secondary amines with iodobenzene were examined (Table 2, entries 4–12). The results showed that a
wide range of amines, including aliphatic amines, aryl amines and N–H heterocycles, could undergo
the C–N coupling reactions smoothly to afford the expected N-arylation products in moderate yields.

Table 2. Ullmann and Goldberg type C–N coupling reactions of halobenzenes with various amines
and amides over Cu-TDPAT *.

Entry (R1R2)NH ArX Yield (%)
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Table 2. Ullmann and Goldberg type C–N coupling reactions of halobenzenes with various amines 
and amides over Cu-TDPAT *. 

Entry (R1R2)NH ArX Yield (%) 
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* Reaction conditions: halobenzenes (1 mmol), amine derivatives (1 mmol), MOFs (0.05 mmol, based 
on copper), K2CO3 (2 mmol), DMSO (5 mL), 2 h, temperature 120 °C. a The yield of 2; b Data of 
reaction for 8 h. The symbol of n.r represents no reaction. 

In the case of indole, the coupling product, 1-phenylindole, can be obtained in 93% yield after  
8 h, which is comparable to the homogeneous system results [28,79], indicating the high activity of 
Cu-TDPAT. N-Methylaniline derivatives bearing electron-withdrawing and electron-donating 
groups on the benzene ring afforded obviously different results under the standard reaction conditions. 
When 4-methoxy-N-methylaniline was subjected to the reaction, a good yield (54%) of the desired 
product was obtained thanks to the electron-donating effect of the methoxy group. However the 
coupling reactions of 4-nitro-N-methylaniline proceeded with difficulty to give the N-arylation product 
in a low yield (Table 2, entry 7). These results demonstrated that the electronic properties of the 
substituent(s) on the aryl amine play an important role in determining its reactivity in the C–N coupling 
reactions. Compared to 4-methoxy-N-methylaniline, the reaction of 2-methoxy-N-methylaniline gave a 
relative low yield of the expected product due to the steric hindrance of the adjacent methoxy group 
(Table 2, entry 6). Secondary amides are a particularly challenging substrate class for cross couplings 
due to the large size of secondary amides and their relatively low nucleophilicity (compared to 
amines) [87,88]. The reaction of N-methylbenzamide (Table 2, entry 10) with iodobenzene afforded a 
56% yield of the tertiary amide, N-methyl-N-phenylbenzamide, within 2 h in the N-arylation reaction, 
implying that Cu-TDPAT showed a higher activity than copper(I) thiophenecarboxylate (CuTC) [88] 
in the N-arylation reaction of secondary amides. 

Table 3 provides a comparison of the results obtained for the Cu-TDPAT catalytic system with 
other reported heterogeneous catalytic systems in the cross-coupling reaction of imidazole with 
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Table 2. Ullmann and Goldberg type C–N coupling reactions of halobenzenes with various amines 
and amides over Cu-TDPAT *. 

Entry (R1R2)NH ArX Yield (%) 
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* Reaction conditions: halobenzenes (1 mmol), amine derivatives (1 mmol), MOFs (0.05 mmol, based 
on copper), K2CO3 (2 mmol), DMSO (5 mL), 2 h, temperature 120 °C. a The yield of 2; b Data of 
reaction for 8 h. The symbol of n.r represents no reaction. 

In the case of indole, the coupling product, 1-phenylindole, can be obtained in 93% yield after  
8 h, which is comparable to the homogeneous system results [28,79], indicating the high activity of 
Cu-TDPAT. N-Methylaniline derivatives bearing electron-withdrawing and electron-donating 
groups on the benzene ring afforded obviously different results under the standard reaction conditions. 
When 4-methoxy-N-methylaniline was subjected to the reaction, a good yield (54%) of the desired 
product was obtained thanks to the electron-donating effect of the methoxy group. However the 
coupling reactions of 4-nitro-N-methylaniline proceeded with difficulty to give the N-arylation product 
in a low yield (Table 2, entry 7). These results demonstrated that the electronic properties of the 
substituent(s) on the aryl amine play an important role in determining its reactivity in the C–N coupling 
reactions. Compared to 4-methoxy-N-methylaniline, the reaction of 2-methoxy-N-methylaniline gave a 
relative low yield of the expected product due to the steric hindrance of the adjacent methoxy group 
(Table 2, entry 6). Secondary amides are a particularly challenging substrate class for cross couplings 
due to the large size of secondary amides and their relatively low nucleophilicity (compared to 
amines) [87,88]. The reaction of N-methylbenzamide (Table 2, entry 10) with iodobenzene afforded a 
56% yield of the tertiary amide, N-methyl-N-phenylbenzamide, within 2 h in the N-arylation reaction, 
implying that Cu-TDPAT showed a higher activity than copper(I) thiophenecarboxylate (CuTC) [88] 
in the N-arylation reaction of secondary amides. 

Table 3 provides a comparison of the results obtained for the Cu-TDPAT catalytic system with 
other reported heterogeneous catalytic systems in the cross-coupling reaction of imidazole with 
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Table 2. Ullmann and Goldberg type C–N coupling reactions of halobenzenes with various amines 
and amides over Cu-TDPAT *. 

Entry (R1R2)NH ArX Yield (%) 
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* Reaction conditions: halobenzenes (1 mmol), amine derivatives (1 mmol), MOFs (0.05 mmol, based 
on copper), K2CO3 (2 mmol), DMSO (5 mL), 2 h, temperature 120 °C. a The yield of 2; b Data of 
reaction for 8 h. The symbol of n.r represents no reaction. 

In the case of indole, the coupling product, 1-phenylindole, can be obtained in 93% yield after  
8 h, which is comparable to the homogeneous system results [28,79], indicating the high activity of 
Cu-TDPAT. N-Methylaniline derivatives bearing electron-withdrawing and electron-donating 
groups on the benzene ring afforded obviously different results under the standard reaction conditions. 
When 4-methoxy-N-methylaniline was subjected to the reaction, a good yield (54%) of the desired 
product was obtained thanks to the electron-donating effect of the methoxy group. However the 
coupling reactions of 4-nitro-N-methylaniline proceeded with difficulty to give the N-arylation product 
in a low yield (Table 2, entry 7). These results demonstrated that the electronic properties of the 
substituent(s) on the aryl amine play an important role in determining its reactivity in the C–N coupling 
reactions. Compared to 4-methoxy-N-methylaniline, the reaction of 2-methoxy-N-methylaniline gave a 
relative low yield of the expected product due to the steric hindrance of the adjacent methoxy group 
(Table 2, entry 6). Secondary amides are a particularly challenging substrate class for cross couplings 
due to the large size of secondary amides and their relatively low nucleophilicity (compared to 
amines) [87,88]. The reaction of N-methylbenzamide (Table 2, entry 10) with iodobenzene afforded a 
56% yield of the tertiary amide, N-methyl-N-phenylbenzamide, within 2 h in the N-arylation reaction, 
implying that Cu-TDPAT showed a higher activity than copper(I) thiophenecarboxylate (CuTC) [88] 
in the N-arylation reaction of secondary amides. 

Table 3 provides a comparison of the results obtained for the Cu-TDPAT catalytic system with 
other reported heterogeneous catalytic systems in the cross-coupling reaction of imidazole with 
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Table 2. Ullmann and Goldberg type C–N coupling reactions of halobenzenes with various amines 
and amides over Cu-TDPAT *. 

Entry (R1R2)NH ArX Yield (%) 
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* Reaction conditions: halobenzenes (1 mmol), amine derivatives (1 mmol), MOFs (0.05 mmol, based 
on copper), K2CO3 (2 mmol), DMSO (5 mL), 2 h, temperature 120 °C. a The yield of 2; b Data of 
reaction for 8 h. The symbol of n.r represents no reaction. 

In the case of indole, the coupling product, 1-phenylindole, can be obtained in 93% yield after  
8 h, which is comparable to the homogeneous system results [28,79], indicating the high activity of 
Cu-TDPAT. N-Methylaniline derivatives bearing electron-withdrawing and electron-donating 
groups on the benzene ring afforded obviously different results under the standard reaction conditions. 
When 4-methoxy-N-methylaniline was subjected to the reaction, a good yield (54%) of the desired 
product was obtained thanks to the electron-donating effect of the methoxy group. However the 
coupling reactions of 4-nitro-N-methylaniline proceeded with difficulty to give the N-arylation product 
in a low yield (Table 2, entry 7). These results demonstrated that the electronic properties of the 
substituent(s) on the aryl amine play an important role in determining its reactivity in the C–N coupling 
reactions. Compared to 4-methoxy-N-methylaniline, the reaction of 2-methoxy-N-methylaniline gave a 
relative low yield of the expected product due to the steric hindrance of the adjacent methoxy group 
(Table 2, entry 6). Secondary amides are a particularly challenging substrate class for cross couplings 
due to the large size of secondary amides and their relatively low nucleophilicity (compared to 
amines) [87,88]. The reaction of N-methylbenzamide (Table 2, entry 10) with iodobenzene afforded a 
56% yield of the tertiary amide, N-methyl-N-phenylbenzamide, within 2 h in the N-arylation reaction, 
implying that Cu-TDPAT showed a higher activity than copper(I) thiophenecarboxylate (CuTC) [88] 
in the N-arylation reaction of secondary amides. 

Table 3 provides a comparison of the results obtained for the Cu-TDPAT catalytic system with 
other reported heterogeneous catalytic systems in the cross-coupling reaction of imidazole with 
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Table 2. Ullmann and Goldberg type C–N coupling reactions of halobenzenes with various amines 
and amides over Cu-TDPAT *. 

