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Abstract: Natural product antimicrobial peptides (AMPs) have been proposed as 

promising agents against the Leishmania species, insect vector borne protozoan parasites 

causing the neglected tropical disease leishmaniasis. However, recent studies have shown 

that the mammalian pathogenic amastigote form of L. mexicana, a causative agent of 

cutaneous leishmaniasis, is resistant to the amphibian-derived temporin family of AMPs 

when compared to the insect stage promastigote form. The mode of resistance is unknown, 

however the insect and mammalian stages of Leishmania possess radically different cell 

surface coats, with amastigotes displaying low (or zero) quantities of lipophosphoglycan 

(LPG) and proteophosphoglycan (PPG), macromolecules which form thick a glycocalyx in 

promastigotes. It has been predicted that negatively charged LPG and PPG influence the 

sensitivity/resistance of promastigote forms to cationic temporins. Using LPG and PPG 

mutant L. mexicana, and an extended range of temporins, in this study we demonstrated 

that whilst LPG has little role, PPG is a major factor in promastigote sensitivity to the 

temporin family of AMPs, possibly due to the conferred anionic charge. Therefore, the 
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lack of PPG seen on the surface of pathogenic amastigote L. mexicana may be implicated 

in their resistance to these peptides. 

Keywords: Leishmania mexicana; cutaneous leishmaniasis; drug therapy;  

antimicrobial peptide 

 

1. Introduction 

Leishmaniasis is a neglected tropical disease that is endemic in over 80 countries worldwide. It is 

caused by Leishmania species, insect vector borne protozoan parasites, and affects an estimated  

12 million people a year with a further 350 million people living at risk of infection [1]. At the present 

time a vaccine to prevent leishmaniasis is not available and treatment currently relies entirely on a 

limited arsenal of chemotherapeutics. For example, treatment of cutaneous leishmaniasis (CL) largely 

relies on the pentavalent antimonials such as sodium stibogluconate (Pentostam) and meglumine 

antimoniate (Glucantime) [2,3]. Both Pentostam and Glucantime have been in clinical use for over 70 years 

despite their associated problems, which include severe side-effects such as cardiotoxicity [4] and the 

fact that they require parenteral administration [5]. In addition, the use of pentavalent antimonials in 

the treatment of leishmaniasis is under threat from the emergence of drug resistance [6]. To date 

resistance has not been widespread in the field but Leishmania spp. resistance to Pentostam and 

Glucantime can be easily induced in the laboratory [7]. Amphotericin B (Fungizone) [8] and diamidine 

Pentamidine [9] are employed as second-line drugs in the treatment of CL. Like the antimonials, they 

induce severe side-effects and parasite resistance, although not yet conclusively confirmed in the field, 

has been observed under laboratory conditions [10]. Given the aforementioned issues with both the 

current first- and second-line drugs used to treat CL there is clearly a need to develop new and 

effective therapies for this disease. 

In recent years natural product antimicrobial peptides (AMPs) have been investigated as a potential 

new source of novel antileishmanials [11,12], in part this has been catalysed by the fact that they have 

displayed promising activity against other cutaneous infectious diseases [13]. The activity of AMPs 

against Leishmania species that give rise to CL has recently been reported. However, despite having 

promising activity against insect-stage promastigotes, the amphibian-derived temporin family of AMPs 

has shown limited efficacy against mammalian-stage amastigotes [14]. The predominant surface 

component of promastigote Leishmania is lipophosphoglycan (LPG), a large glycoconjugate which 

together with cell surface associated proteophosphogycan (PPG) forms a dense glycocalyx protecting 

the parasite from the mammalian innate immune response on inoculation from the sand fly vector [15]. 

Subsequently, following infection of macrophage cells and differentiation into the pathogenic 

amastigote form, expression of cell surface LPG and PPG is massively down-regulated [15,16]. Whilst 

it has previously been predicted that this thick, negatively charged layer protects the promastigote 

parasite from cationic AMPs by capturing them and preventing interaction with the cell surface [17], 

the relative resistance of amastigotes to temporin AMPs suggests the opposite. Herein, we report an 

extended study of the antileishmanial properties of temporins and the examination of the protective or 

sensitizing effects of LPG and PPG in L. mexicana, a causative agent of CL. 
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2. Results and Discussion 

2.1. The Antileishmanial Properties of Temporin Antimicrobial Peptides 

Temporins A, B, 1Sa, F and L were synthesized and analyzed as described in the Experimental 

