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Abstract: Xiang-Fu-Si-Wu Decoction (XFSWD), a famous Chinese herbal formula, is 

considered an effective prescription for treating primary dysmenorrhea. The essential oil  

is a significant effective ingredient of XFSWD. However, its volatility, instability and poor 

water-solubility influence its pharmacodynamic effects. β-Cyclodextrin (β-CD) has the intrinsic 

ability to form specific inclusion complexes with such drugs to enhance their stability, 

solubility and bioavailability. The aim of this study was thus to compare the pharmacokinetic 

characteristics and the oral bioavailability of XFSWD essential oil (XEO) and its β-CD 

inclusion complex after oral administration to rats. A simple, rapid, and sensitive ultra-high 

performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method 

was developed for the simultaneous quantification of five active components of XEO in  

rat plasma. The in vivo data showed that XEO/β-CD inclusion complex displayed higher 

maximum plasma concentration (Cmax), longer half-time (T1/2) and bigger area under the 

concentration-time curve (AUC0–24 h). These results demonstrated that the formation of β-CD 

inclusion complex has significantly increased the oral bioavailability of the drugs in rats  

than free oil. 
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1. Introduction 

Traditional Chinese Medicine (TCM) has been proved to be effective and safe in clinical applications 

for thousands of years and it plays an increasingly important role in evidence-based personalized 

medicine, which is a new trend and a hot research topic in medical development [1]. Xiang-Fu-Si-Wu 

Decoction (XFSWD), a famous Chinese herbal formula, is considered an effective prescription for treating 

primary dysmenorrhea [2], which is reported as one of the most common gynecological disorders in 

young women [3,4]. This prescription, originally created by Lian-Fu Liang during the Qing dynasty,  

is composed of seven herbs: Rehmanniae Radix Praeparata, Angelicae sinensis Radix, Chuanxiong 

Rhizoma, Paeoniae Radix Alba, Cyperi Rhizoma, Aucklandiae Radix and Corydalis Rhizoma, in the 

ratio of 4:3:1.5:1.5:1.5:1:1.5 on a dry weight basis, respectively. Four herbs of XFSWD, which are 

Angelicae sinensis Radix, Chuanxiong Rhizoma, Cyperi Rhizoma and Aucklandiae Radix, are rich in 

essential oil. Our previous research indicated the close correlation between volatile components and 

bioactivity of the prescription [5]. 

However, XFSWD essential oil (XEO) is volatile, sensitive to light, oxygen, humidity and high 

temperature, it has a pungent smell, and is poorly water-soluble [6–8]. Among these properties, the 

volatility and instability may cause storage and quality control difficulties, the poor water-solubility may 

substantially decrease the bioavailability of the drug and hence limit its pharmacodynamic effect, and the 

pungent smell may result in poor oral administration compliance. Therefore, developing a pharmaceutic 

method to increase the stability and solubility of such drugs so as to improve their bioavailability is 

considered an important task in the pharmaceutical field [9]. 

Cyclodextrins (CD) are non-toxic macrocyclic oligosaccharides composed of 6–9 glucopyranose units 

(namely α-, β-, γ- or δ-CD, respectively) with a relatively hydrophilic surface and hydrophobic central 

cavity. Through host-guest interactions with the organic molecules, drug-CD inclusion complexes are 

formed so that the included drugs can be protected against hydrolysis, oxidation and photodecomposition. 

In recent years, β-cyclodextrin (β-CD) has been identified as an attractive material for drug inclusion, 

thanks to its low biotoxicity and high biocompatibility, which have allowed it to be successfully applied 

to improve the chemical stability, solubility and bioavailability of a number of poorly soluble compounds 

in oral drug delivery [10–13]. The same technology also can be used in TCM. 

In this present study, β-CD complexation was attempted for the process of pharmaceutical preparation 

of XEO. The XEO/β-CD inclusion complex was prepared by the coprecipitation method and characterized 

by different analytical techniques, including differential scanning calorimetry (DSC), Fourier Transform 

infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscope (SEM). The 

objective of this study was to investigate and compare the pharmacokinetic characteristics of XEO and 

its β-CD inclusion complex in rat plasma after oral administration. The components senkyunolide A, 

3-n-butylphthalide, Z-ligustilide, dehydrocostus lactone and α-cyperone are the main bioactive ingredients 
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in XEO. These components were selected indicators for evaluation in the pharmacokinetic study. Their 

chemical structures are shown in Figure 1. 

 

Figure 1. Chemical structures of senkyunolide A (a); 3-n-butylphthalide (b); Z-ligustilide (c); 

dehydrocostus lactone (d); α-cyperone (e) and osthole (IS). 

Pharmacokinetic studies of some of these analytes such as senkyunolide A, dehydrocostus lactone 

and α-cyperone indicate they are poorly or not absorbed. It is essential to develop a sensitive and rapid 

ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method  

for the quantification of these five components in rat plasma. To the best of our knowledge, this is the 

first pharmacokinetic study on XEO and its β-CD inclusion complex by this method [14–17]. The 

pharmacokinetic parameters of both formulations were analysed by a non-compartmental model. 