Entry (R1R2)NH ArX Yield (%) 
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* Reaction conditions: halobenzenes (1 mmol), amine derivatives (1 mmol), MOFs (0.05 mmol, based 
on copper), K2CO3 (2 mmol), DMSO (5 mL), 2 h, temperature 120 °C. a The yield of 2; b Data of 
reaction for 8 h. The symbol of n.r represents no reaction. 

In the case of indole, the coupling product, 1-phenylindole, can be obtained in 93% yield after  
8 h, which is comparable to the homogeneous system results [28,79], indicating the high activity of 
Cu-TDPAT. N-Methylaniline derivatives bearing electron-withdrawing and electron-donating 
groups on the benzene ring afforded obviously different results under the standard reaction conditions. 
When 4-methoxy-N-methylaniline was subjected to the reaction, a good yield (54%) of the desired 
product was obtained thanks to the electron-donating effect of the methoxy group. However the 
coupling reactions of 4-nitro-N-methylaniline proceeded with difficulty to give the N-arylation product 
in a low yield (Table 2, entry 7). These results demonstrated that the electronic properties of the 
substituent(s) on the aryl amine play an important role in determining its reactivity in the C–N coupling 
reactions. Compared to 4-methoxy-N-methylaniline, the reaction of 2-methoxy-N-methylaniline gave a 
relative low yield of the expected product due to the steric hindrance of the adjacent methoxy group 
(Table 2, entry 6). Secondary amides are a particularly challenging substrate class for cross couplings 
due to the large size of secondary amides and their relatively low nucleophilicity (compared to 
amines) [87,88]. The reaction of N-methylbenzamide (Table 2, entry 10) with iodobenzene afforded a 
56% yield of the tertiary amide, N-methyl-N-phenylbenzamide, within 2 h in the N-arylation reaction, 
implying that Cu-TDPAT showed a higher activity than copper(I) thiophenecarboxylate (CuTC) [88] 
in the N-arylation reaction of secondary amides. 

Table 3 provides a comparison of the results obtained for the Cu-TDPAT catalytic system with 
other reported heterogeneous catalytic systems in the cross-coupling reaction of imidazole with 
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Table 2. Ullmann and Goldberg type C–N coupling reactions of halobenzenes with various amines 
and amides over Cu-TDPAT *. 
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* Reaction conditions: halobenzenes (1 mmol), amine derivatives (1 mmol), MOFs (0.05 mmol, based 
on copper), K2CO3 (2 mmol), DMSO (5 mL), 2 h, temperature 120 °C. a The yield of 2; b Data of 
reaction for 8 h. The symbol of n.r represents no reaction. 

In the case of indole, the coupling product, 1-phenylindole, can be obtained in 93% yield after  
8 h, which is comparable to the homogeneous system results [28,79], indicating the high activity of 
Cu-TDPAT. N-Methylaniline derivatives bearing electron-withdrawing and electron-donating 
groups on the benzene ring afforded obviously different results under the standard reaction conditions. 
When 4-methoxy-N-methylaniline was subjected to the reaction, a good yield (54%) of the desired 
product was obtained thanks to the electron-donating effect of the methoxy group. However the 
coupling reactions of 4-nitro-N-methylaniline proceeded with difficulty to give the N-arylation product 
in a low yield (Table 2, entry 7). These results demonstrated that the electronic properties of the 
substituent(s) on the aryl amine play an important role in determining its reactivity in the C–N coupling 
reactions. Compared to 4-methoxy-N-methylaniline, the reaction of 2-methoxy-N-methylaniline gave a 
relative low yield of the expected product due to the steric hindrance of the adjacent methoxy group 
(Table 2, entry 6). Secondary amides are a particularly challenging substrate class for cross couplings 
due to the large size of secondary amides and their relatively low nucleophilicity (compared to 
amines) [87,88]. The reaction of N-methylbenzamide (Table 2, entry 10) with iodobenzene afforded a 
56% yield of the tertiary amide, N-methyl-N-phenylbenzamide, within 2 h in the N-arylation reaction, 
implying that Cu-TDPAT showed a higher activity than copper(I) thiophenecarboxylate (CuTC) [88] 
in the N-arylation reaction of secondary amides. 

Table 3 provides a comparison of the results obtained for the Cu-TDPAT catalytic system with 
other reported heterogeneous catalytic systems in the cross-coupling reaction of imidazole with 
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Table 2. Ullmann and Goldberg type C–N coupling reactions of halobenzenes with various amines 
and amides over Cu-TDPAT *. 
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* Reaction conditions: halobenzenes (1 mmol), amine derivatives (1 mmol), MOFs (0.05 mmol, based 
on copper), K2CO3 (2 mmol), DMSO (5 mL), 2 h, temperature 120 °C. a The yield of 2; b Data of 
reaction for 8 h. The symbol of n.r represents no reaction. 

In the case of indole, the coupling product, 1-phenylindole, can be obtained in 93% yield after  
8 h, which is comparable to the homogeneous system results [28,79], indicating the high activity of 
Cu-TDPAT. N-Methylaniline derivatives bearing electron-withdrawing and electron-donating 
groups on the benzene ring afforded obviously different results under the standard reaction conditions. 
When 4-methoxy-N-methylaniline was subjected to the reaction, a good yield (54%) of the desired 
product was obtained thanks to the electron-donating effect of the methoxy group. However the 
coupling reactions of 4-nitro-N-methylaniline proceeded with difficulty to give the N-arylation product 
in a low yield (Table 2, entry 7). These results demonstrated that the electronic properties of the 
substituent(s) on the aryl amine play an important role in determining its reactivity in the C–N coupling 
reactions. Compared to 4-methoxy-N-methylaniline, the reaction of 2-methoxy-N-methylaniline gave a 
relative low yield of the expected product due to the steric hindrance of the adjacent methoxy group 
(Table 2, entry 6). Secondary amides are a particularly challenging substrate class for cross couplings 
due to the large size of secondary amides and their relatively low nucleophilicity (compared to 
amines) [87,88]. The reaction of N-methylbenzamide (Table 2, entry 10) with iodobenzene afforded a 
56% yield of the tertiary amide, N-methyl-N-phenylbenzamide, within 2 h in the N-arylation reaction, 
implying that Cu-TDPAT showed a higher activity than copper(I) thiophenecarboxylate (CuTC) [88] 
in the N-arylation reaction of secondary amides. 

Table 3 provides a comparison of the results obtained for the Cu-TDPAT catalytic system with 
other reported heterogeneous catalytic systems in the cross-coupling reaction of imidazole with 
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Table 2. Ullmann and Goldberg type C–N coupling reactions of halobenzenes with various amines 
and amides over Cu-TDPAT *. 

Entry (R1R2)NH ArX Yield (%) 
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* Reaction conditions: halobenzenes (1 mmol), amine derivatives (1 mmol), MOFs (0.05 mmol, based 
on copper), K2CO3 (2 mmol), DMSO (5 mL), 2 h, temperature 120 °C. a The yield of 2; b Data of 
reaction for 8 h. The symbol of n.r represents no reaction. 

In the case of indole, the coupling product, 1-phenylindole, can be obtained in 93% yield after  
8 h, which is comparable to the homogeneous system results [28,79], indicating the high activity of 
Cu-TDPAT. N-Methylaniline derivatives bearing electron-withdrawing and electron-donating 
groups on the benzene ring afforded obviously different results under the standard reaction conditions. 
When 4-methoxy-N-methylaniline was subjected to the reaction, a good yield (54%) of the desired 
product was obtained thanks to the electron-donating effect of the methoxy group. However the 
coupling reactions of 4-nitro-N-methylaniline proceeded with difficulty to give the N-arylation product 
in a low yield (Table 2, entry 7). These results demonstrated that the electronic properties of the 
substituent(s) on the aryl amine play an important role in determining its reactivity in the C–N coupling 
reactions. Compared to 4-methoxy-N-methylaniline, the reaction of 2-methoxy-N-methylaniline gave a 
relative low yield of the expected product due to the steric hindrance of the adjacent methoxy group 
(Table 2, entry 6). Secondary amides are a particularly challenging substrate class for cross couplings 
due to the large size of secondary amides and their relatively low nucleophilicity (compared to 
amines) [87,88]. The reaction of N-methylbenzamide (Table 2, entry 10) with iodobenzene afforded a 
56% yield of the tertiary amide, N-methyl-N-phenylbenzamide, within 2 h in the N-arylation reaction, 
implying that Cu-TDPAT showed a higher activity than copper(I) thiophenecarboxylate (CuTC) [88] 
in the N-arylation reaction of secondary amides. 

Table 3 provides a comparison of the results obtained for the Cu-TDPAT catalytic system with 
other reported heterogeneous catalytic systems in the cross-coupling reaction of imidazole with 
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Table 2. Ullmann and Goldberg type C–N coupling reactions of halobenzenes with various amines 
and amides over Cu-TDPAT *. 
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* Reaction conditions: halobenzenes (1 mmol), amine derivatives (1 mmol), MOFs (0.05 mmol, based 
on copper), K2CO3 (2 mmol), DMSO (5 mL), 2 h, temperature 120 °C. a The yield of 2; b Data of 
reaction for 8 h. The symbol of n.r represents no reaction. 