Section. The sequences, formulae and accurate mass data are summarized in Table 1. As previously 

reported [14] temporin A displayed significant activity against L. mexicana promastigotes with an 

ED50 of 8 µM. Whilst temporin B demonstrated low potency with an ED50 of 38 µM (Figure 1A;  

Table 2). However, in contrast to the previous study [14] temporin 1Sa demonstrated good activity 

against these insect stage forms, an ED50 of 4 µM (Figure 1). The reasons for this divergence are not 

clear, however the previously synthesized 1Sa [14] demonstrated similar activity on reanalysis to that 

shown in Figure 1, indicating that the assay is likely to be the source of this discrepancy. Notably, 

serum is observed to mask the efficacy of the temporin peptides [14]. Therefore, it is likely that the 

serum was inadequately removed before assay in the previous study, thereby leading to the 

underestimation of 1Sa efficacy. To expand this work further temporins F and L were synthesized and 

purified as described, and then screened against L. mexicana promastigotes. Both AMPs showed good 

activity, F with an ED50 of 14 µM and L with an ED50 of 5 µM (Figure 1A; Table 2). 

Table 1. Tabulated sequences for the peptides tested including accurate mass data. The 

doubly charged ion was used for accurate mass measurements, i.e., [M+2H]2+. All peptides 

are amidated at the C terminus. Lysine (K) and arginine (R) are positively charged  

side chains. 
 

Peptide Sequence 
Empirical 

Formula 

Mass Calculated 

[M+2H]2+ 

Accurate Mass Found 

[M+2H]2+ 

Temporin A FLPLIGRVLSGIL-NH2 C68H117N17O14 698.9561 698.9548 

Temporin B LLPIVGNLLKSLL-NH2 C67H122N16O15 696.4716 696.4735 

Temporin 1Sa FLSGIVGMLGKLF-NH2 C67H109N15O14S 690.9078 690.9075 

Temporin F FLPLIGKVLSGIL-NH2 C68H117N15O14 684.9531 684.9504 

Temporin L FVQWFSKFLGRIL-NH2 C83H122N20O15 820.9792 820.9792 

Table 2. ED50 for temporins against wild type and mutant L. mexicana promastigotes and 

amastigotes. Mean ED50 (and range) shown for the values from at least 3 independent 

experiments performed in triplicate. 

Peptide 

ED50 (µM) 

L. mexicana 
Promastiogte 

L. mexicana 
Amastigote 

L. mexicana 
∆lpg1 

L. mexicana 
∆lpg2 

Temporin A 8 (6–14)  ~100 11 (8–16)  26 (21–39)  
Temporin B 38 (24–64)  >100 39 (28–70)  41 (40–41)  

Temporin 1Sa 4 (3–13) 42 (35–44) 6 (3–18)  31 (28–35)  
Temporin F 14 (10–27) >100 17 (13–29)  23 (16–49)  
Temporin L 5 (5–6) 83 (46–93)  4 (3–6) 9 (8–12) 
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Figure 1. Activity of the temporin peptides against wild type promastigote and amastigote 

L. mexicana. Using the alamarBlue® assay system, L. mexicana promastigote (A) and 

amastigote (B) viability in the presence of various concentrations (2–100 µM) of the 

temporin peptides was determined with respect to a DMSO control. Amphotericin B  

(2–100 µM) was utilized as a positive control. Data points represent the mean of  

3 independent experiments performed in triplicate. Standard deviation indicated. Cell 

viability <50% indicated by red bars. 

However, as previously noted [14], temporin A demonstrated drastically reduced activity against 

the clinically relevant amastigote form of L. mexicana (ED50 of approximately 100 µM), whilst 

temporin B was inactive at the maximal concentration tested, 100 µM. Similarly, temporin F was 
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inactive at 100 µM, whilst 1Sa and L had very low levels of activity against amastigote compared to 

promastigote forms (ED50 42 and 83 µM respectively; Figure 1B; Table 2). 

Temporins A, B and 1Sa have all demonstrated significant activity against axenic amastigotes forms 

of other Leishmania species, A and B against L. pifanoi [18] and 1Sa against L. infantum [19].  