2. Results and Discussion 

2.1. Characterization of EXO/β-CD Inclusion Complex 

2.1.1. DSC 

DSC is a powerful qualitative analytical technique for determining the thermal properties of solid 

cyclodextrin complexes [18]. This technique is widely used to investigate the changes in thermal behavior 

in inclusion complex preparation according to a standard procedure such as coprecipitation. In general, 

complexation results in the disappearance of endothermic peaks, appearance of new peaks, and peak 

broadening or shifting to different temperatures, which indicate a change in the crystal lattice, melting, 

boiling or sublimation points [19]. DSC thermograms of pure β-CD, the physical mixture and the inclusion 

complex are depicted in Figure 2. The thermograms of pure β-CD (Figure 2a) and the physical mixture 

(Figure 2b) show an endothermic peak at 112 °C and 106 °C, respectively, whereas in the thermogram of 

the inclusion complex (Figure 2c), the intensity of the broader endothermic peak was reduced and the 

peak position also shifted to 68 °C. This may indicate less or no interaction between the drug and β-CD 

in the physical mixture and confirm the formation of a host-guest inclusion complex. 

b a c

d e IS 
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Figure 2. DSC grams of β-CD (a); the physical mixture (b) and the inclusion complex (c). 

2.1.2. FT-IR 

The variation of the shape, shift, or intensity of IR absorption peaks of the guest or host can provide 

information about the occurrence of inclusion complex formation [20]. The FT-IR spectra of pure β-CD, 

the physical mixture and the inclusion complex are presented in Figure 3. Changes in the shape, position 

and intensity of the absorption bands of the different samples were observed. The physical mixture 

(Figure 3b) showed strong absorption peaks at 2935, 1767 and 710 cm−1, whereas there were obvious 

changes in the spectrum of the inclusion complex (Figure 3c), which was similar to that of pure β-CD 

(Figure 3a), showing disappearance or reduction of the absorption intensities of the corresponding 

bands. This result suggested that the functional groups of the drug were included within the apolar cavity 

of β-CD in the complex. 

 

Figure 3. FT-IR spectra of β-CD (a); the physical mixture (b) and the inclusion complex (c). 
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2.1.3. XRD 

XRD is a useful method for the detection of β-CD encapsulation and it has been used to assess  

the degree of crystallinity of a given sample [21]. The formation of a solid inclusion complex can be 

confirmed by the XRD pattern, because the crystallinity is generally shifted to a more amorphous or 

semi-crystalline structure in inclusion complexes [22]. Hence the complex usually exhibits less 

numbered as well as less intense peaks [23]. The XRD patterns of pure β-CD, the physical mixture and 

the inclusion complex were illustrated in Figure 4. The diffractogram of pure β-CD shown in Figure 4a 

displayed numerous characteristic peaks, which indicated its crystalline form [24]. The diffraction 

pattern of the physical mixture (Figure 4b) was just the superposition of the guest molecule and β-CD 

patterns. This may indicate that there was no interaction between the drug and β-CD in the physical 

mixture. In contrast, the absence of many peaks in the pattern of the inclusion complex (Figure 4c) 

indicated its amorphous or semi-crystalline state. This revealed a transformation that might be attributed 

to inclusion in the β-CD cavity. 

 

Figure 4. XRD patterns of β-CD (a); the physical mixture (b) and the inclusion complex (c). 

2.1.4. SEM 

SEM analysis is ideal for measuring the surface roughness and visualizing the surface texture of  

a substance [25]. The SEM images of pure β-CD, the physical mixture and the inclusion complex, which 

were utilized to evaluate the effect of coprecipitation process, are shown in Figure 5. A drastic change 

in morphology and change in crystalline nature was observed for the inclusion complex (Figure 5c), 

indicating that there was an apparent interaction between the drug and β-CD during the formation of 

the inclusion complex [26,27]. 

  

Figure 5. SEM images of β-CD (a); the physical mixture (b) and the inclusion complex (c). 
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2.2. Liquid Chromatography and Mass Spectrometry Condition Optimization 

For the purpose of achieving short retention times and symmetric peak shape, several combinations of 

acetonitrile, methanol, formic acid and acetic acid were applied to optimize the mobile phase. It was 

found that acetonitrile-water system provided good separation with a low baseline. Moreover, the use of 

0.1% formic acid in the water phase helped in attaining a higher response and better peak sensitivity for 

the analytes. Hence acetonitrile-0.1% formic acid with gradient elution was employed and selected as 

the most suitable mobile phase to give appropriate retention times and low background noise. The ESI 

sources were set to both positive and negative ionization mode. The results showed that the analytes 

responded better in positive ion mode. 

2.3. Method Validation 

2.3.1. Specificity and Selectivity 

Typical MRM chromatograms of blank plasma, blank plasma spiked with a solution of standard 

mixture at the lower limit of quantitation (LLOQ) and a real rat plasma sample obtained at 30 min after 

oral administration of XEO/β-CD inclusion complex are shown in Figure 6. The retention times were 

about 3.62, 3.96, 5.80, 7.05, 7.56 and 6.38 min for senkyunolide A, 3-n-butylphthalide, Z-ligustilide, 

dehydrocostus lactone, α-cyperone and osthole, respectively. No endogenous substances in plasma 

interfered with the assay of the analytes and IS. In addition, 3-n-butylphthalide and Z-ligustilide are 

isomers. The big peak in Lane 2 of Figure 6b is Z-ligustilide. The retention time of α-cyperone reference 

substance is 7.56 min. Due to the plasma sample processing conditions, some α-cyperone was transformed 

into β-cyperone, which is the big peak in Lane 5 of Figure 6b. 