In the case of indole, the coupling product, 1-phenylindole, can be obtained in 93% yield after  
8 h, which is comparable to the homogeneous system results [28,79], indicating the high activity of 
Cu-TDPAT. N-Methylaniline derivatives bearing electron-withdrawing and electron-donating 
groups on the benzene ring afforded obviously different results under the standard reaction conditions. 
When 4-methoxy-N-methylaniline was subjected to the reaction, a good yield (54%) of the desired 
product was obtained thanks to the electron-donating effect of the methoxy group. However the 
coupling reactions of 4-nitro-N-methylaniline proceeded with difficulty to give the N-arylation product 
in a low yield (Table 2, entry 7). These results demonstrated that the electronic properties of the 
substituent(s) on the aryl amine play an important role in determining its reactivity in the C–N coupling 
reactions. Compared to 4-methoxy-N-methylaniline, the reaction of 2-methoxy-N-methylaniline gave a 
relative low yield of the expected product due to the steric hindrance of the adjacent methoxy group 
(Table 2, entry 6). Secondary amides are a particularly challenging substrate class for cross couplings 
due to the large size of secondary amides and their relatively low nucleophilicity (compared to 
amines) [87,88]. The reaction of N-methylbenzamide (Table 2, entry 10) with iodobenzene afforded a 
56% yield of the tertiary amide, N-methyl-N-phenylbenzamide, within 2 h in the N-arylation reaction, 
implying that Cu-TDPAT showed a higher activity than copper(I) thiophenecarboxylate (CuTC) [88] 
in the N-arylation reaction of secondary amides. 

Table 3 provides a comparison of the results obtained for the Cu-TDPAT catalytic system with 
other reported heterogeneous catalytic systems in the cross-coupling reaction of imidazole with 
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Table 2. Ullmann and Goldberg type C–N coupling reactions of halobenzenes with various amines 
and amides over Cu-TDPAT *. 

Entry (R1R2)NH ArX Yield (%) 
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* Reaction conditions: halobenzenes (1 mmol), amine derivatives (1 mmol), MOFs (0.05 mmol, based 
on copper), K2CO3 (2 mmol), DMSO (5 mL), 2 h, temperature 120 °C. a The yield of 2; b Data of 
reaction for 8 h. The symbol of n.r represents no reaction. 

In the case of indole, the coupling product, 1-phenylindole, can be obtained in 93% yield after  
8 h, which is comparable to the homogeneous system results [28,79], indicating the high activity of 
Cu-TDPAT. N-Methylaniline derivatives bearing electron-withdrawing and electron-donating 
groups on the benzene ring afforded obviously different results under the standard reaction conditions. 
When 4-methoxy-N-methylaniline was subjected to the reaction, a good yield (54%) of the desired 
product was obtained thanks to the electron-donating effect of the methoxy group. However the 
coupling reactions of 4-nitro-N-methylaniline proceeded with difficulty to give the N-arylation product 
in a low yield (Table 2, entry 7). These results demonstrated that the electronic properties of the 
substituent(s) on the aryl amine play an important role in determining its reactivity in the C–N coupling 
reactions. Compared to 4-methoxy-N-methylaniline, the reaction of 2-methoxy-N-methylaniline gave a 
relative low yield of the expected product due to the steric hindrance of the adjacent methoxy group 
(Table 2, entry 6). Secondary amides are a particularly challenging substrate class for cross couplings 
due to the large size of secondary amides and their relatively low nucleophilicity (compared to 
amines) [87,88]. The reaction of N-methylbenzamide (Table 2, entry 10) with iodobenzene afforded a 
56% yield of the tertiary amide, N-methyl-N-phenylbenzamide, within 2 h in the N-arylation reaction, 
implying that Cu-TDPAT showed a higher activity than copper(I) thiophenecarboxylate (CuTC) [88] 
in the N-arylation reaction of secondary amides. 

Table 3 provides a comparison of the results obtained for the Cu-TDPAT catalytic system with 
other reported heterogeneous catalytic systems in the cross-coupling reaction of imidazole with 
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Table 2. Ullmann and Goldberg type C–N coupling reactions of halobenzenes with various amines 
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* Reaction conditions: halobenzenes (1 mmol), amine derivatives (1 mmol), MOFs (0.05 mmol, based 
on copper), K2CO3 (2 mmol), DMSO (5 mL), 2 h, temperature 120 °C. a The yield of 2; b Data of 
reaction for 8 h. The symbol of n.r represents no reaction. 

In the case of indole, the coupling product, 1-phenylindole, can be obtained in 93% yield after  
8 h, which is comparable to the homogeneous system results [28,79], indicating the high activity of 
Cu-TDPAT. N-Methylaniline derivatives bearing electron-withdrawing and electron-donating 
groups on the benzene ring afforded obviously different results under the standard reaction conditions. 
When 4-methoxy-N-methylaniline was subjected to the reaction, a good yield (54%) of the desired 
product was obtained thanks to the electron-donating effect of the methoxy group. However the 
coupling reactions of 4-nitro-N-methylaniline proceeded with difficulty to give the N-arylation product 
in a low yield (Table 2, entry 7). These results demonstrated that the electronic properties of the 
substituent(s) on the aryl amine play an important role in determining its reactivity in the C–N coupling 
reactions. Compared to 4-methoxy-N-methylaniline, the reaction of 2-methoxy-N-methylaniline gave a 
relative low yield of the expected product due to the steric hindrance of the adjacent methoxy group 
(Table 2, entry 6). Secondary amides are a particularly challenging substrate class for cross couplings 
due to the large size of secondary amides and their relatively low nucleophilicity (compared to 
amines) [87,88]. The reaction of N-methylbenzamide (Table 2, entry 10) with iodobenzene afforded a 
56% yield of the tertiary amide, N-methyl-N-phenylbenzamide, within 2 h in the N-arylation reaction, 
implying that Cu-TDPAT showed a higher activity than copper(I) thiophenecarboxylate (CuTC) [88] 
in the N-arylation reaction of secondary amides. 

Table 3 provides a comparison of the results obtained for the Cu-TDPAT catalytic system with 
other reported heterogeneous catalytic systems in the cross-coupling reaction of imidazole with 
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Table 2. Ullmann and Goldberg type C–N coupling reactions of halobenzenes with various amines 
and amides over Cu-TDPAT *. 

Entry (R1R2)NH ArX Yield (%) 

1 
Br

 39 (2 a) 

2 
Br

 37 

3 
Cl

 n.r 

4 
I

 51 

5 
I

 54 

6 
I

 43 

7 
I

 35 

8 NH2

CH3
HO

O

I

 59 

9 
I

 55 

10 
I

 56 

11 N
H

I

 72 (93 b) 

12 
 

I

 61 (91 b) 

* Reaction conditions: halobenzenes (1 mmol), amine derivatives (1 mmol), MOFs (0.05 mmol, based 
on copper), K2CO3 (2 mmol), DMSO (5 mL), 2 h, temperature 120 °C. a The yield of 2; b Data of 
reaction for 8 h. The symbol of n.r represents no reaction. 

In the case of indole, the coupling product, 1-phenylindole, can be obtained in 93% yield after  
8 h, which is comparable to the homogeneous system results [28,79], indicating the high activity of 
Cu-TDPAT. N-Methylaniline derivatives bearing electron-withdrawing and electron-donating 
groups on the benzene ring afforded obviously different results under the standard reaction conditions. 
When 4-methoxy-N-methylaniline was subjected to the reaction, a good yield (54%) of the desired 
product was obtained thanks to the electron-donating effect of the methoxy group. However the 
coupling reactions of 4-nitro-N-methylaniline proceeded with difficulty to give the N-arylation product 
in a low yield (Table 2, entry 7). These results demonstrated that the electronic properties of the 
substituent(s) on the aryl amine play an important role in determining its reactivity in the C–N coupling 
reactions. Compared to 4-methoxy-N-methylaniline, the reaction of 2-methoxy-N-methylaniline gave a 
relative low yield of the expected product due to the steric hindrance of the adjacent methoxy group 
(Table 2, entry 6). Secondary amides are a particularly challenging substrate class for cross couplings 
due to the large size of secondary amides and their relatively low nucleophilicity (compared to 
amines) [87,88]. The reaction of N-methylbenzamide (Table 2, entry 10) with iodobenzene afforded a 
56% yield of the tertiary amide, N-methyl-N-phenylbenzamide, within 2 h in the N-arylation reaction, 
implying that Cu-TDPAT showed a higher activity than copper(I) thiophenecarboxylate (CuTC) [88] 
in the N-arylation reaction of secondary amides. 

Table 3 provides a comparison of the results obtained for the Cu-TDPAT catalytic system with 
other reported heterogeneous catalytic systems in the cross-coupling reaction of imidazole with 
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Table 2. Ullmann and Goldberg type C–N coupling reactions of halobenzenes with various amines 
and amides over Cu-TDPAT *. 

Entry (R1R2)NH ArX Yield (%) 

1 
Br

 39 (2 a) 

2 
Br

 37 

3 
Cl

 n.r 

4 
I

 51 

5 
I

 54 

6 
I

 43 

7 
I

 35 

8 NH2

CH3
HO

O

I

 59 

9 
I

 55 

10 
I

 56 

11 N
H

I

 72 (93 b) 

12 
 

I

 61 (91 b) 

* Reaction conditions: halobenzenes (1 mmol), amine derivatives (1 mmol), MOFs (0.05 mmol, based 
on copper), K2CO3 (2 mmol), DMSO (5 mL), 2 h, temperature 120 °C. a The yield of 2; b Data of 
reaction for 8 h. The symbol of n.r represents no reaction. 

