Supplementary Materials

Figure S1. Spectrofluorimetric titration of **2** (2.0×10^{-3} M) with CT DNA of increasing volume (0–450 μ L, only 0, 100, 200, 250, 350, 400 and 450 μ L are shown for clarity) in 2.5 mL Tris-HCl buffer (pH 7.2) at room temperature, ex 325 nm.

Figure S2. Spectrofluorimetric titration of **8a** (2.0×10^{-3} M) with CT DNA of increasing volume (0–450 μ L, only 0, 100, 200, 250, 350, 400 and 450 μ L are shown for clarity) are shown for clarity in 2.5 mL Tris-HCl buffer (pH 7.2) at roomtemperature, ex 325 nm.

Figure S3. Spectrofluorimetric titration of **4b** (2.0×10^{-3} M) with CT DNA of increasing volume (0–450 μ L, only 0, 50, 100, 150, 200, 250, 350, 400 and 450 μ L are shown for clarity) in 2.5 mL Tris-HCl buffer (pH 7.2) at room temperature, ex 325 nm.

Figure S4. Spectrofluorimetric titration of **4c** $(2.0 \times 10^{-3} \text{ M})$ with CT DNA of increasing volume $(0\text{--}450 \,\mu\text{L})$, only 0, 100, 150, 200, 250, 350, 400 and 450 μL are shown for clarity) in 2.5 mL Tris-HCl buffer (pH 7.2) at room temperature, ex 325 nm.

Figure S5. Spectrofluorimetric titration of **4d** $(2.0 \times 10^{-3} \text{ M})$ with CT DNA of increasing volume $(0\text{--}450 \,\mu\text{L})$ in 2.5 mL Tris-HCl buffer (pH 7.2) at room temperature, ex 325 nm.

Figure S6. Spectrofluorimetric titration of **8e** $(2.0 \times 10^{-3} \text{ M})$ with CT DNA of increasing volume $(0\text{--}450 \,\mu\text{L})$ in 2.5 mL Tris-HCl buffer (pH 7.2) at room temperature, ex 325 nm.

Figure S7. Spectrofluorimetric titration of **8f** (2.0×10^{-3} M) with CT DNA of increasing volume (0–450 µL) in 2.5 mL Tris-HCl buffer (pH 7.2) at room temperature, ex 325 nm.

Figure S8. Spectrofluorimetric titration of **8g** (2.0×10^{-3} M) with CT DNA of increasing volume (0–450 µL) in 2.5 mL Tris-HCl buffer (pH 7.2) at room temperature, ex 325 nm.

Figure S9. Spectrofluorimetric titration of **8h** (2.0×10^{-3} M) with CT DNA of increasing volume (0–450 μ L, only 0, 50, 150, 200, 250, 350, 400 and 450 μ L are shown for clarity) in 2.5 mL Tris-HCl buffer (pH 7.2) at roomtemperature, ex 325 nm.

Figure S10. Spectrofluorimetric titration of **8i** $(2.0 \times 10^{-3} \text{ M})$ with CT DNA of increasing volume $(0, 50, 60, 70, 80, 90, 100, 110, 120, 130 \,\mu\text{L})$ in 2.5 mL Tris-HCl buffer (pH 7.2) at room temperature, ex 325 nm.

Figure S11. Plot of [DNA] \times 10⁵ vs. (F_0/F_{-1}) of compound 2.

Figure S12. Plot of [DNA] \times 10⁵ vs. (F₀/F-1) of compound 8a.

Figure S13. Plot of [DNA] \times 10⁵ vs. (F_0/F_{-1}) of compound **8b**.

Figure S14. Plot of [DNA] \times 10⁵ vs. (F₀/F-1) of compound 8c.

Figure S15. Plot of [DNA] \times 10⁵ vs. (F_0/F_{-1}) of compound **8d**.

Figure S16. Plot of [DNA] \times 10⁵ vs. (F_0/F_{-1}) of compound **8e**.