L. infantum is an Old World species and a member of the L. donovani complex, causing visceral 

disease in the Mediterranean basin, which has subsequently spread to Latin America where it is 

sometimes known as L. chagasi [20]. Like L. mexicana, L. pifanoi is a New World species, however it 

is part of the subgenus Viannia whereas L. mexicana is part of the subgenus Leishmania which actually 

makes it more closely related to L. infantum [21]. The considerable evolutionary distance between 

these different species and subgenra may account for the differing levels of temporin activity observed 

against amastigotes. The distance is reflected in diversity in the predominant surface glycoconjugates 

LPG, PPG and glycoinositolphospholipids (GIPLs), macromolecules which play significant roles in 

the parasite’s interface with its insect and mammalian hosts [22]. However, whilst L. pifanoi and  

L. infantum have not been extensively analyzed, the levels of LPG and PPG in amastigotes from both 

Old and New World species are low or zero [15,16] indicating that other factors confer temperin 

susceptibility. GIPLs are maintained in both lifecycle stages and although L. pifanoi and L. infantum 

remain relatively unstudied, significant inter-species variations in GIPL structure have been elucidated. 

L. Viannia panamenensis decorates the conserved galactose-mannose, glycophosphoinositol core with 

galactose motifs, whereas L. donovani GIPLs are highly mannosylated when compared to the simpler 

L. mexicana structures [22]. It is possible that these significant variations account for the differential 

activity of some temporin AMPs against axenic amastigotes reported in the literature. 

2.2. The Role of Phosphoglycans in the Susceptibility of L. Mexiciana to the Temporin Family of 

Antimicrobial Peptides 

Previously it has been postulated that LPG, which forms a thick negatively charged layer, protects 

the promatigote parasite from cationic AMPs by capturing them and preventing interaction with the 

cell surface [17]. However, the fact that amastigote L. mexicana possess little or no LPG at their 

surface [16], and yet are considerably more resistant to the temporin AMPs, argues against this 

hypothesis. Rather it suggests that LPG is a susceptibility factor, with the negatively charged 

macromolecule perhaps facilitating the concentration of these cationic peptides at the plasma 

membrane. To test this hypothesis the five temporins were assayed for their activity against L. mexicana 

promastigotes engineered to lack LPG, ∆lpg1 [23]. Targeted deletion of the β-galactofuranosyl 

transferase lpg1 in L. mexicana specifically blocked LPG expression, leaving the other 

phosphoglycans unaffected [23]. The results obtained were perhaps surprising, with the temporins 

showing little or no difference in efficacy against the ∆lpg1 mutant when compared with the wild type 

L. mexicana promastigotes (Figures 1A and 2A; Table 2). However, it is notable the that efficacy of 

temporins A and B have previously been reported to be unchanged against a similar, although less 

defined, L. donovani LPG mutant [18,24]. 
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Figure 2. Activity of the temporin peptides against ∆lpg1 and ∆lpg2 promastigote  

L. mexicana. Using the alamarBlue® assay system, L. mexicana ∆lpg1 (A) and ∆lpg2 (B) 

mutant promastigote viability in the presence of various concentrations (2–100 µM) of the 

temporin peptides was determined with respect to a DMSO control. Amphotericin B  

(2–100 µM) was utilized as a positive control. Data points represent the mean of  

3 independent experiments performed in triplicate. Standard deviation indicated. Cell 

viability <50% indicated by red bars. 

Proteophosphogylcans (PPGs) are a large range of secreted and cell surface associated parasite 

glycoconjugates which, like LPG, carry a negative charge [25]. Both axenic and intramacrophage  

L. mexicana amastigotes lack cell surface associated PPG, although the intracellular parasites do 
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secrete a form of PPG known as aPPG [26,27]. Targeted deletion of lpg2, a Golgi GDP-Man 

transporter, to create ∆lpg2 [25] prevented the formation of the phosphoglycan repeats that make up 

the backbone of LPG and PPG leaving the promastigote surface devoid of these negatively charged 

macromolecules. In contrast to the ∆lpg1 mutant, the ∆lpg2 promastigotes appeared less sensitive to all 

the temporins assayed, with the exception temporin B which was the least active of the AMPs against 

wild type promastigote forms. Temporins A, 1Sa and L showed the greatest difference in efficacy 

between wild type and ∆lpg2 promastigotes (temporin A: ED50 8 µM in wild type vs. ED50 26 µM in 

∆lpg2; 1Sa: 4 vs. 31; L: 5 vs. 9), with the activity of 1Sa against the mutant close to that of the 

generically resistant amastigote form (ED50 42 µM in amastigotes vs. ED50 31 µM in ∆lpg2). This 

indicated that PPG plays a role in promastigote sensitivity to the temporins (Figures 1 and 2B; Table 2) 

perhaps due to its negative charge attracting the cationic AMPs to the plasma membrane. However, it 

is notable that the clinical antileishmanial amphotericin B (used as a control in these experiments) is 

also less effective against ∆lpg2 L. mexicana (Figure 2B) indicating that the lack of PPG is leading to a 

generic increase in resistance to disruptors of the parasite cell surface. Like the temporins, 

amphotericin B is a pore forming compound [28]. 