In the case of indole, the coupling product, 1-phenylindole, can be obtained in 93% yield after  
8 h, which is comparable to the homogeneous system results [28,79], indicating the high activity of 
Cu-TDPAT. N-Methylaniline derivatives bearing electron-withdrawing and electron-donating 
groups on the benzene ring afforded obviously different results under the standard reaction conditions. 
When 4-methoxy-N-methylaniline was subjected to the reaction, a good yield (54%) of the desired 
product was obtained thanks to the electron-donating effect of the methoxy group. However the 
coupling reactions of 4-nitro-N-methylaniline proceeded with difficulty to give the N-arylation product 
in a low yield (Table 2, entry 7). These results demonstrated that the electronic properties of the 
substituent(s) on the aryl amine play an important role in determining its reactivity in the C–N coupling 
reactions. Compared to 4-methoxy-N-methylaniline, the reaction of 2-methoxy-N-methylaniline gave a 
relative low yield of the expected product due to the steric hindrance of the adjacent methoxy group 
(Table 2, entry 6). Secondary amides are a particularly challenging substrate class for cross couplings 
due to the large size of secondary amides and their relatively low nucleophilicity (compared to 
amines) [87,88]. The reaction of N-methylbenzamide (Table 2, entry 10) with iodobenzene afforded a 
56% yield of the tertiary amide, N-methyl-N-phenylbenzamide, within 2 h in the N-arylation reaction, 
implying that Cu-TDPAT showed a higher activity than copper(I) thiophenecarboxylate (CuTC) [88] 
in the N-arylation reaction of secondary amides. 

Table 3 provides a comparison of the results obtained for the Cu-TDPAT catalytic system with 
other reported heterogeneous catalytic systems in the cross-coupling reaction of imidazole with 
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Table 2. Ullmann and Goldberg type C–N coupling reactions of halobenzenes with various amines 
and amides over Cu-TDPAT *. 

Entry (R1R2)NH ArX Yield (%) 

1 
Br

 39 (2 a) 

2 
Br

 37 

3 
Cl

 n.r 

4 
I

 51 

5 
I

 54 

6 
I

 43 

7 
I

 35 

8 NH2

CH3
HO

O
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 59 

9 
I

 55 

10 
I

 56 

11 N
H

I

 72 (93 b) 

12 
 

I

 61 (91 b) 

* Reaction conditions: halobenzenes (1 mmol), amine derivatives (1 mmol), MOFs (0.05 mmol, based 
on copper), K2CO3 (2 mmol), DMSO (5 mL), 2 h, temperature 120 °C. a The yield of 2; b Data of 
reaction for 8 h. The symbol of n.r represents no reaction. 

In the case of indole, the coupling product, 1-phenylindole, can be obtained in 93% yield after  
8 h, which is comparable to the homogeneous system results [28,79], indicating the high activity of 
Cu-TDPAT. N-Methylaniline derivatives bearing electron-withdrawing and electron-donating 
groups on the benzene ring afforded obviously different results under the standard reaction conditions. 
When 4-methoxy-N-methylaniline was subjected to the reaction, a good yield (54%) of the desired 
product was obtained thanks to the electron-donating effect of the methoxy group. However the 
coupling reactions of 4-nitro-N-methylaniline proceeded with difficulty to give the N-arylation product 
in a low yield (Table 2, entry 7). These results demonstrated that the electronic properties of the 
substituent(s) on the aryl amine play an important role in determining its reactivity in the C–N coupling 
reactions. Compared to 4-methoxy-N-methylaniline, the reaction of 2-methoxy-N-methylaniline gave a 
relative low yield of the expected product due to the steric hindrance of the adjacent methoxy group 
(Table 2, entry 6). Secondary amides are a particularly challenging substrate class for cross couplings 
due to the large size of secondary amides and their relatively low nucleophilicity (compared to 
amines) [87,88]. The reaction of N-methylbenzamide (Table 2, entry 10) with iodobenzene afforded a 
56% yield of the tertiary amide, N-methyl-N-phenylbenzamide, within 2 h in the N-arylation reaction, 
implying that Cu-TDPAT showed a higher activity than copper(I) thiophenecarboxylate (CuTC) [88] 
in the N-arylation reaction of secondary amides. 

Table 3 provides a comparison of the results obtained for the Cu-TDPAT catalytic system with 
other reported heterogeneous catalytic systems in the cross-coupling reaction of imidazole with 
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Table 2. Ullmann and Goldberg type C–N coupling reactions of halobenzenes with various amines 
and amides over Cu-TDPAT *. 

Entry (R1R2)NH ArX Yield (%) 

1 
Br

 39 (2 a) 

2 
Br

 37 

3 
Cl

 n.r 

4 
I

 51 

5 
I

 54 

6 
I

 43 

7 
I

 35 

8 NH2

CH3
HO

O

I

 59 

9 
I

 55 

10 
I
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11 N
H

I

 72 (93 b) 

12 
 

I

 61 (91 b) 

* Reaction conditions: halobenzenes (1 mmol), amine derivatives (1 mmol), MOFs (0.05 mmol, based 
on copper), K2CO3 (2 mmol), DMSO (5 mL), 2 h, temperature 120 °C. a The yield of 2; b Data of 
reaction for 8 h. The symbol of n.r represents no reaction. 

In the case of indole, the coupling product, 1-phenylindole, can be obtained in 93% yield after  
8 h, which is comparable to the homogeneous system results [28,79], indicating the high activity of 
Cu-TDPAT. N-Methylaniline derivatives bearing electron-withdrawing and electron-donating 
groups on the benzene ring afforded obviously different results under the standard reaction conditions. 
When 4-methoxy-N-methylaniline was subjected to the reaction, a good yield (54%) of the desired 
product was obtained thanks to the electron-donating effect of the methoxy group. However the 
coupling reactions of 4-nitro-N-methylaniline proceeded with difficulty to give the N-arylation product 
in a low yield (Table 2, entry 7). These results demonstrated that the electronic properties of the 
substituent(s) on the aryl amine play an important role in determining its reactivity in the C–N coupling 
reactions. Compared to 4-methoxy-N-methylaniline, the reaction of 2-methoxy-N-methylaniline gave a 
relative low yield of the expected product due to the steric hindrance of the adjacent methoxy group 
(Table 2, entry 6). Secondary amides are a particularly challenging substrate class for cross couplings 
due to the large size of secondary amides and their relatively low nucleophilicity (compared to 
amines) [87,88]. The reaction of N-methylbenzamide (Table 2, entry 10) with iodobenzene afforded a 
56% yield of the tertiary amide, N-methyl-N-phenylbenzamide, within 2 h in the N-arylation reaction, 
implying that Cu-TDPAT showed a higher activity than copper(I) thiophenecarboxylate (CuTC) [88] 
in the N-arylation reaction of secondary amides. 

Table 3 provides a comparison of the results obtained for the Cu-TDPAT catalytic system with 
other reported heterogeneous catalytic systems in the cross-coupling reaction of imidazole with 
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Table 2. Ullmann and Goldberg type C–N coupling reactions of halobenzenes with various amines 
and amides over Cu-TDPAT *. 

Entry (R1R2)NH ArX Yield (%) 

1 
Br

 39 (2 a) 

2 
Br

 37 

3 
Cl

 n.r 

4 
I

 51 

5 
I

 54 

6 
I

 43 

7 
I

 35 

8 NH2

CH3
HO

O
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9 
I

 55 

10 
I

 56 

11 N
H

I

 72 (93 b) 

12 
 

I

 61 (91 b) 

* Reaction conditions: halobenzenes (1 mmol), amine derivatives (1 mmol), MOFs (0.05 mmol, based 
on copper), K2CO3 (2 mmol), DMSO (5 mL), 2 h, temperature 120 °C. a The yield of 2; b Data of 
reaction for 8 h. The symbol of n.r represents no reaction. 

In the case of indole, the coupling product, 1-phenylindole, can be obtained in 93% yield after  
8 h, which is comparable to the homogeneous system results [28,79], indicating the high activity of 
Cu-TDPAT. N-Methylaniline derivatives bearing electron-withdrawing and electron-donating 
groups on the benzene ring afforded obviously different results under the standard reaction conditions. 
When 4-methoxy-N-methylaniline was subjected to the reaction, a good yield (54%) of the desired 
product was obtained thanks to the electron-donating effect of the methoxy group. However the 
coupling reactions of 4-nitro-N-methylaniline proceeded with difficulty to give the N-arylation product 
in a low yield (Table 2, entry 7). These results demonstrated that the electronic properties of the 
substituent(s) on the aryl amine play an important role in determining its reactivity in the C–N coupling 
reactions. Compared to 4-methoxy-N-methylaniline, the reaction of 2-methoxy-N-methylaniline gave a 
relative low yield of the expected product due to the steric hindrance of the adjacent methoxy group 
(Table 2, entry 6). Secondary amides are a particularly challenging substrate class for cross couplings 
due to the large size of secondary amides and their relatively low nucleophilicity (compared to 
amines) [87,88]. The reaction of N-methylbenzamide (Table 2, entry 10) with iodobenzene afforded a 
56% yield of the tertiary amide, N-methyl-N-phenylbenzamide, within 2 h in the N-arylation reaction, 
implying that Cu-TDPAT showed a higher activity than copper(I) thiophenecarboxylate (CuTC) [88] 
in the N-arylation reaction of secondary amides. 

Table 3 provides a comparison of the results obtained for the Cu-TDPAT catalytic system with 
other reported heterogeneous catalytic systems in the cross-coupling reaction of imidazole with 
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Table 2. Ullmann and Goldberg type C–N coupling reactions of halobenzenes with various amines 
and amides over Cu-TDPAT *. 