Figure S17. Plot of [DNA] \times 10⁵ vs. (F₀/F-1) of compound 8f.

Figure S18. Plot of [DNA] \times 10⁵ vs. (F₀/F-1) of compound 8g.

Figure S19. Plot of [DNA] \times 10⁵ vs. (F₀/F-1) of compound **8h**.

Figure S20. Plot of [DNA] \times 10⁵ vs. (F₀/F-1) of compound 8i.

Figure S21. Plot of $\lg[DNA]$ *vs.* $\lg(F_0/F_{-1})$, $K_b = 4.56 \times 10^2 \text{ M}^{-1}$ of compound 2.

Figure S22. Plot of $\lg[DNA]$ *vs.* $\lg(F_0/F_{-1})$, $K_b = 2.44 \times 10^2 \,\mathrm{M}^{-1}$ of compound **8a**.

Figure S23. Plot of $\lg[DNA]$ *vs.* $\lg(F_0/F_{-1})$, $K_b = 77.5 \text{ M}^{-1}$ of compound **8b**.

Figure S24. Plot of $\lg[DNA]$ *vs.* $\lg(F_0/F_{-1})$, $K_b = 1.30 \times 10^2 \text{ M}^{-1}$ of compound **8c**.

Figure S25. Plot of $\lg[DNA]$ *vs.* $\lg(F_0/F_{-1})$, $K_b = 5.91 \times 10^2 \text{ M}^{-1}$ of compound **8d**.

Figure S26. Plot of $\lg[DNA]$ *vs.* $\lg(F_0/F_{-1})$, $K_b = 1.37 \times 10^2 \text{ M}^{-1}$ of compound **8e**.

Figure S27. Plot of lg[DNA] *vs.* $lg(F_0/F_{-1})$, $K_b = 1.16 \times 10^4 \,\mathrm{M}^{-1}$ of compound **8f**.

Figure S28. Plot of $\lg[DNA]$ *vs.* $\lg(F_0/F_{-1})$, $K_b = 5.76 \times 10^2 \,\mathrm{M}^{-1}$ of compound **8g**.

Figure S29. Plot of $\lg[DNA]$ *vs.* $\lg(F_0/F_{-1})$, $K_b = 7.38 \times 10^5 \text{ M}^{-1}$ of compound **8h**.

Figure S30. Plot of $\lg[DNA]$ vs. $\lg(F_0/F_{-1})$, $K_b = 1.24 \times 10^4 \,\mathrm{M}^{-1}$ of compound 8i.

Figure S31. Emission spectra of DNA-GelRed (165 μ M), in the presence of 0, 40, 80, 120, 160, 200, 240, 280, 320, 360 and 400 μ M of compound **8f**. Arrow indicates the changes in the emission intensity as a function of compound concentration. Inset: SterneVolmer plot of the fluorescence titration data corresponding to the compound **8f**.

Figure S32. Emission spectra of DNA-GelRed (165 μ M), in the presence of 0, 15, 30, 45, 60, 75, 90, 105 and 120 μ M of compound **8h**. Arrow indicates the changes in the emission intensity as a function of compound concentration. Inset: SterneVolmer plot of the fluorescence titration data corresponding to the compound **8h**.

Figure S33. CD spectra of CT-DNA (3 mL solution, 1.5×10^{-4} M) in the absence and presence of compound **8f** $(1.5 \times 10^{-5}$ M).

Figure S34. CD spectra of CT-DNA (3 mL solution, 1.5×10^{-4} M) in the absence and presence of compound **8h** $(1.5 \times 10^{-5}$ M).

¹H-NMR (500 MHz, CDCl₃) for compound **3**: δ 7.42 (d, J = 8.8 Hz, 1H), 6.75 (dd, J = 8.8, 2.5 Hz, 1H), 6.70 (d, J = 2.5 Hz, 1H), 6.09 (d, J = 1.1 Hz, 1H), 4.27 (t, J = 6.3 Hz, 2H), 2.76 (t, J = 6.3 Hz, 2H), 2.34 (d, J = 1.1 Hz, 3H).

