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Abstract: More aggressive prostate cancer cells (PCCs) are often resistant to chemotherapy. 

Differences exist in redox status and mitochondrial metabolism that may help explain this 

phenomenon. Two human PCC lines, PC-3 cells (more aggressive) and LNCaP cells (less 

aggressive), were compared with regard to cellular glutathione (GSH) levels, susceptibility 

to either oxidants or GSH depletors, and expression of several proteins involved in apoptosis 

and stress response to test the hypothesis that more aggressive PCCs exhibit higher GSH 

concentrations and are relatively resistant to cytotoxicity. PC-3 cells exhibited 4.2-fold higher 

GSH concentration than LNCaP cells but only modest differences in acute cytotoxicity were 

observed at certain time points. However, only LNCaP cells underwent diamide-induced 

apoptosis. PC-3 cells exhibited higher levels of Bax and caspase-8 cleavage product but 

lower levels of Bcl-2 than LNCaP cells. However, LNCaP cells exhibited higher expression 

of Fas receptor (FasR) but also higher levels of several stress response and antioxidant 

proteins than PC-3 cells. LNCaP cells also exhibited higher levels of several mitochondrial 

antioxidant systems, suggesting a compensatory response. Thus, significant differences in 

redox status and expression of proteins involved in apoptosis and stress response may 

contribute to PCC aggressiveness. 
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1. Introduction 

Prostate cancer is the most prevalent cancer afflicting adult males in the U.S. and is the second 

leading cause of cancer-related deaths in American men as of 2008 [1]. Much evidence has implicated 

the involvement of oxidative stress and modulation of cellular redox status as major mechanisms 

associated with the development and progression of prostate cancer [2–11]. Two parameters that  

have received particular attention have been cellular and mitochondrial glutathione (GSH) status and 

mitochondrial energetics. For example, Chaiswing et al. [4] compared redox state of two human prostate 

carcinoma cell (PCC) lines, LNCaP and PC-3 cells, and reported that levels of lipid peroxidation 

byproducts, reactive oxygen species (ROS), and reactive nitrogen species (RNS) were higher in 

LNCaP cells whereas medium concentrations of GSH and glutathione disulfide (GSSG) were much 

higher in PC-3 cells. Moreover, they also observed that thiol redox status and activities and expression 

of several antioxidant enzymes exhibited distinct patterns in the two PCC lines at different growth 

phases, suggesting that modulation of thiol redox status may be useful as a therapeutic tool to modify 

PCC proliferation and tumor aggressiveness. 

Several studies have provided the basis for what Costello and Franklin [12] have called the 

“bioenergetic theory of prostate malignancy”. According to this concept, mitochondrial metabolism is 

altered in malignancy so that in contrast to normal or benign hyperplastic prostate epithelial cells, 

which accumulate citrate due to low activity of mitochondrial aconitase, malignant prostate epithelial 

cells have become citrate-oxidizing cells and exhibit low amounts of citrate due to high activity of the 

enzyme. The higher rate of mitochondrial substrate metabolism also helps explain the increased levels 

of ROS associated with the malignant and metastatic PCCs. It is also well established that defects in 

the mitochondrial genome lead to mitochondrial dysfunction and are characteristic of numerous types 

of cancer, including prostate cancer [13]. Additionally, experimental activation of the mitochondrial 

apoptotic pathway in PCC lines by various chemicals or hormones is another therapeutic approach that 

emphasizes the importance of the mitochondria in prostate cancer [14–19]. 

The foregoing discussion illustrates the importance of mitochondrial function and redox status  

(one major component being GSH) in determining metastatic aggressiveness and sensitivity to 

chemotherapeutic agents of PCCs, and provides the rationale for a focus on mitochondrial GSH 

(mtGSH) as a potential therapeutic target in prostate cancer. The present work characterizes some 

basic properties of redox status and susceptibility to chemical toxicants of two PCC lines, PC-3 and 

LNCaP cells, to test the hypothesis that differences in GSH status and expression of proteins involved 

in regulation of apoptosis and stress response are correlated with differences in susceptibility to 

cytotoxic chemicals or chemotherapeutic agents. The overall objective of these studies, therefore, is to 

provide an initial validation of the principle that cellular GSH level in cancer cells may be a target for 

therapeutic manipulation. Some portions of this study were presented in abstract form at the 2014 