Entry (R1R2)NH ArX Yield (%) 

1 
Br

 39 (2 a) 

2 
Br

 37 

3 
Cl

 n.r 

4 
I

 51 

5 
I

 54 

6 
I
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7 
I

 35 

8 NH2

CH3
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O
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9 
I
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I
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H

I

 72 (93 b) 

12 
 

I

 61 (91 b) 

* Reaction conditions: halobenzenes (1 mmol), amine derivatives (1 mmol), MOFs (0.05 mmol, based 
on copper), K2CO3 (2 mmol), DMSO (5 mL), 2 h, temperature 120 °C. a The yield of 2; b Data of 
reaction for 8 h. The symbol of n.r represents no reaction. 

In the case of indole, the coupling product, 1-phenylindole, can be obtained in 93% yield after  
8 h, which is comparable to the homogeneous system results [28,79], indicating the high activity of 
Cu-TDPAT. N-Methylaniline derivatives bearing electron-withdrawing and electron-donating 
groups on the benzene ring afforded obviously different results under the standard reaction conditions. 
When 4-methoxy-N-methylaniline was subjected to the reaction, a good yield (54%) of the desired 
product was obtained thanks to the electron-donating effect of the methoxy group. However the 
coupling reactions of 4-nitro-N-methylaniline proceeded with difficulty to give the N-arylation product 
in a low yield (Table 2, entry 7). These results demonstrated that the electronic properties of the 
substituent(s) on the aryl amine play an important role in determining its reactivity in the C–N coupling 
reactions. Compared to 4-methoxy-N-methylaniline, the reaction of 2-methoxy-N-methylaniline gave a 
relative low yield of the expected product due to the steric hindrance of the adjacent methoxy group 
(Table 2, entry 6). Secondary amides are a particularly challenging substrate class for cross couplings 
due to the large size of secondary amides and their relatively low nucleophilicity (compared to 
amines) [87,88]. The reaction of N-methylbenzamide (Table 2, entry 10) with iodobenzene afforded a 
56% yield of the tertiary amide, N-methyl-N-phenylbenzamide, within 2 h in the N-arylation reaction, 
implying that Cu-TDPAT showed a higher activity than copper(I) thiophenecarboxylate (CuTC) [88] 
in the N-arylation reaction of secondary amides. 

Table 3 provides a comparison of the results obtained for the Cu-TDPAT catalytic system with 
other reported heterogeneous catalytic systems in the cross-coupling reaction of imidazole with 
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Table 2. Ullmann and Goldberg type C–N coupling reactions of halobenzenes with various amines 
and amides over Cu-TDPAT *. 

Entry (R1R2)NH ArX Yield (%) 

1 
Br

 39 (2 a) 

2 
Br

 37 

3 
Cl

 n.r 

4 
I

 51 

5 
I

 54 

6 
I

 43 

7 
I
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8 NH2
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I

 72 (93 b) 

12 
 

I

 61 (91 b) 

* Reaction conditions: halobenzenes (1 mmol), amine derivatives (1 mmol), MOFs (0.05 mmol, based 
on copper), K2CO3 (2 mmol), DMSO (5 mL), 2 h, temperature 120 °C. a The yield of 2; b Data of 
reaction for 8 h. The symbol of n.r represents no reaction. 

In the case of indole, the coupling product, 1-phenylindole, can be obtained in 93% yield after  
8 h, which is comparable to the homogeneous system results [28,79], indicating the high activity of 
Cu-TDPAT. N-Methylaniline derivatives bearing electron-withdrawing and electron-donating 
groups on the benzene ring afforded obviously different results under the standard reaction conditions. 
When 4-methoxy-N-methylaniline was subjected to the reaction, a good yield (54%) of the desired 
product was obtained thanks to the electron-donating effect of the methoxy group. However the 
coupling reactions of 4-nitro-N-methylaniline proceeded with difficulty to give the N-arylation product 
in a low yield (Table 2, entry 7). These results demonstrated that the electronic properties of the 
substituent(s) on the aryl amine play an important role in determining its reactivity in the C–N coupling 
reactions. Compared to 4-methoxy-N-methylaniline, the reaction of 2-methoxy-N-methylaniline gave a 
relative low yield of the expected product due to the steric hindrance of the adjacent methoxy group 
(Table 2, entry 6). Secondary amides are a particularly challenging substrate class for cross couplings 
due to the large size of secondary amides and their relatively low nucleophilicity (compared to 
amines) [87,88]. The reaction of N-methylbenzamide (Table 2, entry 10) with iodobenzene afforded a 
56% yield of the tertiary amide, N-methyl-N-phenylbenzamide, within 2 h in the N-arylation reaction, 
implying that Cu-TDPAT showed a higher activity than copper(I) thiophenecarboxylate (CuTC) [88] 
in the N-arylation reaction of secondary amides. 

Table 3 provides a comparison of the results obtained for the Cu-TDPAT catalytic system with 
other reported heterogeneous catalytic systems in the cross-coupling reaction of imidazole with 
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Table 2. Ullmann and Goldberg type C–N coupling reactions of halobenzenes with various amines 
and amides over Cu-TDPAT *. 

Entry (R1R2)NH ArX Yield (%) 

1 
Br

 39 (2 a) 

2 
Br

 37 

3 
Cl

 n.r 

4 
I
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5 
I
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7 
I
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8 NH2
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 72 (93 b) 

12 
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* Reaction conditions: halobenzenes (1 mmol), amine derivatives (1 mmol), MOFs (0.05 mmol, based 
on copper), K2CO3 (2 mmol), DMSO (5 mL), 2 h, temperature 120 °C. a The yield of 2; b Data of 
reaction for 8 h. The symbol of n.r represents no reaction. 

In the case of indole, the coupling product, 1-phenylindole, can be obtained in 93% yield after  
8 h, which is comparable to the homogeneous system results [28,79], indicating the high activity of 
Cu-TDPAT. N-Methylaniline derivatives bearing electron-withdrawing and electron-donating 
groups on the benzene ring afforded obviously different results under the standard reaction conditions. 
When 4-methoxy-N-methylaniline was subjected to the reaction, a good yield (54%) of the desired 
product was obtained thanks to the electron-donating effect of the methoxy group. However the 
coupling reactions of 4-nitro-N-methylaniline proceeded with difficulty to give the N-arylation product 
in a low yield (Table 2, entry 7). These results demonstrated that the electronic properties of the 
substituent(s) on the aryl amine play an important role in determining its reactivity in the C–N coupling 
reactions. Compared to 4-methoxy-N-methylaniline, the reaction of 2-methoxy-N-methylaniline gave a 
relative low yield of the expected product due to the steric hindrance of the adjacent methoxy group 
(Table 2, entry 6). Secondary amides are a particularly challenging substrate class for cross couplings 
due to the large size of secondary amides and their relatively low nucleophilicity (compared to 
amines) [87,88]. The reaction of N-methylbenzamide (Table 2, entry 10) with iodobenzene afforded a 
56% yield of the tertiary amide, N-methyl-N-phenylbenzamide, within 2 h in the N-arylation reaction, 
implying that Cu-TDPAT showed a higher activity than copper(I) thiophenecarboxylate (CuTC) [88] 
in the N-arylation reaction of secondary amides. 

Table 3 provides a comparison of the results obtained for the Cu-TDPAT catalytic system with 
other reported heterogeneous catalytic systems in the cross-coupling reaction of imidazole with 
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Table 2. Ullmann and Goldberg type C–N coupling reactions of halobenzenes with various amines 
and amides over Cu-TDPAT *. 

Entry (R1R2)NH ArX Yield (%) 

1 
Br

 39 (2 a) 
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Br
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Cl

 n.r 

4 
I
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* Reaction conditions: halobenzenes (1 mmol), amine derivatives (1 mmol), MOFs (0.05 mmol, based 
on copper), K2CO3 (2 mmol), DMSO (5 mL), 2 h, temperature 120 °C. a The yield of 2; b Data of 
reaction for 8 h. The symbol of n.r represents no reaction. 

In the case of indole, the coupling product, 1-phenylindole, can be obtained in 93% yield after  
8 h, which is comparable to the homogeneous system results [28,79], indicating the high activity of 
Cu-TDPAT. N-Methylaniline derivatives bearing electron-withdrawing and electron-donating 
groups on the benzene ring afforded obviously different results under the standard reaction conditions. 
When 4-methoxy-N-methylaniline was subjected to the reaction, a good yield (54%) of the desired 
product was obtained thanks to the electron-donating effect of the methoxy group. However the 
coupling reactions of 4-nitro-N-methylaniline proceeded with difficulty to give the N-arylation product 
in a low yield (Table 2, entry 7). These results demonstrated that the electronic properties of the 
substituent(s) on the aryl amine play an important role in determining its reactivity in the C–N coupling 
reactions. Compared to 4-methoxy-N-methylaniline, the reaction of 2-methoxy-N-methylaniline gave a 
relative low yield of the expected product due to the steric hindrance of the adjacent methoxy group 
(Table 2, entry 6). Secondary amides are a particularly challenging substrate class for cross couplings 
due to the large size of secondary amides and their relatively low nucleophilicity (compared to 
amines) [87,88]. The reaction of N-methylbenzamide (Table 2, entry 10) with iodobenzene afforded a 
56% yield of the tertiary amide, N-methyl-N-phenylbenzamide, within 2 h in the N-arylation reaction, 
implying that Cu-TDPAT showed a higher activity than copper(I) thiophenecarboxylate (CuTC) [88] 
in the N-arylation reaction of secondary amides. 