 

Figure 6. Cont. 
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Figure 6. MRM chromatograms of each component in (a) blank plasma; (b) blank plasma 

spiked with a solution of standard mixture at the LLOQ; (c) plasma sample at 30 min  

after oral XEO/β-CD inclusion complex. Component ideitification: (1) senkyunolide A; (2) 

3-n-butylphthalide; (3) Z-ligustilide; (4) dehydrocostus lactone; (5) α-cyperone; IS (osthole). 

2.3.2. Linearity and LLOQ 

Mean linear equations of the calibration curves (n = 6) were as follows: y = 1.1204x − 0.0027 (r = 0.9967, 

senkyunolide A), y = 0.0194x − 0.0254 (r = 0.9960, 3-n-butylphthalide), y = 0.3471x + 0.0443 (r = 0.9986, 
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Z-ligustilide), y = 0.0840x + 0.0021 (r = 0.9949, dehydrocostus lactone) and y = 0.4084x + 0.0068  

(r = 0.9971, α-cyperone). The lowest concentrations with RSD < 20% were taken as LLOQs and were 

found to be 4.6 ng/mL for senkyunolide A, 61.7 ng/mL for 3-n-butylphthalide, 4.5 ng/mL for Z-ligustilide, 

6.1 ng/mL for dehydrocostus lactone and 8.2 ng/mL for α-cyperone, respectively. The ranges were all 

sufficient for pharmacokinetic studies. 

2.3.3. Accuracy and Precision 

The accuracy data in the present study ranged from 87% to 103% and the intra- and inter-day of 

precision were 3.0%–7.9% and 3.2%–9.4%, respectively. All the assay values were found to be within 

the accepted variable limits, indicating that the established method was accurate and precise. 

2.3.4. Extraction Recovery and Matrix Effect 

The mean recoveries of the analytes and IS were within 65%–76% (RSD < 10%), and the corresponding 

matrix effects ranged from 89% to 96% (RSD < 10%), which manifested that ethyl acetate was a feasible 

and appropriate medium for the analytes and IS extraction, and moreover, there was no measurable 

matrix effect on the ionization of analytes and IS. 

2.3.5. Stability 

The stability of QC samples under different conditions was evaluated based on peak areas in 

comparison with freshly prepared QC samples. The results indicated that these analytes were all stable 

with accuracy in the range from 86.4% to 97.6%. 

2.4. Pharmacokinetics 

The validated UPLC-MS/MS method was successfully applied for analysis of the plasma samples. 

Mean plasma concentration vs. time profiles of XEO and its β-CD inclusion complex are illustrated in 

Figure 7. Pharmacokinetic parameters were summarized in Table 1. The statistical results indicated that 

there was a significant difference between XEO and its β-CD inclusion complex. 

Table 1. Summary of pharmacokinetic parameters (n = 6). 

Components Groups 
Dose 

(mg/kg) 

Cmax 

(μg/mL) 
Tmax (h) T1/2 (h) MRT (h) 

AUC0–24 h 

(μg·h/mL) 

Senkyunolide A 
oil 13.14 1.59 ± 0.21 0.33 ± 0.13 3.73 ± 0.25 2.76 ± 0.52 2.40 ± 0.36 

oil/β-CD 13.41 2.60 ± 0.47 0.25 ± 0.00 4.43 ± 0.39 3.27 ± 0.25 6.08 ± 1.36 

3-n-Butylphthalide 
oil 34.66 2.48 ± 0.36 0.92 ± 0.13 4.05 ± 0.38 4.26 ± 0.28 6.51 ± 0.89 

oil/β-CD 35.38 3.69 ± 0.25 0.71 ± 0.10 4.81 ± 0.35 5.02 ± 0.60 16.68 ± 2.96 

Z-Ligustilide 
oil 116.08 8.80 ± 0.74 0.38 ± 0.14 3.21 ± 0.54 2.01 ± 0.12 13.29 ± 3.03 

oil/β-CD 84.75 11.43 ± 1.90 0.88 ± 0.14 4.16 ± 0.52 3.98 ± 0.25 38.69 ± 7.30 

Dehydrocostus 

lactone 

oil 3.64 0.58 ± 0.12 0.25 ± 0.00 3.81 ± 0.88 4.33 ± 0.30 1.92 ± 0.44 

oil/β-CD 5.73 0.87 ± 0.26 0.25 ± 0.00 4.20 ± 0.37 4.82 ± 0.16 4.33 ± 0.42 

α-Cyperone 
oil 8.18 0.75 ± 0.18 0.62 ± 0.14 3.05 ± 0.90 3.40 ± 0.52 1.81 ± 0.54 

oil/β-CD 7.69 1.05 ± 0.21 0.38 ± 0.14 4.83 ± 0.62 5.35 ± 0.30 5.53 ± 0.95 



Molecules 2015, 20 10713 

 

 

 

Figure 7. Mean (±S.D.) plasma concentration-time profiles of five active compounds after 

oral administration of XEO and its β-CD inclusion complex (n = 6). 