Society of Toxicology [20] and Experimental Biology [21] meetings. 
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2. Results 

2.1. GSH Concentrations and Oxidant-Induced GSH Oxidation in PC-3 and LNCaP Cells 

To validate the hypothesis that more aggressive PCC lines have higher concentrations of GSH and 

that this is associated with greater growth potential, GSH contents of PC-3 cells (highly aggressive) 

and LNCaP cells (modestly aggressive) were measured. The more aggressive cell line, PC-3 cells, 

exhibited 4.2-fold higher content of GSH (Figure 1A), consistent with the proposed hypothesis and the 

more rapid growth rate of PC-3 cells. The two cell lines were then incubated for 1 h with either cell 

culture medium (=Control) or 100 µM tert-butyl hydroperoxide (tBH) to assess oxidation of GSH to 

glutathione disulfide (GSSG) (Figure 1B). PC-3 and LNCaP cells exhibited similar GSH/GSSG ratios 

in both the absence (16.7 and 11.1, respectively) and presence of oxidant (0.80 and 0.78, respectively). 

Thus, the extent of GSH loss was similar in both cell lines and was accounted for by increases  

in GSSG. 

 

Figure 1. GSH content and oxidant-induced GSH oxidation in PC-3 and LNCaP cells.  

(A) GSH was measured in total cell extracts by the GSH Glo™ Glutathione Assay kit, which 

is a luminescence-based assay coupling the GSH S-transferase (GST)-catalyzed conversion 

of a luciferin derivative to luciferin, which is then metabolized by the ATP-dependent 

firefly luciferase to emit light, which is then read in a plate reader in the luminescence 

setting. GSH content was calculated from a GSH standard curve. Results are means ± SEM 

of measurements from 3 separate cultures; (B) Cells were incubated for 1 h with either cell 

culture medium (=Control) or 100 µM tert-butyl hydroperoxide (tBH). Concentrations of 

GSH and GSSG in total cell extracts were then measured by use of Ellman’s reagent with 

or without 2-vinylpyridine, respectively, and measurement of A412. GSH and GSSG contents 

were calculated from a GSH standard curve. Results are means ± SEM of measurements from 

three separate cultures. * Significantly different (p < 0.05) from the corresponding control. 
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To further assess the GSH pool in the two cell lines, each cell line was treated for up to 24 h with 

either cell culture medium (=Control) or various toxicants and GSH concentrations were measured at 

1, 4, and 24 h (Figure 2). The toxicants used to probe responses to oxidants or GSH-depleting agents 

included tBH, which causes lipid peroxidation and GSH oxidation, methyl vinyl ketone (MVK), which 

is a direct-acting alkylating agent that depletes GSH, and diethyl maleate (DEM) and diamide, both of 

which are electrophiles that deplete GSH by forming GSH S-conjugates. tBH and MVK were added at 

50 µM or 100 µM and DEM and diamide were each added at 250 µM. Both cell lines exhibited generally 

similar degrees of GSH depletion, except at the 100 µM concentration of tBH or MVK, where toxicant 

treatment of PC-3 cells reduced cellular GSH concentrations to levels close to those found in the LNCaP 

cells. Thus, it appears that susceptibility of the cellular GSH pool of the two cell lines to oxidants cannot 

explain the differences in their growth rates or sensitivity to chemotherapeutic agents. 

 

Figure 2. GSH content in PC-3 and LNCaP cells. GSH was measured in total cell extracts by 

use of Ellman’s reagent and measurement of A412. GSH content was calculated from a GSH 

standard curve. Results are means ± SEM of measurements from six separate cultures.  

* Significantly different (p < 0.05) from the corresponding control. 

2.2. Acute Cellular Necrosis and Apoptosis Induced by Toxicants in PC-3 and LNCaP Cells 

Acute cell death was determined with the lactate dehydrogenase (LDH) release assay by incubating 

PC-3 and LNCaP cells as above, with either culture medium (=Control), tBH, MVK, DEM, or diamide 
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for 1, 4, or 24 h (Figure 3). In contrast to expectations, LNCaP cells were only more sensitive to some 

of the toxicants at a few time points. At the 24-h time point, PC-3 cells were actually noticeably more 

sensitive to MVK, DEM, and diamide than were the LNCaP cells. 

Although LDH release may reflect cell death due to both necrosis and apoptosis, assessment of 

apoptosis by multiple assays suggested that the observed LDH release was primarily due to necrosis. 