Table 3 provides a comparison of the results obtained for the Cu-TDPAT catalytic system with 
other reported heterogeneous catalytic systems in the cross-coupling reaction of imidazole with 
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Table 2. Ullmann and Goldberg type C–N coupling reactions of halobenzenes with various amines 
and amides over Cu-TDPAT *. 

Entry (R1R2)NH ArX Yield (%) 

1 
Br

 39 (2 a) 
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* Reaction conditions: halobenzenes (1 mmol), amine derivatives (1 mmol), MOFs (0.05 mmol, based 
on copper), K2CO3 (2 mmol), DMSO (5 mL), 2 h, temperature 120 °C. a The yield of 2; b Data of 
reaction for 8 h. The symbol of n.r represents no reaction. 

In the case of indole, the coupling product, 1-phenylindole, can be obtained in 93% yield after  
8 h, which is comparable to the homogeneous system results [28,79], indicating the high activity of 
Cu-TDPAT. N-Methylaniline derivatives bearing electron-withdrawing and electron-donating 
groups on the benzene ring afforded obviously different results under the standard reaction conditions. 
When 4-methoxy-N-methylaniline was subjected to the reaction, a good yield (54%) of the desired 
product was obtained thanks to the electron-donating effect of the methoxy group. However the 
coupling reactions of 4-nitro-N-methylaniline proceeded with difficulty to give the N-arylation product 
in a low yield (Table 2, entry 7). These results demonstrated that the electronic properties of the 
substituent(s) on the aryl amine play an important role in determining its reactivity in the C–N coupling 
reactions. Compared to 4-methoxy-N-methylaniline, the reaction of 2-methoxy-N-methylaniline gave a 
relative low yield of the expected product due to the steric hindrance of the adjacent methoxy group 
(Table 2, entry 6). Secondary amides are a particularly challenging substrate class for cross couplings 
due to the large size of secondary amides and their relatively low nucleophilicity (compared to 
amines) [87,88]. The reaction of N-methylbenzamide (Table 2, entry 10) with iodobenzene afforded a 
56% yield of the tertiary amide, N-methyl-N-phenylbenzamide, within 2 h in the N-arylation reaction, 
implying that Cu-TDPAT showed a higher activity than copper(I) thiophenecarboxylate (CuTC) [88] 
in the N-arylation reaction of secondary amides. 

Table 3 provides a comparison of the results obtained for the Cu-TDPAT catalytic system with 
other reported heterogeneous catalytic systems in the cross-coupling reaction of imidazole with 
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Table 2. Ullmann and Goldberg type C–N coupling reactions of halobenzenes with various amines 
and amides over Cu-TDPAT *. 

Entry (R1R2)NH ArX Yield (%) 
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* Reaction conditions: halobenzenes (1 mmol), amine derivatives (1 mmol), MOFs (0.05 mmol, based 
on copper), K2CO3 (2 mmol), DMSO (5 mL), 2 h, temperature 120 °C. a The yield of 2; b Data of 
reaction for 8 h. The symbol of n.r represents no reaction. 

In the case of indole, the coupling product, 1-phenylindole, can be obtained in 93% yield after  
8 h, which is comparable to the homogeneous system results [28,79], indicating the high activity of 
Cu-TDPAT. N-Methylaniline derivatives bearing electron-withdrawing and electron-donating 
groups on the benzene ring afforded obviously different results under the standard reaction conditions. 
When 4-methoxy-N-methylaniline was subjected to the reaction, a good yield (54%) of the desired 
product was obtained thanks to the electron-donating effect of the methoxy group. However the 
coupling reactions of 4-nitro-N-methylaniline proceeded with difficulty to give the N-arylation product 
in a low yield (Table 2, entry 7). These results demonstrated that the electronic properties of the 
substituent(s) on the aryl amine play an important role in determining its reactivity in the C–N coupling 
reactions. Compared to 4-methoxy-N-methylaniline, the reaction of 2-methoxy-N-methylaniline gave a 
relative low yield of the expected product due to the steric hindrance of the adjacent methoxy group 
(Table 2, entry 6). Secondary amides are a particularly challenging substrate class for cross couplings 
due to the large size of secondary amides and their relatively low nucleophilicity (compared to 
amines) [87,88]. The reaction of N-methylbenzamide (Table 2, entry 10) with iodobenzene afforded a 
56% yield of the tertiary amide, N-methyl-N-phenylbenzamide, within 2 h in the N-arylation reaction, 
implying that Cu-TDPAT showed a higher activity than copper(I) thiophenecarboxylate (CuTC) [88] 
in the N-arylation reaction of secondary amides. 

Table 3 provides a comparison of the results obtained for the Cu-TDPAT catalytic system with 
other reported heterogeneous catalytic systems in the cross-coupling reaction of imidazole with 

72 (93 b)

12

Molecules 2015, 20, page–page 

6 

Table 2. Ullmann and Goldberg type C–N coupling reactions of halobenzenes with various amines 
and amides over Cu-TDPAT *. 

Entry (R1R2)NH ArX Yield (%) 

1 
Br

 39 (2 a) 

2 
Br

 37 

3 
Cl

 n.r 

4 
I

 51 

5 
I

 54 

6 
I

 43 

7 
I

 35 

8 NH2

CH3
HO

O

I

 59 

9 
I

 55 

10 
I

 56 

11 N
H

I

 72 (93 b) 

12 
 

I

 61 (91 b) 

* Reaction conditions: halobenzenes (1 mmol), amine derivatives (1 mmol), MOFs (0.05 mmol, based 
on copper), K2CO3 (2 mmol), DMSO (5 mL), 2 h, temperature 120 °C. a The yield of 2; b Data of 
reaction for 8 h. The symbol of n.r represents no reaction. 

In the case of indole, the coupling product, 1-phenylindole, can be obtained in 93% yield after  
8 h, which is comparable to the homogeneous system results [28,79], indicating the high activity of 
Cu-TDPAT. N-Methylaniline derivatives bearing electron-withdrawing and electron-donating 
groups on the benzene ring afforded obviously different results under the standard reaction conditions. 
When 4-methoxy-N-methylaniline was subjected to the reaction, a good yield (54%) of the desired 
product was obtained thanks to the electron-donating effect of the methoxy group. However the 
coupling reactions of 4-nitro-N-methylaniline proceeded with difficulty to give the N-arylation product 
in a low yield (Table 2, entry 7). These results demonstrated that the electronic properties of the 
substituent(s) on the aryl amine play an important role in determining its reactivity in the C–N coupling 
reactions. Compared to 4-methoxy-N-methylaniline, the reaction of 2-methoxy-N-methylaniline gave a 
relative low yield of the expected product due to the steric hindrance of the adjacent methoxy group 
(Table 2, entry 6). Secondary amides are a particularly challenging substrate class for cross couplings 
due to the large size of secondary amides and their relatively low nucleophilicity (compared to 
amines) [87,88]. The reaction of N-methylbenzamide (Table 2, entry 10) with iodobenzene afforded a 
56% yield of the tertiary amide, N-methyl-N-phenylbenzamide, within 2 h in the N-arylation reaction, 
implying that Cu-TDPAT showed a higher activity than copper(I) thiophenecarboxylate (CuTC) [88] 
in the N-arylation reaction of secondary amides. 

Table 3 provides a comparison of the results obtained for the Cu-TDPAT catalytic system with 
other reported heterogeneous catalytic systems in the cross-coupling reaction of imidazole with 

Molecules 2015, 20, page–page 

6 

Table 2. Ullmann and Goldberg type C–N coupling reactions of halobenzenes with various amines 
and amides over Cu-TDPAT *. 

Entry (R1R2)NH ArX Yield (%) 

1 
Br

 39 (2 a) 

2 
Br

 37 

3 
Cl

 n.r 

4 
I

 51 

5 
I

 54 

6 
I

 43 

7 
I

 35 

8 NH2

CH3
HO

O

I

 59 

9 
I

 55 

10 
I

 56 

11 N
H

I

 72 (93 b) 

12 
 

I

 61 (91 b) 

* Reaction conditions: halobenzenes (1 mmol), amine derivatives (1 mmol), MOFs (0.05 mmol, based 
on copper), K2CO3 (2 mmol), DMSO (5 mL), 2 h, temperature 120 °C. a The yield of 2; b Data of 
reaction for 8 h. The symbol of n.r represents no reaction. 

In the case of indole, the coupling product, 1-phenylindole, can be obtained in 93% yield after  
8 h, which is comparable to the homogeneous system results [28,79], indicating the high activity of 
Cu-TDPAT. N-Methylaniline derivatives bearing electron-withdrawing and electron-donating 
groups on the benzene ring afforded obviously different results under the standard reaction conditions. 
When 4-methoxy-N-methylaniline was subjected to the reaction, a good yield (54%) of the desired 
product was obtained thanks to the electron-donating effect of the methoxy group. However the 
coupling reactions of 4-nitro-N-methylaniline proceeded with difficulty to give the N-arylation product 
in a low yield (Table 2, entry 7). These results demonstrated that the electronic properties of the 
substituent(s) on the aryl amine play an important role in determining its reactivity in the C–N coupling 
reactions. Compared to 4-methoxy-N-methylaniline, the reaction of 2-methoxy-N-methylaniline gave a 
relative low yield of the expected product due to the steric hindrance of the adjacent methoxy group 
(Table 2, entry 6). Secondary amides are a particularly challenging substrate class for cross couplings 
due to the large size of secondary amides and their relatively low nucleophilicity (compared to 
amines) [87,88]. The reaction of N-methylbenzamide (Table 2, entry 10) with iodobenzene afforded a 
56% yield of the tertiary amide, N-methyl-N-phenylbenzamide, within 2 h in the N-arylation reaction, 
implying that Cu-TDPAT showed a higher activity than copper(I) thiophenecarboxylate (CuTC) [88] 
in the N-arylation reaction of secondary amides. 