3. Experimental Section 

3.1. Materials and Reagents 

Abbreviations for reagents are as follows: tert-butoxycarbonyl (Boc); 9-fluorenylmethoxylcarbonyl 

(Fmoc); trifluoroacetic acid (TFA); triisopropylsilyl (TIPS); N,N-dimethylformamide (DMF); dimethyl 

sulfoxide (DMSO). Solvents and reagents were purchased from commercial sources and used without 

further purification unless otherwise noted. Rink amide resin (typical loading level 0.6–0.8 mmol/g) 

was purchased from Merck4Biosciences (Darmstadt, Germany). DMF was purchased from AGTC 

Bioproducts (National Diagnostics, Hessle, UK). Piperidine and DIPEA were purchased from Sigma 

Aldrich (Gillingham, UK), PyBOP from Apollo Scientific (Stockport, UK) and Fmoc-protected amino 

acids from Novabiochem (Merck, Nottingham, UK). Preparative RP-HPLC was performed with a 

semi-preparative Perkin Elmer (Waltham, MA, USA) Series 200 lc pump fitted with a 785A UV/Vis 

detector using a SB-Analytical ODH-S optimal column (250 × 10 mm, 5 µm, Waters Ltd, Elstree, UK); 

flow rate 2 mL/min. Peptides were characterised by accurate LC-MS (QToF mass spectrometer and an 

Acquity UPLC from Waters Ltd using an Acquity UPLC BEH C8 1.7 µm (2.1 mm × 50 mm) column 

(Waters Ltd) with a flow rate of 0.6 mL/min and a linear gradient of 5%–95% of solvent B over  

3.8 min (A = 0.1% formic acid in H2O, B = 0.1% formic acid in MeCN). Peptide identities were also 

confirmed by MALDI-TOF mass spectra analysis (Autoflex II ToF/ToF mass spectrometer Bruker 

Daltonik GmBH, (Coventry, UK) operating in positive ion mode using an α-cyano-4-hydroxycinnamic 

acid (CHCA) matrix. Data processing was done with MestReNova Version 8.1. 

3.2. Peptide Synthesis 

Rink Amide AM resin (200–400 mesh, 0.79 mmol/g loading) and all Fmoc-protected amino acids 

used were purchased from Novabiochem, Merck. PyBOP™ was purchased from CEM (Buckingham, 

UK). HPLC grade solvents were obtained from Fisher Scientific (Loughborough, UK) and all other 
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reagents from Sigma Aldrich. Side chain protecting groups utilised for the Fmoc amino acids were  

t-butyl for Ser, Pbf for Arg, Boc for Lys and Trt for Asn. Temporins A, B and 1Sa were prepared as 

previously described [14]. Temporins A, B, 1Sa, F and L were prepared via manual Fmoc SPPS. 

Peptides were synthesised on a 0.1 mmol scale (127 mg of Rink Amide AM resin). Fmoc amino acids 

(2 equiv.) were coupled using PyBOP (2 equiv.) and DIPEA (4 equiv.) at RT for 1 h on a shaker  

(380 RPM, manual procedure). For the first C-terminus amino acid, double coupling was used. Also all 

amino acids from the 7th position were double coupled to increase the yield. Fmoc deprotection was 

carried out using piperidine/DMF (20% v/v) for 5 and then 10 min at RT. Final peptide cleavage was 

achieved using TFA:TIPS:H2O 95:5:5 (4 mL) at 25 °C with stirring for a minimum of 4 h. The 

cleavage cocktail was collected, the solvent removed in vaccuo, the crude peptides dissolved in 

acidified H2O (0.1% TFA) and lyophilised. Crude peptides were purified by semi-preparative  

RP-HPLC, by use of a Perkin Elmer series 200 LC pump, 785A UV/Vis detector, using a  

250 mm × 10.0 mm, 5 µm SB analytical column; flow rate = 2 mL/min linear gradient elution  

0%–100% B over 60 min (A = 0.1% TFA in 95% H2O and 5% CH3CN, B = 0.1% TFA in 5% H2O and 