Apoptosis was assessed by measurement of tBH- or MVK-induced activation of caspase-3/7 and 

caspase-8 and DNA fragmentation by agarose gel electrophoresis (data not shown). For all three assays, 

no evidence of oxidant-induced apoptosis was obtained. In contrast, the terminal deoxynucleotidyl 

transferase dUTP nick end-labeling (TUNEL) assay was also used to assess DNA damage as an indicator 

of apoptosis. With the exception of diamide, none of the toxicants produced a positive response. In the 

case of diamide, however, apoptosis was clearly evident in LNCaP cells but not in PC-3 cells (Figure 4). 

 

Figure 3. Chemically induced LDH release in PC-3 and LNCaP cells. Cells were grown to 

80%–90% confluence in either F12 or RPMI media, respectively, supplemented with 10% 

FBS. Prior to experiments, media were removed and replaced with serum-free media. After 

1-, 4-, or 24-h incubations with either tBH or MVK (10, 50, 100, 200 µM), or 250 µM of 

either DEM or diamide, LDH release was determined as NADH oxidation at 340 nm. 

Results are the means ± SEM of measurements from six cell cultures. * Significantly different 

(p < 0.05) from the corresponding control. 
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Figure 4. Sensitivity of PC-3 and LNCaP cells to diamide-induced apoptosis as assessed 

by the TUNEL assay. DNA fragmentation was assayed with the ApoBrdU TUNEL Assay 

Kit from Invitrogen (Carlsbad, CA, USA), using confocal microscopy. Cells were grown on 

35 mm dishes. After incubation for 24 h with either media (=Control) or 250 µM diamide, 

cells were fixed in paraformaldehyde and 70% ethanol. DNA strand breaks were detected 

by an Alexa Fluor 488 dye-labeled anti-BrdU antibody and the resultant green nuclear 

fluorescence in contrast to the red fluorescence generated from nuclear propidium iodide 

staining. Bar = 5 µm. 

2.3. Expression of Apoptosis, Stress Response, and Mitochondrial Proteins in PC-3 and LNCaP Cells 

Results from measurements of GSH concentrations, responses of the cellular GSH pools to toxicants, 

and acute cytotoxic responses of the two cell lines to toxicants suggest that differences between the two 

cell lines in aggressiveness and sensitivity to chemotherapeutic agents cannot be simply explained by 

the approximately fourfold difference in total GSH contents. Rather, more complex responses to other 

processes likely underlie the pathophysiological differences in the two cell lines. 

To investigate the hypothesis that differences in other processes more complex than GSH status 

underlie the functional differences between the two cell lines, expression of several proteins known to 

play significant roles in regulation of apoptosis and stress response was assessed (Figure 5). Unlike  
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the modest or lack of differences in acute cellular necrosis and GSH depletion, expression of two  

pro-apoptotic proteins, Bax and caspase-8 cleavage product, was markedly higher in PC-3 cells (11.1- 

and 3.4-fold, respectively, adjusting for actin expression) whereas expression of Fas receptor (FasR) 

was 2.9-fold higher in LNCaP cells and that of the anti-apoptotic protein Bcl-2 was clearly visible in 

LNCaP cells but was undetectable in PC-3 cells. Expression of three stress response proteins was also 

assessed. While expression of cyclin A was only modestly higher in LNCaP cells (1.3-fold, adjusted 

for actin), expression of Growth Arrest and DNA Damage 153 (GADD153) and heat shock protein 27 

(Hsp27) was markedly higher in LNCaP cells (26.5- and 54.7-fold, respectively, adjusting for actin). 

These protein expression differences suggest that PC-3 cells should be more sensitive to apoptosis by 

the intrinsic or mitochondrial pathway and that LNCaP cells possess higher levels of cytoprotective 

proteins such as GADD153 and Hsp27.  