On the basis of the biopharmaceutics classification system (BCS), volatile compounds belong to class 2, 

with low solubility and high permeability, which mainly undergo passive transport across plasma 

membranes [28,29]. The hydrophilic mucus layer and unstirred water layer of gastrointestinal membrane 

are the main obstacles for the absorption of this class of drugs [30]. By comparing the results of two 

formulations, the inclusion complex showed a significant increase of maximum plasma concentration 

(Cmax), half-time (T1/2), mean residence time (MRT) and area under the concentration-time curve (AUC0–24 h) 

but a decrease in the time to reach maximum plasma concentration (Tmax) of the components, except for 

Z-ligustilide and dehydrocostus lactone. The plasma concentration reached the maximum swiftly after 

administration on account of its high permeability. The longer T1/2 and MRT may be due to a dynamic 

balance between the inclusion complex and free drug [31]. With increasing plasma concentration, the 

release rates of included drugs were gradually slowed down. 

The decrease of Tmax and the enhancement of Cmax and AUC0–24 h in the inclusion complex form may be 

ascribed to an increase of dissolution and water-solubility in the hydrophilic mucus layer and unstirred 

water layer of the gastrointestinal membrane, which resulted in improved permeation [32] because the 

drugs were embedded into the β-CD cavity and β-CD has a hydrophilic surface [33]. 

Another possible cause was the improvement of stability in bodily fluids, especially for Z-ligustilide 

and α-cyperone. The Tmax shift of Z-ligustilide and dehydrocostus lactone may be attributed to the ability 

of release from inclusion complex. Some of the above conclusions are just conjecture, which requires 

further experimental confirmation. 
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The results revealed that the relative oral bioavailability of the five active compounds in the inclusion 

complex increased significantly in rats compared to those in the free oil. Therefore, β-CD is a applicable 

vector to increase drug solubility and absorption, and the development of a XEO delivery system can 

greatly improve its bioavailability.  

3. Experimental Section 

3.1. Materials and Reagents 

β-CD was purchased from Jiangsu Fengyuan Biotechnology Co., Ltd (Jiangsu, China). The reference 

standards of senkyunolide A, 3-n-butylphthalide, Z-ligustilide, dehydrocostus lactone, α-cyperone and 

osthole (internal standard) were purchased from the National Institute for the Control of Pharmaceutical 

and Biological Products (Beijing, China). Their chemical structures are shown in Figure 1. HPLC grade 

acetonitrile and methanol were obtained from Tedia (Fairfield, NJ, USA). Analytical grade formic acid 

was purchased from Merck (Darmstadt, Germany). The deionized water was purified by a Millipore 

water purification system (Millipore, Milford, MA, USA) and filtered with 0.22 μm membranes. All 

other reagents used were of analytical grade. Rehmanniae Radix Praeparata, Angelicae sinensis Radix, 

Chuanxiong Rhizoma, Paeoniae Radix Alba, Cyperi Rhizoma, Aucklandiae Radix and Corydalis Rhizoma 

were purchased from Anhui Fengyuan Tongling Chinese Herbal Medicine Co., Ltd (Anhui, China). The 

corresponding author authenticated all of the materials, and the herbal drugs were verified according to 

the Chinese Pharmacopeia (2010 edition). Voucher specimens were deposited at the Jiangsu Key Laboratory 

for High Technology Research of Traditional Chinese Medicine (TCM) Formulae. 

3.2. Animals 

Experimental procedures were carried out in accordance with the Guide for the Care and Use of 

Laboratory Animals, and before the animal experiments were carried out, the procedures were approved 

by the Laboratory Animal Center of Nanjing University of Chinese Medicine. Twelve female SD rats 

weighing 250 ± 20 g (Certificate No. SCXK2012-0001) were provided by Beijing Weitong Lihua 

Experimental Animal Technology Co., Ltd (Beijing, China). 

3.3. Preparation of XEO and its β-CD Inclusion Complex 

XEO was extracted by steam distillation in the lab according to the ratio of the prescription. The 

XEO/β-CD inclusion complex was prepared by a coprecipitation method. Briefly, β-CD (30.00 g) and 

water (500 mL) were added to a flask which was placed on a constant temperature magnetic stirring 

apparatus. After stirring for an hour at 40 °C, the β-CD saturated solution was obtained. XEO (3 mL, 

2.62 g) was dropwise added to the saturated β-CD solution with continuous agitation for an hour at the 

same temperature and rate. Then the solution was cooled to room temperature with continuous agitation 

and maintained overnight at 4 °C. Finally, the cold precipitated XEO/β-CD inclusion complex was 

recovered by vacuum filtration. The precipitate was washed with diethyl ether to remove XEO which 

was absorbed on the surface of β-CD and then freeze dried until the weight remained constant. The dried 

powder (28.34 g) was stored in an airtight desiccator at room temperature. In order to characterize the 

inclusion complex, the physical mixture of β-CD and XEO was prepared by mixing β-CD and XEO at a 
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ratio of 10:1 (m/v) in a glass mortar until a homogeneous mixture was obtained. The contents of five active 

compounds are presented in Table 2. It shows that the ratios of analytes in essential oil and inclusion 

complex are all about 10:1, which agrees with the ratio of preparation of the β-CD inclusion complex. 