Figure S35. Spectrum of compound 3.

¹H-NMR (500 MHz, CDCl₃) for compound **8a**: δ 7.53–7.49 (m, 2H), 7.42 (d, J = 8.8 Hz, 1H), 7.29 (qd, J = 7.9, 1.3 Hz, 3H), 6.75 (dd, J = 8.8, 2.5 Hz, 1H), 6.70 (d, J = 2.5 Hz, 1H), 6.09 (d, J = 1.1 Hz, 1H), 5.61 (dd, J = 21.0, 9.7 Hz, 1H), 4.30–4.23 (m, 2H), 4.18–3.59 (m, 4H), 2.76 (t, J = 6.3 Hz, 2H), 2.34 (d, J = 1.1 Hz, 3H), 1.31 (t, J = 7.1 Hz, 3H), 1.05 (t, J = 7.1 Hz, 3H). ³¹P-NMR (202 MHz, CDCl₃) δ (ppm) 21.49 (s). HRMS for C₂₄H₂₉NO₇P ([M + H]⁺): calcd 474.16816: found 474.16656.

Figure S36. Spectrum of compound 8a.

¹H-NMR (500 MHz, CDCl₃) for compound **8b**: δ (ppm) 8.30 (d, J = 7.4 Hz, 1H), 7.46 (ddd, J = 8.6, 5.1, 2.0 Hz, 2H), 7.41 (d, J = 8.8 Hz, 1H), 6.97 (t, J = 8.6 Hz, 2H), 6.73 (dd, J = 8.8, 2.5 Hz, 1H), 6.70 (d, J = 2.4 Hz, 1H), 6.08 (d, J = 1.1 Hz, 1H), 5.56 (dd, J = 21.0, 9.6 Hz, 1H), 4.25 (ddd, J = 15.5, 9.3)3.1 Hz, 2H), 4.18–3.65 (m, 4H), 2.74 (t, J = 6.2 Hz, 2H), 2.34 (d, J = 1.1 Hz, 3H), 1.29 (t, J = 7.1 Hz, 3H), 1.07 (t, J = 7.1 Hz, 3H). ³¹P-NMR (202 MHz, CDCl₃) δ (ppm) 21.20 (d, J = 4.3 Hz). HRMS for $C_{24}H_{28}NO_7$ FP ([M + H]⁺): calcd 492.15874: found 492.15732.

¹H-NMR (500 MHz, CDCl₃) for compound **8c**: δ (ppm) 8.01 (s, 1H), 7.47 (d, J = 8.8 Hz, 1H), 7.42–7.21 (m, 4H), 6.81 (dd, J = 8.8, 2.5 Hz, 1H), 6.75 (d, J = 2.4 Hz, 1H), 6.22–6.16 (m, 1H), 6.14 (s, 1H), 4.36–4.30 (m, 2H), 4.30–3.64 (m, 4H), 2.79 (td, J = 6.1, 2.6 Hz, 2H), 2.39 (d, J = 0.8 Hz, 3H), 1.36 (t, J = 7.1 Hz, 3H), 1.06 (t, J = 7.0 Hz, 3H). ³¹P-NMR (202 MHz, CDCl₃) δ (ppm) 20.72(s). HRMS for C₂₄H₂₈NO₇ PCl ([M + H]⁺): calcd 508.12919; found 508.12781.

Figure S38. Spectrum of compound 8c.