95% CH3CN) at λ = 220 or 250 nm. Relevant fractions were collected, lyophilized, and analysed by  

LC–MS, MALDI-TOF MS and analytical HPLC. See Supplemental Materials for analytical data 

(MALDI-TOF MS spectra and analytical HPLC spectra). Temporin A [FLPLIGRVLSGIL-NH2], 

temporin B [LLPIV GNLLKSLL-NH2], temporin 1Sa [FLSGIVGMLGKLF-NH2], temporin F 

[FLPLIGKVLSGIL-NH2], and temporin L [FVQWFSKFLGRIL-NH2]. 

3.3. Antileishmanial Assay 

Leishmania mexicana (MNYC/BZ/62/M379) wild type and LPG mutant parasites (∆lpg1 [23] and 

∆lpg2 [25]) were maintained at 26 °C in Schneider’s Drosophila media (Sigma Aldrich) supplemented 

with heat inactivated foetal bovine sera (15% for promastigotes and mutants, and 20% for amastigotes; 

Biosera). Promastigotes were transformed into axenic amastigotes by a pH and temperature shift as 

previously described [29]. Cells were counted using a Neubauer Improved Haemocytometer. Cytotoxicity 

analyses were performed in 96-well plates (Costar, Corning Inc., Amsterdam, The Netherlands) using 

alamarBlue® (Life Technologies, Paisley, UK) with some modifications to the published, optimized 

protocol [14]. Briefly, to mitigate against the effects of serum on the efficacy of the peptides, 

promastigote and amastigote L. mexicana were preincubated (26 °C for promatastigotes; 33 °C for 

amastigotes) with the temporins (2–100 µM) in 10 µL of serum-free media at 4 × 106 mL−1 for 1 h 

before the addition of 90 µL of complete media. Following incubation at the appropriate temperature 

for 24 h, 10 µL of alamarBlue® was added to each well and the plates incubated for a further 4 h prior to 

assessing cell viability using a fluorescent plate reader (Biotek UK, Potton, UK; 560EX nm/600EM nm). 

All data points were in triplicate, with amphotericin B as positive and DMSO as negative controls. All 

of the experiments described above were carried out on a minimum of three separate occasions to 

ensure a robust data set was collected. 

4. Conclusions 

In summary, L. mexicana amastigotes are generically resistant to the temporin family of AMPs. 

This is not attributably to their lack of LPG when compared to the insect stage promastigote form. 
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However, promastigote L. mexicana lacking both LPG and the other major negatively charged surface 

macromolecule PPG are notably more resistant to the temporin AMPs than either wild type or the LPG 

mutant promastigotes. Given that amastigote L. mexicana lack LPG and surface-associated PPG, it 

may be considered that the cell surface of these mutant promastigotes resembles that of the mammalian 

pathogenic form [26,27], leading to the hypothesis that PPG is at least partly responsible for the 

sensitivity of promastigote compared to amastigote L. mexicana. Notably, for temporin 1Sa, the ED50 

against ∆lpg2 L. mexicana promastigotes (lacking both of LPG and PPG; 31 µM) was closer to that 

established for amastigote form (49 µM) than the wild type promastigote form (4 µM; Table 2;  

Figures 1 and 2). This indicated that, at least for temporin 1Sa, PPG is a major factor in promastigote 

sensitivity. As hypothesized, this could be due to the highly negatively charged PPG attracting the 

cationic temporin peptides towards their site of action, the plasma membrane. However, alternative 

explanations are conceivable. For example, both LPG and cell surface associated PPG are 

glycophosphoinositol lipid-anchored to the Leishmania plasma membrane [30] and their absence may 

significantly alter membrane fluidity and, perhaps, AMP sensitivity. Whatever the mechanism it is 

clear that the loss PPG (together with LPG) increases the resistance of L. mexicana to a range of 

temporin AMPs. Given the lack of these predominant macromolecules in pathogenic amastigote forms 

this may preclude their development as antileishmanials, however secreted PPG associates with  

L. major promastigotes to form a mucin-like coat [31]. Given that intramacrophage (but not axenic)  

L. mexicana amastigotes secrete a form of PPG, aPPG [26,27], it is possible that the presence of this 

macromolecule within the phagolysosome, and its potential association with the parasite cell surface, 

will sensitize the pathogen to the temporin AMPs. 

Supplementary Materials 

Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/20/02/2775/s1. 
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