Table 2. The contents of the five active compounds (%): (a) senkyunolide A; (b) 

3-n-butylphthalide; (c) Z-ligustilide; (d) dehydrocostus lactone; (e) α-cyperone. 

Compound a b c d e 

XEO 3.28 8.66 29.0 0.909 2.04 
β-CD inclusion complex 0.335 0.884 2.12 0.143 0.192 

3.4. Characterization of XEO/β-CD Inclusion Complex 

3.4.1. Differential Scanning Calorimetry Study (DSC) 

The DSC thermograms for pure β-CD, the physical mixture and the inclusion complex were measured 

with a Diamond DSC instrument (Perkin Elmer, MA, USA). Samples were accurately weighed and heated 

in a crimped aluminum pan at a rate of 10 °C/min from 25 to 350 °C under a nitrogen flow of 40 mL/min. 

An empty aluminum pan was used as the reference. 

3.4.2. Fourier Transform Infrared Spectral Analysis (FT-IR) 

The FT-IR spectra of pure β-CD, the physical mixture and the inclusion complex were recorded from 

4000 to 600 cm−1 on a Tensor 37 FT-IR spectrophotometer (Bruker Optics, Karlsruhe, Germany) with  

32 scans at a resolution of 4 cm−1. β-CD, the physical mixture and the inclusion complex were respectively 

mixed with spectrograde KBr powder at a mass ratio of 1:100. Then they were ground and pressed to 

discs of 8 mm diameter. FT-IR spectra were analysed by the OPUS 6.0 spectroscopy software. 

3.4.3. Powder X-ray Diffraction Analysis (XRD) 

The powder XRD patterns of pure β-CD, the physical mixture and the inclusion complex were 

recorded in 2θ range 0–40° using a D/max-2500/PC diffractometer (Rigaku Corporation, Tokyo, Japan). 

The measurement conditions were as follows: graphite-monochromated Cu Kα radiation; voltage, 40 kV; 

current, 100 mA; DS = SS = 1°, RS = 0.3 mm. 

3.4.4. Scanning Electron Microscopy (SEM) Image Analysis  

The surface morphologies of pure β-CD, the physical mixture and the inclusion complex were 

examined using a JSM-5610LV SEM instrument (JEOL, Tokyo, Japan) at 15 kV. The samples were 

sputtered with a thin layer of gold to improve the electrical conductivity prior to imaging. 

3.5. Preparation of Calibration Standards and Quality Control Samples 

Stock solutions of senkyunolide A (0.470 mg/mL), 3-n-butylphthalide (0.395 mg/mL), Z-ligustilide 

(0.462 mg/mL), dehydrocostus lactone (0.318 mg/mL), α-cyperone (0.419 mg/mL) and osthole  

(0.295 mg/mL) were prepared in methanol. The stock solutions were further diluted with methanol to 
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obtain a set of standard working mixture solutions with a concentration range of 4.6 × 10−3–4.70 μg/mL for 

senkyunolide A, 61.7 × 10−3–7.90 μg/mL for 3-n-butylphthalide, 4.5 × 10−3–18.48 μg/mL for Z-ligustilide, 

6.1 × 10−3–1.55 μg/mL for dehydrocostus lactone, 8.2 × 10−3–2.10 μg/mL for α-cyperone, respectively. 

Internal standard (IS) solution was prepared by dilution of its stock solution to 1.18 μg/mL with 

methanol. All solutions were stored at −20 °C before analysis. The solutions of standard mixture, IS and 

ethyl acetate with blank plasma at a volume ratio of 200:10:600:200 μL were mixed. Quality control 

(QC) samples at low, middle and high concentrations were 0.018, 0.294, 4.70 μg/mL for senkyunolide A; 

0.123, 0.984, 7.90 μg/mL for 3-n-butylphthalide; 0.036, 0.576, 9.24 μg/mL for Z-ligustilide; 0.024, 

0.194, 1.55 μg/mL for dehydrocostus lactone; 0.033, 0.262, 2.10 μg/mL for α-cyperone, respectively. 

3.6. UPLC-MS/MS Instrument and Conditions 

The chromatographic analysis was performed on an Acquity UPLC system (Waters Corp., Milford, MA, 

USA), consisting of a binary pump solvent management system, an online degasser, and an autosampler. An 

Acquity UPLC BEH C18 column (100 mm × 2.1 mm, 1.7 μm) was employed and the column temperature 

was maintained at 35 °C. The mobile phase was composed of A (0.1% formic acid) and B (acetonitrile) 

using a gradient elution of 42%–43% B at 0–6 min, 43%–95% B at 6–7 min, 95%–95% B at 7–8 min and 

95%–42% B at 8–9 min with a flow rate set at 0.4 mL/min. The autosampler was conditioned at 4 °C and 

the injection volume was 2 μL. The mass spectrometry detection was performed using a Xevo Triple 

Quadrupole MS (Waters Corp.) equipped with an electrospray ionization source (ESI). Analytes were 

quantified by multiple-reaction monitoring (MRM) mode employing the following precursor-to-product 

ion pairs: 193.0 → 136.8 for senkyunolide A, 190.9 → 116.9 for 3-n-butylphthalide, 191.0 → 90.8 for 

Z-ligustilide, 231.0 → 194.9 for dehydrocostus lactone, 219.0 → 110.9 for α-cyperone, and 245.0 → 

188.9 for osthole. The parameters in the source were set as follows: capillary voltage 3.5 kV; source 

temperature 150 °C; desolvation gas flow 1000 L/h; desolvation temperature 550 °C; cone gas flow 50 L/h. 