¹H-NMR (500 MHz, CDCl₃) for compound **8d**: δ (ppm) 8.21 (s, 1H), 7.46 (dd, J = 8.5, 2.2 Hz, 1H), 7.42 (d, J = 8.3 Hz, 2H), 7.29 (dd, J = 8.3, 1.6 Hz, 2H), 6.78 (d, J = 2.5 Hz, 1H), 6.76 (s, 1H), 6.13 (d, J = 1.0 Hz, 1H), 5.58 (dd, J = 21.3, 9.5 Hz, 1H), 4.40–4.23 (m, 2H), 4.21–3.72 (m, 4H), 2.78 (t, J = 6.0 Hz, 2H), 2.38 (d, J = 1.0 Hz, 3H), 1.32 (t, J = 7.0 Hz, 3H), 1.12 (dd, J = 7.7, 6.4 Hz, 3H). ³¹P-NMR (202 MHz, CDCl₃) δ (ppm) 21.21 (s). HRMS for C₂₄H₂₈NO₇ PCl ([M + H]⁺): calcd 508.12919; found 508.12775.

Figure S39. Spectrum of compound 8d.

¹H-NMR (500 MHz, CDCl₃) for compound **8e**: δ (ppm)8.67 (s, 1H), 7.75 (d, J = 7.8 Hz, 1H), 7.53 (d, J = 8.0 Hz, 1H), 7.40 (dd, J = 8.8, 1.2 Hz, 1H), 7.27 (dd, J = 12.7, 5.2 Hz, 1H), 7.12 (dd, J = 11.0, 4.3 Hz, 1H), 6.73 (dd, J = 8.8, 2.4 Hz, 1H), 6.67 (d, J = 2.3 Hz, 1H), 6.20 (dd, J = 21.0, 9.3 Hz, 1H), 6.07 (s, 1H), 4.34–4.23 (m, 2H), 4.24–3.58 (m, 4H), 2.77 (q, J = 6.1 Hz, 2H), 2.33 (s, 3H), 1.34 (t, J = 7.1 Hz, 3H), 1.02 (t, J = 7.1 Hz, 3H). ³¹P-NMR (202 MHz, CDCl₃) δ (ppm) 20.85 (s). HRMS for C₂₄H₂₈NO₇PBr ([M + H]⁺): calcd 552.07868; found 552.07666.

Figure S40. Spectrum of compound 8e.

¹H-NMR (500 MHz, CDCl₃) for compound **8f**: δ (ppm) 8.36 (d, J = 5.7 Hz, 1H), 7.67 (d, J = 1.5 Hz, 1H), 7.44 (dd, J = 15.1, 8.4 Hz, 2H), 7.20 (t, J = 7.8 Hz, 1H), 6.79 (dd, J = 8.8, 2.4 Hz, 1H), 6.74 (d, J = 2.4 Hz, 1H), 6.13 (d, J = 0.7 Hz, 1H), 5.58 (dd, J = 21.3, 9.5 Hz, 1H), 4.30 (dq, J = 9.3, 6.4 Hz, 2H), 4.26–3.73 (m, 4H), 2.79 (t, J = 6.1 Hz, 2H), 2.38 (d, J = 0.5 Hz, 3H), 1.33 (t, J = 7.1 Hz, 3H), 1.12 (t, J = 7.1 Hz, 3H). ³¹P-NMR (202 MHz, CDCl₃) δ (ppm) 21.71 (s). HRMS for C₂₄H₂₈NO₇PBr ([M + H]⁺): calcd 552.07868; found 552.07642.

Figure S41. Spectrum of compound 8f.

¹H-NMR (500 MHz, CDCl₃) for compound **8g**: δ (ppm) 8.23 (dd, J = 9.5, 4.1 Hz, 1H), 7.43 (d, J = 8.1 Hz, 2H), 7.41 (s, 1H), 7.33 (dd, J = 8.5, 2.0 Hz, 2H), 6.75 dd, J = 8.8, 2.4 Hz, 1H), 6.73 (d, J = 2.3 Hz, 1H), 6.10 (d, J = 1.2 Hz, 1H), 5.54 (dd, J = 21.3, 9.5 Hz, 1H), 4.32–4.21 (m, 2H), 4.19–3.70 (m, 4H), 2.75 (t, J = 6.1 Hz, 2H), 2.35 (d, J = 1.2 Hz, 3H), 1.29 (t, J = 7.1 Hz, 3H), 1.09 (t, J = 7.1 Hz, 3H). ³¹P-NMR (202 MHz, CDCl₃) δ (ppm) 20.87 (s). HRMS for C₂₄H₂₈NO₇PBr ([M + H]⁺): calcd 552.07868; found 552.07629.