 

Figure 5. Western blot analysis of selected proteins regulating apoptosis, cell growth, and 

stress response. Protein (100 µg) from total cell extracts of PC-3 and LNCaP cells were 

loaded onto 10%, 12%, or 15% SDS polyacrylamide gels. After electroblotting of protein 

onto nitrocellulose paper, blots were blocked for 1 h in 5% milk powder solution and 

incubated overnight with primary antibody. Blots were washed 3× with TTBS and incubated 

with appropriate secondary antibody conjugated to alkaline phosphatase (Jackson 

ImmunoResearch, West Grove, PA, USA) or horseradish peroxidase, for 1 h. Blots were 

washed 3–6× in TTBS and then assayed for color development using BCIP/NBT as 

substrates (Promega, Madison, WI, USA) or using the Pierce ECL Western Blotting 

Substrate Kit. β-Actin was used as a housekeeping protein. Band density for samples was 

determined with GelEval 1.3.7 for Mac OS X. Results are from two sets of cell cultures for 

each cell line. 
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This contrasts with the observations on sensitivity of the two cell lines to tBH-, MVK-, DEM-, and 

diamide-induced LDH release. Higher levels of these cytoprotective proteins may be a compensatory 

response to the low GSH concentrations characteristic of this cell line. The higher expression of FasR 

in LNCaP cells, however, suggests that these cells are more susceptible to apoptosis by the extrinsic 

pathway. Although the distinct mitochondrial pool of GSH was not separately analyzed in this study, 

differences in mitochondrial function may be critical to the proliferative properties of the two cell 

lines, as suggested by the “bioenergetics theory of prostate malignancy” [12]. As a first step in 

assessing the involvement of mitochondria in differentiating the aggressiveness and growth of these 

two PCC lines, expression of two mitochondrial inner membrane carriers involved in the uptake of 

GSH and two important antioxidant proteins was determined (Figure 6). 

 

Figure 6. Western blot analysis of selected proteins of mitochondrial redox status. Samples 

were processed as described in the legend to Figure 5. VDAC was used as a housekeeping 

protein. Band density for samples was determined with GelEval 1.3.7 for Mac OS X. 

Results are from two sets of cell cultures for each cell line, except for VDAC blots, which 

were from a single set of cell cultures. 

Renal mitochondria [22], like hepatic mitochondria [23], do not appear to synthesize GSH de novo 

but must transport GSH from the cytoplasm into the mitochondrial matrix. The transport is mediated 

by either the dicarboxylate carrier (DCC; Slc25a10) or 2-oxoglutarate carrier (OGC; Slc25a11) [24,25]. 

Again, in what would appear to be a compensatory response, expression of both the DCC and OGC 
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was much higher in LNCaP cells than in PC-3 cells (4.5- and 2.1-fold higher, respectively, adjusted for 

expression of the voltage-dependent anion channel [VDAC]). Similarly, expression of two enzymes 

important for antioxidant defense, superoxide dismutase 2 (SOD2) and thioredoxin 2 (Trx2), were 

modestly higher in LNCaP cells than in PC-3 cells (1.5- and 1.7-fold higher, respectively, adjusted for 

expression of VDAC). 

3. Discussion 

PC-3 and LNCaP cells were studied as models of a highly aggressive and less aggressive PCC line, 

respectively. PC-3 cells are adherent, grow rapidly, form clusters in soft agar, can be adapted to 

suspension growth, and are highly tumorigenic. In contrast, LNCaP cells grow relatively slowly, are 

adherent, grow as single cells or loosely attached clusters, and are also tumorigenic, although less so 

than PC-3 cells. A positive relationship between tumor cell growth and cellular GSH levels in both  

PCCs [26,27] and other types of cancer cells [28,29] has been known for many years. A previous  

study by Chaiswing et al. [4] specifically comparing PC-3 and LNCaP cells showed that the cellular 

concentration of GSH was markedly higher in PC-3 cells than in LNCaP cells and that this difference 

was associated with higher levels of ROS, RNS, and cytotoxic byproducts of oxidative injury in LNCaP 

cells. Based on these findings, we hypothesized that the higher levels of GSH and other antioxidants in 

PC-3 cells exist and are associated with the differential susceptibility of the two cell lines to toxicants 

and chemotherapeutic agents. 

Results from the present study confirmed the existence of a markedly higher concentration of GSH 

in PC-3 cells as compared to LNCaP cells. The two cell lines exhibited similar GSH/GSSG ratios and 

their GSH pools were oxidized to GSSG to a similar extent after inhibition with the oxidant tBH. Thus, 

there do not appear to be differences in the ability of the two cell lines to maintain an appropriate 

GSH/GSSG ratio. Other processes that are known to regulate cellular GSH status include activity 

and/or expression of glutamate-cysteine ligase or GSH synthase, availability of L-cysteine, which is  

rate-limiting for GSH synthesis, and activity and/or expression of plasma membrane transporters. 