Dwell time was automatically set. Data were collected and analysed by MassLynx (Waters Corp.). 

3.7. Method Validation 

3.7.1. Plasma Samples Preparation 

Plasma samples (200 μL) were added with IS working solution (10 μL) and ethyl acetate (600 μL) in 

a 2 mL glass centrifuge tube. After vortexing for 2 min, the mixtures were centrifuged at 13,000 rpm for  

10 min at 4 °C. Then the supernatant was transferred to another tube and evaporated to dryness in a rotary 

evaporator at 25 °C rapidly. The residue was reconstituted in 200 μL methanol and then centrifuged again 

at 13,000 rpm for 10 min. The supernatant (100 μL) was transferred to a vial for UPLC-MS/MS analysis. 

3.7.2. Specificity 

The specificity was evaluated by comparing chromatograms of blank plasma, blank plasma spiked 

with the solutions of standard mixture and IS, and plasma samples obtained from rats administrated by 

XEO and its inclusion complex. 
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3.7.3. Linearity and LLOQ 

The linearity of each calibration curve was determined by plotting the peak area ratio (y) of analytes 

to IS vs. the nominal concentration (x) of analytes with weighted (1/x) least square linear regression. The 

lower limits of quantitation (LLOQ) of the assay was defined as the lowest concentration on the standard 

curve that can be quantitated with accuracy within 20% bias of the nominal concentration and RSD not 

exceeding 20%. 

3.7.4. Accuracy and precision 

The accuracy and the precision of the assay for intra-day and inter-day determinations were evaluated 

by the analysis of three concentration levels of QC samples (n = 6) on the same day and on three 

consecutive validation days. The accuracy was expressed as RE (%) within 85%–115% from the 

nominal values, and the precision as RSD (%) within ±15% except for LLOQ, where it should be within 

80%–120% for accuracy and less than 20% of precision. 

3.7.5. Extraction Recovery and Matrix Effect 

The recovery was determined in sets of six replicate QC samples at three different concentrations by 

measuring the amount of each compound recovered after extraction and calculated by comparing the 

peak areas of the extracted samples with that of the unextracted standard solutions (n = 6). Matrix effect 

was measured via comparison of the peak responses obtained from samples where the extracted matrix was 

spiked with standard solutions to those obtained from neat standard solutions at equivalent concentrations. 

3.7.6. Stability 

The stabilities of analytes in rat plasma were investigated by using QC samples stored under different 

temperature conditions for different periods of time which likely to be encountered during sample storage 

and the analytical process. Three replicate QC samples were tested for pre-treatment, post-treatment, three 

freeze-thaw cycles and long-term stabilities, respectively. Pre-treatment stability was assessed by 

exposing QC samples at room temperature for 4 h. Post-treatment was evaluated by placing QC samples 

in the autosampler at 4 °C for 24 h. And for freeze-thaw cycle stability assessment, QC samples were 

repeatedly freezed and thawed for three cycles at −80 to 20 °C. Long-term stability was carried out via 

placing QC samples at −80 °C for 2 weeks. 

3.8. Pharmacokinetic Study 

The rats were housed under standard conditions (GLP) with free access to food and water for one 

month. Before administration, rats were on overnight fast with free access to water. Then, they were 

randomly and equally divided into two groups (each consisting of six rats). One group received XEO 

orally administrated at a dose of 0.4 g/kg and the other group received XEO/β-CD inclusion complex 

orally administrated at a dose of 4 g/kg. XEO and its β-CD inclusion complex were both diluted with water 

to achieve appropriate concentrations corresponding to each rat. Both groups were administered about  

2 mL per rat. Blood samples (0.3 mL) were collected from the orbit venous plexus of rats under ether 
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anesthesia into heparinized Eppendorf tubes at 0.0833, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 8, 12 and 24 h after 

administration. The plasma was separated through centrifugation at 13,000 rpm for 10 min at 4 °C  

and stored at −80 °C until analysis. The pharmacokinetic parameters of analytes were calculated by DAS 

3.2 software using non-compartment model analysis. Their statistical comparisons were made by 

two-sample t-test (SPSS), and p value less than 0.05 was considered to be statistically significant. 

4. Conclusions 

In this study, an UPLC-MS/MS method for the simultaneous determination of senkyunolide A, 

3-n-butylphthalide, Z-ligustilide, dehydrocostus lactone and α-cyperone in rat plasma was developed for 

the first time, which provided adequate recovery and matrix effect with good precision and accuracy. 

Compared with the previously reported methods, the present method employed a simple and rapid 

extraction procedure for sample preparation, and offered higher sensitivity. The method was successfully 

applied to a pharmacokinetic study of EXO in rats. These pharmacokinetic results provided useful 

information for the further research on pharmaceutical study of XFSWD. 

Acknowledgment 

This study was financially supported by the National Natural Science Foundation of China  

(No. 81202880). 