Table 3 provides a comparison of the results obtained for the Cu-TDPAT catalytic system with 
other reported heterogeneous catalytic systems in the cross-coupling reaction of imidazole with 

61 (91 b)

* Reaction conditions: halobenzenes (1 mmol), amine derivatives (1 mmol), MOFs (0.05 mmol, based on
copper), K2CO3 (2 mmol), DMSO (5 mL), 2 h, temperature 120 ˝C. a The yield of 2; b Data of reaction for
8 h. The symbol of n.r represents no reaction.

In the case of indole, the coupling product, 1-phenylindole, can be obtained in 93% yield after
8 h, which is comparable to the homogeneous system results [28,79], indicating the high activity
of Cu-TDPAT. N-Methylaniline derivatives bearing electron-withdrawing and electron-donating
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groups on the benzene ring afforded obviously different results under the standard reaction
conditions. When 4-methoxy-N-methylaniline was subjected to the reaction, a good yield (54%)
of the desired product was obtained thanks to the electron-donating effect of the methoxy
group. However the coupling reactions of 4-nitro-N-methylaniline proceeded with difficulty to
give the N-arylation product in a low yield (Table 2, entry 7). These results demonstrated
that the electronic properties of the substituent(s) on the aryl amine play an important role in
determining its reactivity in the C–N coupling reactions. Compared to 4-methoxy-N-methylaniline,
the reaction of 2-methoxy-N-methylaniline gave a relative low yield of the expected product due
to the steric hindrance of the adjacent methoxy group (Table 2, entry 6). Secondary amides are
a particularly challenging substrate class for cross couplings due to the large size of secondary
amides and their relatively low nucleophilicity (compared to amines) [87,88]. The reaction of
N-methylbenzamide (Table 2, entry 10) with iodobenzene afforded a 56% yield of the tertiary amide,
N-methyl-N-phenylbenzamide, within 2 h in the N-arylation reaction, implying that Cu-TDPAT
showed a higher activity than copper(I) thiophenecarboxylate (CuTC) [88] in the N-arylation reaction
of secondary amides.

Table 3 provides a comparison of the results obtained for the Cu-TDPAT catalytic system with
other reported heterogeneous catalytic systems in the cross-coupling reaction of imidazole with
iodobenzene, further indicating the higher activity of this Cu(II) coordination polymer compared
to the other reported systems. Considering the chemical structure and rht-topology of Cu-TDPAT, its
high catalytic activity can be attributed to the high density of open copper sites within Cu-TDPAT
framework and the high pore volume and large open windows that may reduce the diffusional
limitation of the substrate and product [85].

Table 3. Comparison of activity of different heterogeneous catalysts in the N-arylation reaction of
imidazole and iodobenzene.

Catalyst * Reaction Conditions Yield Reference

CuI/Meso-N-C-1 DMSO, KOH, 125 ˝C, 24 h 88% [42]
CuI/PSP H2O, K3PO4, 120 ˝C, 8 h 65% [48]

Cu-MPTA-1 H2O, KOH, 120 ˝C, 12 h 91% [52]
Cu/SiO2 Toluene, Cs2CO3, 100 ˝C, 8 h 23%–92% [44]

Cu-TDPAT DMSO, K2CO3, 120 ˝C, 8 h 91% This study

* Meso-N-C-1, PSP, MPTA-1 and SiO2 represent mesoporous nitrogen doped carbon, polystyrene-supported
pyrrole-2-carbohydrazide, mesoporous polytriallylamine, and amine or imine-modified silica, respectively.

2.6. Mechanistic Considerations

Although the mechanism of Ullmann and Goldberg type C–N coupling reactions in the
presence of copper compounds has been widely studied, and four mechanistic pathways involving
oxidative addition/reductive elimination, single electron transfer (SET), σ-bond metathesis and
π-complexation, respectively, have been proposed [89,90], copper-mediated C–N coupling reactions
are still in some sense unpredictable. In order to investigate the function of Cu-TDPAT in the
coupling reaction, X-band (9.06 GHz) electron paramagnetic resonance (EPR) spectra of the reaction
system were recorded at 90 ˝C. The EPR spectra of the reaction mixture were dominated by
a broad signal at g = 2.107 (Figure S8), which could be attributed to Cu2+–Cu2+ dimers or
mononuclear Cu2+ ions [91,92], indicating that the copper atoms on the MOF catalyst exist mainly
as Cu(II) species in the reaction mixtures. Compared to the spectra of pure Cu-TDPAT (Figure S9),
the decrease of the intensity of EPR signal of the reaction mixture with time and the change
of g-value indicated the occurrence of interaction between reaction substrates (iodobenzene and
5-methyl-2-(1H)-pyridone) and copper sites. No any organic radical species was detected, revealing
that the SET mechanism could be discounted. This was further supported by the experiment in
which no effect on the turnover frequency of the coupling reaction was observed when the free
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radical scavenger 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) was added to the reaction system.
Moreover, the σ-bond metathesis pathway and oxidative addition/reductive elimination pathway
could also be eliminated due to the difficulty in forming the corresponding intermediates, because the
halobenzene molecules and amine species bonding to the same copper ion from axis might dissociate
the MOF, rendering it non-recyclable. Therefore a possible mechanism for the N-arylation is that the
halobenzene molecule interacts with copper ion first and forms a π-complex, then the amine species
attacks the halobenzene activated by copper, giving the coupling product.

3. Experimental Section

3.1. General Information

All solvents and chemicals were obtained commercially and were used as received without
further purification. Cu-TDPAT [76] and CuBTC [83] were synthesized according to the reported
procedures, respectively. The catalysts samples were activated as follows: the as-synthesized MOF
sample was soaked in dry methanol for 12 h, separated from the mixture, and then the process was
repeated four times to remove the high boiling point solvates used in preparations.

Powder X-ray diffraction was performed on a D8 Advance instrument (Bruker, Karlsruhe,
Germany) using Cu–Kα radiation (λ = 1.5406 Å) at room temperature with a scan speed of 0.5 s
per step and a step size of 0.02˝. 1H-NMR and 13C-NMR data were collected on Bruker ARX-400
or Bruker ARX-600 spectrometers (Bruker) at 400 MHz and 101 or 151 MHz, respectively, using
CDCl3 or DMSO-d6 solutions with tetramethylsilane as an internal standard. Molecular weights
were obtained on an Aglilent 6410 Triple Quad LC-MS mass spectrometer (Agilent Technologies,
Palo Alto, CA, USA). Scanning electron microscope (SEM) images were obtained on Hitachi S 4300
(Hitachi, Tokyo, Japan) and JEOL-2010 (JEOL, Tokyo, Japan) instruments at room temperature.
Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis was performed on
an IRIS Intrepid ER/S instrument (Thermo Elemental, Waltham, MA, USA). Nitrogen sorption
measurement was performed at ´196 ˝C on a ASAP 2020 (Micromeritics, Norcross, GA, USA).
A sample of approximately 50 mg was outgassed at 150 ˝C for 12 h and then nitrogen isotherm
at ´196 ˝C was measured in liquid nitrogen bath using UHP-grade (99.999%) gas source. The
Brunauer-Emmett-Teller (BET) surface area of Cu-TDPAT and CuBTC was calculated based on the
nitrogen absorption isotherm. Thermogravimetric analysis (TGA) was performed on a TG 209F3
instrument (Netzsch, Selb, Germany) under nitrogen atmosphere (250 mL/min). The sample was
heated at a constant rate of 10 ˝C/min from 40 ˝C to 400 ˝C. The continuous wave (CW) EPR spectra
of the reaction mixture in toluene at X-Band were measured using a JES-FA200 spectrometer (JEOL),
microwave frequency 9.06 GHz, power of the microwave 0.998 mW) at 90 ˝C. The data for pure
Cu-TDPAT were obtained from powder samples at room temperature.

3.2. Catalytic Reactions

The coupling reaction was performed as follows: in a typical process, 5-methyl-2-(1H)-pyridone
(1 mmol), aryl halide (1 mmol), base (2 mmol) and solvent (5 mL) were added to an oven-dried
tube containing 5% (based on copper) MOF catalyst or copper salt. The mixture was stirred at
desired temperature for 2 h. After being cooled to room temperature, the catalyst was filtrated and
washed with ethyl acetate. The products were isolated by a series 1500 preparative high performance
liquid chromatography system (SSI, Charlotte, NC, USA) equipped with a UV-VIS detector, using a
Kromasil C18 column (50 ˆ 250 mm) and gradient elution with a H2O (A)-acetonitrile (B) the mobile
phase. The gradient program was 0 min, 10% B; 20 min, 35% B. The flow rate of mobile phase was
40 mL/min, and the detection wavelength was 220 nm. Fractions were collected and evaporated to
afford the pure products.