Further study to measure these parameters is needed to identify the mechanism(s) by which different 

PCC lines regulate their GSH supply and redox status. 

What is the impact of such markedly different cellular concentrations of GSH on cellular function 

and susceptibility to toxic chemicals? How are these differences transmitted to the cell? Recent reviews 

by Ortega et al. [30] and Circu and Aw [31] provide some insight into the underlying signaling 

mechanisms that translate differences in GSH levels and redox status into functional differences.  

For example, it is clear that thiol (primarily GSH) oxidation is a causal factor in mitochondrial-based cell 

death and that many GSH-dependent and other antioxidant enzymes are regulated by the redox-sensitive 

transcription factor NF-E2 p45-related factor-2 (Nrf2) [30]. GSH is also involved in several apoptosis 

signaling pathways, such as the mitogen-activated protein kinase (MAPK) and Fas ligand/Fas receptor 

(FasL/FasR) pathways [31]. Further analysis of these pathways may help identify therapeutic targets in 

PCCs and other cancer cells that can improve the efficacy of chemotherapy. 

Despite the expectation that LNCaP cells would be significantly more susceptible than PC-3 cells to 

oxidants and thiol-alkylating agents (tBH, MVK, DEM, diamide), only modest differences in LDH 

release at selected time points were observed. Moreover, under some conditions PC-3 cells exhibited 
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more LDH release than LNCaP cells. Additionally, both cell lines exhibited similar degrees of GSH 

depletion when exposed to the four toxicants. While this might suggest little difference in susceptibility 

to oxidants such as those studied here, another possible interpretation is that the two cell lines possess 

a different capacity to function with lower GSH concentrations. The rationale for choosing 1, 4, and 24 h 

as the exposure times is based on the desire to observe cytotoxicity at both very early times and after a 

long enough exposure time that would enable activation of key cellular responses and signaling pathways. 

Increases in LDH release are typically observed in necrotic cell injury, when there is rupture of 

cellular plasma membranes. However, they may also be observed in late-apoptosis. When apoptosis 

was specifically assessed by several assays, only the TUNEL assay demonstrated the occurrence of 

apoptosis. Of the four toxicants studied, only diamide produced a positive response in LNCaP cells and 

no effects were observed in PC-3 cells. Examination of the expression of pro- and anti-apoptotic proteins 

in the two cell lines and the absence of significant caspase activation suggest that diamide-induced 

apoptosis in LNCaP cells probably occurs by the FasR pathway. Although PC-3 cells exhibited higher 

expression of Bax and caspase-8 cleavage product and lower expression of Bcl-2, no apoptosis  

due to any of the toxicants was observed in these cells. This resistance is likely due to the higher GSH 

concentration. PC-3 cells are well-known to be resistant to apoptosis. Gumelec et al. [32] studied 

cisplatin-induced apoptosis in three human PCC lines, including PC-3 cells. These authors concluded 

that differences in cell cycle regulation were at least partially responsible for the resistance to cisplatin. 

They also found that the absence of p53 and lower levels of Bax contributed to the cytoresistance of 

PC-3 cells as compared to the other two cell lines. We also confirmed the absence of p53 in PC-3 cells, 

similar to Skjoth and Issinger [33], whereas p53 was readily detectable in LNCaP cells (data not shown). 

Such observations, along with the fact that there was no direct correlation between GSH concentrations 

and susceptibility to toxicants, led us to hypothesize that more complex differences between the two 

cell lines, potentially involving signaling pathways and key proteins involved in stress response and 

redox regulation, were likely the underlying mechanisms for some of the differences between the two 

cell lines. Besides the differences in Bax and Bcl-2 noted above, protein expression levels of cyclin A, 

GADD153, and Hsp27 were higher in LNCaP cells, with the latter two proteins being markedly 

higher. We interpret this as a compensatory response in LNCaP cells due to their relatively low  

GSH concentration. Although induction of apoptosis did not appear to be the major mechanism of 

cytotoxicity with the chemicals and conditions used in the present study, further investigation of 

apoptotic signaling pathways in the two cell lines may provide further insight into factors that 

determine chemotherapeutic efficacy. 