Author Contributions 

Dawei Qian, Jinao Duan, Pei Liu and Junzuan Xi conceived and designed the experiments; Junzuan Xi, 

Yang Zhang and Ying Pan performed the experiments; Junzuan Xi and Dawei Qian analyzed the data; 

Junzuan Xi, Jianming Guo and Zhenhua Zhu contributed reagents/materials/analysis tools; Dawei Qian 

and Junzuan Xi wrote the paper. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Wang, J.W.; Cui, M.; Jiao, H.G.; Tong, Y.Y.; Xu, J.; Zhao, Y.K.; Han, M.; Liu, J.P. Content analysis of 

systematic reviews on effectiveness of Traditional Chinese Medicine. J. Tradit. Chin. Med. 2013, 

33, 156–163. 

2. Liu, P.; Duan, J.A.; Liu, R.; Guo, J.M.; Tang, Y.P. Determination of extracellular 5-HIAA in the 

brains of normal and primary dysmenorrheal rats by microdialysis coupled with HPLC-ECD and its 

application in evaluation of Xiang-Fu-Si-Wu Decoction efficacy. Chin. J. Tradit. Chin. Med. Pharm. 

2011, 26, 902–907. 

3. Davis, A.R.; Westhoff, C.L. Primary Dysmenorrhea in Adolescent Girls and Treatment with Oral 

Contraceptives. J. Pediatr. Adolesc. Gynecol. 2001, 14, 3–8. 

4. Doubova, S.V.; Morales, H.R.; Hernández, S.F. Effect of a Psidii guajavae folium extract in the treatment 

of primary dysmenorrhea: a randomized clinical trial. J. Ethnopharmacol. 2007, 110, 305–310. 



Molecules 2015, 20 10719 

 

 

5. Su, S.L.; Duan, J.A.; Zhao, X.H.; Hua, Y.Q.; Hou, P.F.; Shang, E.X.; Tang, Y.P.; Ding, A.W. Bioactive 

components from oils of Siwu Decoction and Xiangfu Siwu Decoction by gas chromatography: 

Mass spectrometry and principle components analysis. World. Sci. Technol. 2008, 10, 50–57. 

6. Cevallos, P.A.P.; Buera, M.P.; Elizalde, B.E. Encapsulation of cinnamon and thyme essential oils 

components (cinnamaldehyde and thymol) in β-cyclodextrin: Effect of interactions with water on 

complex stability. J. Food Eng. 2010, 99, 70–75. 

7. Sköld, M.; Karlberg, A.; Matura, M.; Börje, A. The fragrance chemical β-caryophyllene-air 

oxidation and skin sensitization. Food Chem. Toxicol. 2006, 44, 538–545. 

8. Wang, J.; Cao, Y.; Sun, B.; Wang, C. Physicochemical and release characterisation of garlic 

oil-β-cyclodextrin inclusion complexes. Food Chem. 2011, 127, 1680–1685. 

9. Wempe, M.F.; Wacher, V.J.; Ruble, K.M.; Ramsey, M.G.; Edgar, K.J.; Buchanan, N.L.; Buchanan, 

C.M. Pharmacokinetics of raloxifene in male Wistar-Hannover rats: influence of complexation with 

hydroxybutenyl-beta-cyclodextrin. Int. J. Pharm. 2008, 346, 25–37. 

10. Gao, S.; Sun, J.; Fu, D.; Zhao, H.; Lan, M.; Gao, F. Preparation, characterization and pharmacokinetic 

studies of tacrolimus-dimethyl-β-cyclodextrin inclusion complex-loaded albumin nanoparticles. 

Int. J. Pharm. 2012, 427, 410–416. 

11. Liao, C. Research advance on application of β-cyclodextrin. Sci. Technol. Chem. Ind. 2010, 18, 69–72. 

12. Liu, J.; Qiu, L.; Gao, J.; Jin, Y. Preparation, characterization and in vivo evaluation of formulation 

of baicalein with hydroxypropyl-β-cyclodextrin. Int. J. Pharm. 2006, 312, 137–143. 

13. Piette, M.; Evrard, B.; Frankenne, F.; Chiap, P.; Bertholet, P.; Castagne, D.; Foidart, J.M.; Delattre, L.; 

Piel, G. Pharmacokinetic study of a new synthetic MMP inhibitor (Ro 28–2653) after IV and oral 

administration of cyclodextrin solutions. Eur. J. Pharm. Sci. 2006, 28, 189–195. 

14. Jacobson, G.A.; Adam, P.; Edwards, S.; Hughes, K.J.; Rendle, D.I.; Davies, N.W. Determination  

of pergolide in horse plasma by UPLC-MS/MS for pharmacokinetic applications. J. Pharm. 

Biomed. Anal. 2014, 94, 54–57. 

15. Huang, X.C.; Su, S.L.; Cui, W.X.; Liu, P.; Duan, J.A.; Guo, J.M.; Li, Z.H.; Shang, E.X.;  

Qian, D.W.; Huang, Z.J. Simultaneous determination of paeoniflorin, albiflorin, ferulic acid, 

tetrahydropalmatine, protopine, typhaneoside, senkyunolide I in Beagle dogs plasma by 

UPLC-MS/MS and its application to a pharmacokinetic study after Oral Administration of Shaofu 

Zhuyu Decoction. J. Chromatogr. B 2014, 962, 75–81. 