5-Methyl-1-phenyl-2-(1H)-pyridone. 1H-NMR (400 MHz; CDCl3): δ 7.41 (t, J = 7.0 Hz, 2H), 7.36
(t, J = 7.7 Hz, 1H), 7.32 (d, J = 7.8 Hz, 2H), 7.21 (d, J = 9.2 Hz, 1H), 7.07 (s, 1H), 6.53 (d, J = 9.2 Hz, 1H),
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2.04 (s, 3H); 13C-NMR (151 MHz; DMSO-d6): δ 160.95, 143.52, 141.47, 136.49, 129.46, 128.42, 127.17,
120.67, 114.60, 16.77; MS (ESI) m/z: 186.23 ([M + H]+; Calcd for C12H11NO + H 186.09, found: 186.23).

5-Methyl-2-phenoxypyridine. 1H-NMR (400 MHz, DMSO-d6): δ 7.98 (d, J = 1.7 Hz, 1H), 7.66
(dd, J = 8.3 Hz, 2.3 Hz, 1H), 7.39 (t, J = 7.9 Hz, 2H), 7.17 (t, J = 7.4 Hz, 1H), 7.07 (d, J = 7.8 Hz, 2H),
6.92 (d, J = 8.3 Hz, 1H), 2.23 (s, 3H). 13C-NMR (151 MHz; DMSO-d6): δ 161.63, 154.89, 147.41, 141.16,
130.08, 128.52, 124.57, 121.15, 111.62, 17.38. MS (ESI) m/z: 186.23 ([M + H]+; Calcd for C12H11NO + H
186.09, found: 186.23).

N-Methyldiphenylamine. 1H-NMR (400 MHz, CDCl3): δ 7.40 (t, J = 7.9Hz, 4H), 7.15 (d, J = 8.2 Hz, 4H),
7.08 (t, J = 7.3 Hz, 2H), 3.43 (s, 3H). 13C-NMR (151 MHz; DMSO-d6): δ 149.09, 129.62, 121.57, 120.57,
40.01. MS (ESI) m/z: 184.11 ([M + H]+; Calcd for C13H13N + H 184.11, found: 184.11).

N-Methyl-N-(4-methoxy)phenylaniline. 1H-NMR (400 MHz, CDCl3): δ 7.24–7.17 (m, 2H), 7.17–7.12
(m, 2H), 7.00 (m, 1H), 6.84–6.77 (m, 2H), 6.69–6.64 (m, 2H), 3.88 (s, 3H), 3.31 (s, 3H). 13C-NMR (151
MHz; DMSO-d6): δ 156.36, 149.92, 142.13, 129.30, 126.35, 118.55, 115.89, 115.27, 55.65, 40.63. MS (ESI)
m/z: 214.09 ([M + H]+; Calcd for C14H15NO + H 214.12, found: 214.09).

N-Methyl-N-(2-methoxy)phenylaniline. 1H-NMR (400 MHz, DMSO-d6): δ 7.33–7.22 (m, 1H), 7.17 (dd,
J = 12.3 Hz, 3 Hz, 1H), 7.13 (d, J = 6.1 Hz, 1H), 7.11 (t, J = 7.9 Hz, 2H), 6.99 (t, J = 7.5 Hz, 1H), 6.62 (t,
J = 7.2 Hz, 1H), 6.51 (d, J = 8.2 Hz, 2H), 3.71 (s, 3H), 3.13 (s, 3H). 13C-NMR (151 MHz; DMSO-d6): δ
152.13, 148.33, 142.22, 129.12, 123.74, 122.84, 121.88, 119.22, 119.13, 113.32, 56.79, 37.87. MS (ESI) m/z:
214.09 ([M + H]+; Calcd for C14H15NO + H 214.12, found: 214.09).

N-Methyl-N-(4-nitro)phenylaniline. 1H-NMR (400 MHz, DMSO-d6): δ 8.05 (d, J = 6.2 Hz, 2H), 7.50 (t,
J = 7.8 Hz, 2H), 7.35 (t, J = 7.5 Hz, 1H), 7.31 (d, J = 6.7 Hz, 2H), 6.74 (d, J = 6.3 Hz, 2H), 3.38 (s, 3H).
13C-NMR (151 MHz; DMSO-d6): δ 154.13, 146.44, 137.58, 130.67, 127.16, 126.96, 126.10, 113.02, 40.85.
MS (ESI) m/z: 229.11 ([M + H]+; Calcd for C13H12N2O2 + H 229.10, found: 229.11).

2-(Phenylamino)propanoic acid. 1H-NMR (400 MHz, DMSO-d6): δ 7.06 (t, J = 7.8 Hz, 2H), 6.55
(d, J = 8 Hz, 2H), 6.55–6.54 (m, 1H), 3.92 (q, J = 7.0 Hz, 1H), 1.36 (d, J = 7.0 Hz, 3H). 13C-NMR
(101 MHz; DMSO-d6): δ 177.62, 147.78, 128.83, 116.25, 112.46, 51.32, 18.21. MS (ESI) m/z: 166.09
([M + H]+; Calcd for C9H11NO2 + H 166.09, found: 166.09).

Methyl 2-(phenylamino)propanoate. 1H-NMR (400 MHz, DMSO-d6): δ 7.07 (t, J = 7.8 Hz, 2H), 6.58–6.56
(m, 1H), 6.53 (d, J = 7.7 Hz, 2H), 4.05 (q, J = 7.0 Hz, 1H), 3.62 (s, 3H), 1.37 (d, J = 7.0 Hz, 3H). 13C-NMR
(151 MHz, DMSO-d6): δ 174.96, 147.57, 128.90, 116.45, 112.30, 50.90, 50.70, 18.12 (s, 1H). MS (ESI) m/z:
180.11 ([M + H]+; Calcd for C10H13NO2 + H 180.10, found: 180.11).

N-Phenyl-2-pyrrolidone. 1H-NMR (400 MHz, DMSO-d6): δ 7.65 (d, J = 7.8 Hz, 2H), 7.37 (t, J = 8.0 Hz,
2H), 7.12 (t, J = 7.4 Hz, 1H), 3.83 (t, J = 7.0 Hz, 2H), 2.48 (t, J = 8.4 Hz, 2H), 2.06 (m, J = 7.5 Hz, 2H).
13C-NMR (151 MHz; DMSO-d6): δ 174.28, 140.07, 129.06, 124.26, 119.80, 48.50, 32.78, 17.86. MS (ESI)
m/z: 162.09 ([M + H]+; Calcd for C10H11NO + H 162.09, found: 162.09).

N-Methyl-N-benzoylaniline. 1H-NMR (400 MHz, CDCl3): δ 7.30 (t, J = 7.2 Hz, 2H), 7.21 (t, J = 7.4 Hz,
2H), 7.18 (t, J = 4.5 Hz, 1H), 7.14 (d, J = 8.1 Hz, 2H), 7.11 (t, J = 6.4 Hz, 1H), 7.02 (d, J = 7.5 Hz, 2H), 3.48
(s, 3H). 13C-NMR (151 MHz; DMSO-d6): δ 170.01, 145.02, 136.77, 129.82, 129.53, 128.64, 128.19, 127.50,
126.88, 38.34. MS (ESI) m/z: 212.11 ([M + H]+; Calcd for C14H13NO + H 212.11, found: 212.11).

N-Phenylindole. 1H-NMR (400 MHz, DMSO-d6): δ 7.68 (d, J = 7.6 Hz, 1H), 7.64 (d, J = 3.3 Hz, 1H),
7.59–7.54 (m, 5H), 7.45–7.35 (m, 1H), 7.09–7.24 (m, 2H), 6.75 (d, 1H). 13C-NMR (151 MHz; DMSO-d6):
δ 139.63, 135.62, 130.26, 129.65, 128.84, 126.82, 124.24, 122.80, 121.48, 120.76, 110.82, 104.06. MS (ESI)
m/z: 194.11 ([M + H]+; Calcd for C14H11N + H 194.10, found: 194.11).
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N-Phenylimidazole. 1H-NMR (400 MHz, DMSO-d6): δ 8.32 (br, 1H), 7.79 (br, 1H), 7.66 (d, J = 7.6 Hz,
2H), 7.52 (t, J = 7.8 Hz, 2H), 7.43–7.29 (m, 1H), 7.17 (br, 1H). 13C-NMR (101 MHz; DMSO-d6): δ 136.94,
135.60, 129.93, 129.84, 126.92, 120.40, 118.30. MS (ESI) m/z: 145.08 ([M + H]+; Calcd for C9H8N2 + H
145.08, found: 145.08).

3.3. Reuse of Cu-TDPAT

The aforementioned procedure was used with 5-methyl-2-(1H)-pyridone (1 mmol), iodobenzene
(1 mmol), K2CO3 (2 mmol), DMSO (5 mL) and 5% Cu-TDPAT (based on copper). The reaction mixture
was magnetically stirred at 120 ˝C for 4 h. The liquid solution was removed, and the solid mixture
was washed with ethyl acetate (5 mL). The resulting solid phase was reused for further reactions
without previous purification.

4. Conclusions

In summary, a detailed investigation of N-arylation reaction of 5-methyl-2-(1H)-pyridone with
halobenzenes was carried out using Cu-TDPAT, a metal-organic framework with high density of open
copper sites within its framework, as an efficient heterogeneous catalyst. It has been demonstrated
that Cu-TDPAT can improve the N-arylation reaction of a wide variety of amines and amides with
iodobenzene or bromobenzene efficiently. The experimental results prove that Cu-TDPAT is stable
to the conditions of Ullmann and Goldberg type coupling reactions, and the open copper sites on
the axis of paddle-wheel SBUs within MOF are responsible for the promotion of the C–N coupling
reaction. Further work is in progress to broaden the scope of this catalytic system to other substrates
and to better understand the reaction mechanism.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com /1420-3049/
20/12/19756/s1.
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