Although we did not specifically quantify the mtGSH pool due to technical difficulties in obtaining 

good quality mitochondria, it is likely that this pool and other redox components in the mitochondria 

may be the critical determinants of PCC growth and aggressiveness. Measurements of protein expression 

of the two mtGSH transporters, the OGC and DIC, and of two important antioxidant enzymes in 

mitochondria, SOD2 and Trx2, showed all to be significantly higher (between 1.5- and 4.5-fold)  

in LNCaP cells, again suggesting a compensatory response. While expression of the two mtGSH 

transporters was increased, targeting of these proteins may provide for a novel therapeutic target to 

enhance the sensitivity of PCCs to chemotherapeutic agents. The situation here is the opposite of what 

we were trying to do with two chronic pathological states affecting renal mitochondria, namely 

diabetic nephropathy [34,35] and compensatory renal hypertrophy [36,37]. In both of these cases, there 
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is a modest compensatory increase in expression and activity of mtGSH transporters but the renal cells 

are still in a state of oxidative stress and enhanced susceptibility to oxidant-induced injury. The goal in 

diabetic nephropathy or compensatory renal hypertrophy is to further overexpress the mtGSH transporters 

to provide for sustained increases in mtGSH concentration to counteract and protect against the 

oxidative stress. For prostate cancer, however, specific knockdown of these carriers may be a means  

to eliminate a key component of the compensatory response and make the PCCs more susceptible  

to chemotherapeutic agents. Clearly more investigation specifically targeted on the mtGSH pool  

is warranted. 

4. Experimental Section 

4.1. Cell Culture and Incubations 

PC-3 (cat. no. CRL-1435) and LNCaP (cat. no. CRL-1740) cells were purchased from the American 

Type Culture Collection (ATCC; Manassas, VA, USA). PC-3 cells were grown in F12 media 

supplemented with 10% fetal bovine serum. LNCaP cells were grown in RPMI 1640 media 

supplemented with 10% fetal bovine serum. Cells were grown on T-75 tissue culture flasks (11 mL of  

1 × 106 cells/mL) for western blots or on 24-well plates (0.5 mL per well of 1 × 106 cells/mL) for LDH 

release or GSH assays. Both PC-3 and LNCaP cells were treated with varying concentrations of tBH 

(10, 50, and 100 µM), MVK (10, 50, and 100 µM), diethyl maleate (250 µM) or diamide (250 µM) for 

varying lengths of time (1, 4, or 24 h). 

4.2. GSH and GSSG Measurements 

GSH was measured by either the GSH Glo® Glutathione Assay Kit (Promega, Madison WI, USA) 

or by use of Ellman’s reagent [38], as indicated in the figure legends. For the GSH Glo® Glutathione 

Assay Kit method, 50 µL of sample and 50 µL of GSH-Glo® Reagent were incubated for 30 min in  

24-well opaque microplates before adding 100 µL of Luciferin Detection agent. Following a 15-min 

incubation, the plates were read in a SpectraMax2 plate reader (Molecular Devices; Sunnyvale, CA, 

USA). GSH content was calculated from a standard curve created from a 5 mM GSH standard supplied  

by the manufacturer. For the Ellman’s reagent method, incubation of samples with 5,5′-dithiobis(2-

nitrobenzoic acid) [DTNB] and measurement of the absorbance change at 412 nm was conducted as 

described in the original method [38]. GSSG was measured by the method of Griffith [39], which 

involves first trapping endogenous GSH with 2-vinylpyridine and then measuring GSSG as  

GSH-equivalents after reduction with DTNB. 

4.3. LDH Release Cell Viability Assay 

Cell viability was assessed by measuring the release of LDH into the medium following exposure to 

the various toxicants. Briefly, cells were grown on 24-well plates and following treatment with the 

toxicant, the cell lysate and the growth medium (either with or without serum) were assayed at 340 nm 

separately for 3 min for the oxidation of NADH in the presence of added pyruvate. The percentage of 

cell viability was calculated by dividing the slope obtained from the cell medium by the combined 

slopes of the total cell extract and cell medium and multiplying by 100. 



Molecules 2015, 20 10410 

 

 

4.4. TUNEL Assay 

DNA fragmentation was assayed with the ApoBrdU TUNEL Assay Kit (Invitrogen; Carlsbad, CA, 

USA) using confocal microscopy. The cells were grown in 35-mm dishes, and following treatment 

were fixed in paraformaldehyde and 70% ethanol. DNA strand breaks were detected by an Alexa Fluor 

488 dye-labeled anti-BrdU antibody and the resultant green nuclear fluorescence in contrast to the red 

fluorescence generated from nuclear propidium iodide staining. 