Figure S42. Spectrum of compound 8g.

¹H-NMR (500 MHz, CDCl₃) for complex **8h**: δ (ppm) 8.08 (dd, J = 9.7, 2.9 Hz, 1H), 7.57–7.45 (m, 1H), 7.39 (d, J = 8.8 Hz, 1H), 7.24–7.18 (m, 1H), 6.91–6.81 (m, 2H), 6.74 (dd, J = 8.8, 2.5 Hz, 1H), 6.68 (d, J = 2.5 Hz, 1H), 6.14–6.08 (m, 1H), 6.06 (d, J = 1.2 Hz, 1H), 4.30–4.20 (m, 2H), 4.19–3.70 (m, 4H),3.82 (s, 3H), 2.73 (dd, J = 10.4, 6.1 Hz, 2H), 2.32 (d, J = 1.0 Hz, 3H), 1.28 (t, J = 7.1 Hz, 3H), 0.98 (t, J = 7.1 Hz, 3H). ³¹P-NMR (202 MHz, CDCl₃) δ (ppm) 22.05 (s). HRMS for C₂₅H₃₁NO₈ P ([M + H]⁺): calcd 504.17873; found 504.17688.

Figure S43. Spectrum of compound 8h.

¹H-NMR (500 MHz, CDCl₃) for complex **8i**: δ (ppm) 8.46 (s, 1H), 7.98 (s, 1H), 7.79–7.71 (m, 3H), 7.63 (dd, J = 8.5, 1.4 Hz, 1H), 7.47–7.39 (m, 2H), 7.32–7.27 (m, 1H), 6.67 (d, J = 1.3 Hz, 1H), 6.65 (t, J = 1.9 Hz, 1H), 6.07 (s, 1H), 5.80 (dd, J = 21.0, 9.6 Hz, 1H), 4.27–3.59 (m, 6H) 2.76 (t, J = 6.3 Hz, 2H), 2.29 (s, 3H), 1.34 (t, J = 7.1 Hz, 3H), 1.02 (t, J = 7.1 Hz, 3H). ³¹P-NMR (202 MHz, CDCl₃) δ (ppm) 21.44 (s). HRMS for C₂₈H₃₁NO₇P([M + H]⁺): calcd 524.18381; found 524.18213.

Figure S44. Spectrum of compound 8i.

¹H-NMR (500 MHz, CDCl₃) for complex **8j**: ¹H-NMR (500 MHz, CDCl₃) δ(ppm) 8.45 (dd, J = 9.6, 3.4 Hz, 1H), 7.62–7.45 (m, 2H), 7.42 (d, J = 8.8 Hz, 1H), 7.29 (dd, J = 7.9, 4.1 Hz, 3H), 6.75 (dd, J = 8.8, 2.5 Hz, 1H), 6.70 (d, J = 2.5 Hz, 1H), 6.09 (d, J = 1.1 Hz, 1H), 4.34–4.22 (m, 2H), 4.22–3.67 (m, 4H), 2.78 (td, J = 6.2, 2.7 Hz, 2H), 2.34 (d, J = 1.0 Hz, 3H), 2.10 (d, J = 16.1 Hz, 1H), 1.31 (t, J = 7.1 Hz, 3H), 1.09 (t, J = 7.1 Hz, 3H). ³¹P-NMR (202 MHz, CDCl₃) δ (ppm) 21.33 (s). HRMS for C₂₅H₃₁NO₇P ([M + H]⁺): calcd 488.18381; found 488.18231.

Figure S45. Spectrum of compound 8j.