16. Jung, H.R.; Kim, S.J.; Ham, S.H.; Cho, J.H.; Lee, Y.B.; Cho, H.Y. Simultaneous determination  

of puerarin and its active metabolite in human plasma by UPLC-MS/MS: Application to a 

pharmacokinetic study. J. Chromatogr. B 2014, 971, 64–71. 

17. Wang, Y.F.; Liu, Y.N.; Xiong, W.; Yan, D.M.; Zhu, Y.; Gao, X.M.; Xu, Y.T.; Qi, A.D.  

A UPLC-MS/MS method for in vivo and in vitro pharmacokinetic studies of psoralenoside, 

isopsoralenoside, psoralen and isopsoralen from Psoralea corylifolia extract. J. Ethnopharmacol. 

2014, 151, 609–617. 

18. Yadav, V.R.; Suresh, S.; Devi, K.; Yadav, S. Effect of Cyclodextrin Complexation of Curcumin  

on its Solubility and Antiangiogenic and Anti-inflammatory Activity in Rat Colitis Model.  

AAPS PharmSciTech 2009, 10, 752–762. 



Molecules 2015, 20 10720 

 

 

19. Nerome, H.; Machmudah, S.; Wahyuidiono; Fukuzato, R.; Higashiura, T.; Youn, Y.S.; Lee, Y.W.; 

Goto, M. Nanoparticle formation of lycopene/β-cyclodextrin inclusion complex using supercritical 

antisolvent precipitation. J. Supercrit. Fluids 2013, 83, 97–103. 

20. Al Omari, M.M.; Daraghmeh, N.H.; El-Barghouthi, M.I.; Zughul, M.B.; Chowdhry, B.Z.;  

Leharne, S.A.; Badwan, A.A. Novel inclusion complex of ibuprofen tromethamine with 

cyclodextrins: Physico-chemical characterization. J. Pharm. Biomed. Anal. 2009, 50, 449–458. 

21. Eid, E.M.; Abdul, A.B.; Suliman, F.E.O.; Sukari, M.A.; Rasedeo, A.; Fatah, S.S. Characterization 

of the inclusion complex of zerumbone with hydroxypropyl-β-cyclodextrin. Carbohydr. Polym. 

2011, 83, 1707–1714. 

22. Periasamy, R.; Kothainayaki, S.; Rajamohan, R.; Sivakumar, K. Spectral investigation and 

characterization of host-guest inclusion complex of 4,4′-methylene-bis (2-chloroaniline) with beta- 

cyclodextrin. Carbohydr. Polym. 2014, 114, 558–566. 

23. Periasamy, R.; Kothainayaki, S.; Sivakumar, K. Investigation on inter molecular complexation between 

4,4′-methylene-bis (N,N-dimethylaniline) and β-cyclodextrin: Preparation and characterization in 

aqueous medium and solid state. J. Mol. Struct. 2015, 1080, 69–79. 

24. Yin, L.F.; Huang, S.J.; Zhu, C.L.; Zhang, S.H.; Zhang, Q.; Chen, X.J.; Liu, Q.W. In vitro and in vivo 

studies on a novel solid dispersion of repaglinide using polyvinylpyrrolidone as the carrier.  

Drug Dev. Ind. Pharm. 2012, 38, 1371–1380. 

25. Srinivasan, K.; Sivakumar, K.; Stalin, T. 2,6-Dinitroaniline and β-cyclodextrin inclusion complex 

properties studied by different analytical methods. Carbohydr. Polym. 2014, 113, 577–587. 

26. Singh, R.; Bharti, N.; Madan, J.; Hiremath, S.N. Characterization of Cyclodextrin Inclusion 

Complexes—A Review. J. Pharm. Sci. Technol. 2010, 2, 171–183. 

27. Tayade, P.T.; Vavia, P.R. Inclusion complexes of Ketoprofen with β-cyclodextrins: Oral 

pharmacokinetics of Ketoprofen in human. Indian J. Pharm. Sci. 2006, 68, 164–170. 

28. Loftsson, T.; Hreinsdottir, D.; Masson, M. Evaluation of cyclodextrin solubilization of drugs.  

Int. J. Pharm. 2005, 302, 18–28. 

29. Loftsson, T.; Vogensen, S.B.; Brewster, M.E. Effects of cyclodextrins on drug delivery through 

biological membranes. J. Pharm. Sci. 2007, 96, 2532–2546. 

30. Loftsson, T.; Brewster, M.E. Pharmaceutical applications of cyclodextrins: Effects on drug 

permeation through biological membranes. J. Pharm. Pharmacol. 2011, 63, 1119–1135. 

31. Loftsson, T.; Duchene, D. Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 2007, 

329, 1–11. 

32. Brewster, M.E.; Noppe, M.; Peeters, J.; Loftsson, T. Effect of the unstirred water layer on 

permeability enhancement by hydrophilic cyclodextrins. Int. J. Pharm. 2007, 342, 250–253. 

33. Gu, F.; Li, W.; Men, G.; Wang, Y.; Wu, C.; Zhang, A. Pharmacokinetic study of norfloxaein- 

sulfobutylether-β-cyelodextrin complex in rat. Chin. J. Mod. Appl. Pharm. 2012, 29, 346–349.  

Sample Availability: Samples of the compounds senkyunolide A, 3-n-butylphthalide, Z-ligustilide, 

dehydrocostus lactone and α-cyperone are available from the authors. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