4.5. Determination of Protein Expression by Western Blot Analyses 

4.5.1. Basic Sample Preparation and General Assay Information 

Protein (100 µg) was loaded in the wells of 10%, 12% or 15% polyacrylamide gels. After 

electroblotting of protein onto nitrocellulose paper the blots were blocked for 1 h in 5% milk powder 

solution and incubated overnight with the primary antibody. The blots were washed three times with 

Tris-buffered saline containing Tween 20 (TTBS) and incubated with the appropriate secondary 

antibody conjugated to alkaline phosphatase (Jackson ImmunoResearch; West Grove, PA, USA) or 

horseradish peroxidase for 1 h. Blots were washed 3–6 times in TTBS and then assayed for color 

development using 5-bromo-4-chloro-3-indolyl phosphate/nitroblue tetrazolium (BCIP/NBT) as 

substrates (Promega) or exposed for visualization on autoradiography film (Denville Scientific; 

Metuchen, PA, USA) using the Pierce enhanced chemiluminescence (ECL) Western Blotting Substrate 

Kit (Pierce; Rockford, IL, USA). For all blots, the order of loading was: Lane 1 = PC-3 cells; Lane 2 = 

LNCaP cells; Lane 3 = molecular weight markers. Protein was measured using the bicinchoninic acid 

protein assay kit (Pierce) at a wavelength of 532 nm. A standard curve plot of bovine serum albumin 

concentration vs. absorbance was generated to determine sample protein concentration. 

4.5.2. Antibody Information 

Antibody to actin, which was used as a housekeeping protein for analyses with total cell extracts, 

was a rabbit polyclonal antibody that recognizes the 42-kDa protein in a variety of species and tissues 

(Sigma Aldrich; St. Louis, MO, USA). Antibody to Bcl-2 was a mouse monoclonal antibody that 

recognizes human Bcl-2 (mw 24–26 kDa; CalBiochem/EMD Biosciences; Darmstaedt, Germany). 

Antibody to Bax was a rabbit polyclonal antibody that recognizes the monomeric human Bax protein 

(21 kDa) and the 44–50 kDa dimeric Bax protein (CalBiochem/EMD Biosciences). Antibody to 

cleaved caspase-8 (18 kDa fragment) and cyclin A were mouse monoclonal antibodies (Cell Signaling 

Technology; Danvers, MA, USA). Antibodies to the DIC and OGC were rabbit polyclonal antibodies 

(Abcam; Cambridge, MA, USA). Antibody to FasR was a rabbit polyclonal antibody that recognizes 

the human Fas receptor (mw 48 kDa; Santa Cruz Biotechnology, Santa Cruz, CA, USA). Antibody to 

GADD153 was a mouse monoclonal antibody raised against amino acids 1–168 of the full-length 

mouse GADD153 (mw 30 kDa; Santa Cruz Biotechnology). Antibody to Hsp27 was a mouse 

monoclonal antibody that recognizes human and monkey heat shock protein 27 (mw 27 kDa; 

StressGen, Victoria, BC, Canada). 
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4.6. Statistical Analysis 

Results are expressed as means ± SEM. Densitometry of bands on western blots were calculated 

using GelEval 1.3.7 software for Mac OS X. Student’s t-test was performed to determine which means 

were significantly different from one another, using a two-tail probability of p < 0.05 as the criteria  

for significance. 

5. Conclusions 

In summary, the present work has confirmed the markedly higher concentration of total cellular 

GSH in the more aggressive PC-3 cells as compared to the less aggressive LNCaP cells. However, 

assessments of toxicant-induced GSH depletion or acute cytotoxicity (LDH release) did not show  

the expected greater susceptibility to toxicant-induced GSH depletion and cell death, although  

diamide-induced apoptosis was only detected in LNCaP cells. Examination of protein expression for 

several proteins involved in regulation of apoptosis and stress response showed that despite its 

relatively low GSH concentration, LNCaP cells exhibit complex compensatory responses involving 

relatively high expression of cytoprotective and antioxidant proteins and of mitochondrial proteins. 

Alterations in mitochondrial proteins may be a key to understanding what determines PCC growth, 

aggressiveness, and susceptibility to chemotherapeutic agents. 
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