Supplementary Materials

Figure S1. Spectrofluorimetric titration of $2\left(2.0 \times 10^{-3} \mathrm{M}\right)$ with CT DNA of increasing volume ($0-450 \mu \mathrm{~L}$, only $0,100,200,250,350,400$ and $450 \mu \mathrm{~L}$ are shown for clarity) in 2.5 mL Tris- HCl buffer (pH 7.2) at room temperature, ex 325 nm .

Figure S2. Spectrofluorimetric titration of $\mathbf{8 a}\left(2.0 \times 10^{-3} \mathrm{M}\right)$ with CT DNA of increasing volume ($0-450 \mu \mathrm{~L}$, only $0,100,200,250,350,400$ and $450 \mu \mathrm{~L}$ are shown for clarity) are shown for clarity in 2.5 mL Tris- HCl buffer (pH 7.2) at roomtemperature, ex 325 nm .

Figure S3. Spectrofluorimetric titration of $\mathbf{4 b}\left(2.0 \times 10^{-3} \mathrm{M}\right)$ with CT DNA of increasing volume ($0-450 \mu \mathrm{~L}$, only $0,50,100,150,200,250,350,400$ and $450 \mu \mathrm{~L}$ are shown for clarity) in 2.5 mL Tris- HCl buffer (pH 7.2) at room temperature, ex 325 nm .

Figure S4. Spectrofluorimetric titration of $\mathbf{4 c}\left(2.0 \times 10^{-3} \mathrm{M}\right)$ with CT DNA of increasing volume ($0-450 \mu \mathrm{~L}$, only $0,100,150,200,250,350,400$ and $450 \mu \mathrm{~L}$ are shown for clarity) in 2.5 mL Tris- HCl buffer (pH 7.2) at room temperature, ex 325 nm .

Figure S5. Spectrofluorimetric titration of $\mathbf{4 d}\left(2.0 \times 10^{-3} \mathrm{M}\right)$ with CT DNA of increasing volume ($0-450 \mu \mathrm{~L}$) in 2.5 mL Tris- HCl buffer (pH 7.2) at room temperature, ex 325 nm .

Figure S6. Spectrofluorimetric titration of $\mathbf{8 e}\left(2.0 \times 10^{-3} \mathrm{M}\right)$ with CT DNA of increasing volume $(0-450 \mu \mathrm{~L})$ in 2.5 mL Tris- HCl buffer (pH 7.2) at room temperature, ex 325 nm .

Figure S7. Spectrofluorimetric titration of $\mathbf{8 f}\left(2.0 \times 10^{-3} \mathrm{M}\right)$ with CT DNA of increasing volume $(0-450 \mu \mathrm{~L})$ in 2.5 mL Tris- HCl buffer (pH 7.2) at room temperature, ex 325 nm .

Figure S8. Spectrofluorimetric titration of $\mathbf{8 g}\left(2.0 \times 10^{-3} \mathrm{M}\right)$ with CT DNA of increasing volume $(0-450 \mu \mathrm{~L})$ in 2.5 mL Tris- HCl buffer (pH 7.2) at room temperature, ex 325 nm .

Figure S9. Spectrofluorimetric titration of $\mathbf{8 h}\left(2.0 \times 10^{-3} \mathrm{M}\right)$ with CT DNA of increasing volume ($0-450 \mu \mathrm{~L}$, only $0,50,150,200,250,350,400$ and $450 \mu \mathrm{~L}$ are shown for clarity) in 2.5 mL Tris- HCl buffer (pH 7.2) at roomtemperature, ex 325 nm .

Figure S10. Spectrofluorimetric titration of $\mathbf{8 i}\left(2.0 \times 10^{-3} \mathrm{M}\right)$ with CT DNA of increasing volume ($0,50,60,70,80,90,100,110,120,130 \mu \mathrm{~L}$) in 2.5 mL Tris- HCl buffer (pH 7.2) at room temperature, ex 325 nm .

Figure S11. Plot of [DNA] $\times 10^{5} v s .\left(F_{0} / F-1\right)$ of compound 2.

Figure S12. Plot of $[D N A] \times 10^{5} v s .(F 0 / F-1)$ of compound 8a.

Figure S13. Plot of $[\mathrm{DNA}] \times 10^{5} v s .(F 0 / F-1)$ of compound $\mathbf{8 b}$.

Figure S14. Plot of [DNA] $\times 10^{5} v s .(F 0 / F-1)$ of compound $\mathbf{8 c}$.

Figure S15. Plot of $[\mathrm{DNA}] \times 10^{5} \mathrm{vs} .\left(F_{0} / F-1\right)$ of compound $\mathbf{8 d}$.

Figure S16. Plot of [DNA] $\times 10^{5} v s .\left(F_{0} / F-1\right)$ of compound $\mathbf{8 e}$.

Figure S17. Plot of $[\mathrm{DNA}] \times 10^{5} v s .\left(F_{0} / F-1\right)$ of compound $\mathbf{8 f}$.

Figure S18. Plot of $[\mathrm{DNA}] \times 10^{5} v s$. $(F 0 / F-1)$ of compound $\mathbf{8 g}$.

Figure S19. Plot of $[D N A] \times 10^{5} v s .(F 0 / F-1)$ of compound $\mathbf{8 h}$.

Figure S20. Plot of $[\mathrm{DNA}] \times 10^{5} v s .\left(F_{0} / F-1\right)$ of compound $\mathbf{8 i}$.

Figure S21. Plot of $\lg [\mathrm{DNA}]$ vs. $\lg \left(F_{0} / F-1\right), K_{b}=4.56 \times 10^{2} \mathrm{M}^{-1}$ of compound 2.

Figure S22. Plot of $\lg [D N A]$ vs. $\lg \left(F_{0} / F-1\right), K_{b}=2.44 \times 10^{2} \mathrm{M}^{-1}$ of compound 8a.

Figure S23. Plot of $\lg [\mathrm{DNA}]$ vs. $\lg \left(F_{0} / F-1\right), K_{b}=77.5 \mathrm{M}^{-1}$ of compound $\mathbf{8 b}$.

Figure S24. Plot of $\lg [D N A]$ vs. $\lg \left(F_{0} / F-1\right), K_{b}=1.30 \times 10^{2} \mathrm{M}^{-1}$ of compound $\mathbf{8 c}$.

Figure S25. Plot of $\lg [D N A]$ vs. $\lg \left(F_{0} / F-1\right), K_{b}=5.91 \times 10^{2} \mathrm{M}^{-1}$ of compound $\mathbf{8 d}$.

Figure S26. Plot of $\lg [D N A]$ vs. $\lg \left(F_{0} / F-1\right), K_{b}=1.37 \times 10^{2} \mathrm{M}^{-1}$ of compound $\mathbf{8 e}$.

Figure S27. Plot of $\lg [D N A]$ vs. $\lg \left(F_{0} / F-1\right), K_{b}=1.16 \times 10^{4} \mathrm{M}^{-1}$ of compound $\mathbf{8 f}$.

Figure S28. Plot of $\lg [D N A]$ vs. $\lg \left(F_{0} / F-1\right), K_{b}=5.76 \times 10^{2} \mathrm{M}^{-1}$ of compound $\mathbf{8 g}$.

Figure S29. Plot of $\lg [D N A]$ vs. $\lg \left(F_{0} / F-1\right), K_{b}=7.38 \times 10^{5} \mathrm{M}^{-1}$ of compound $\mathbf{8 h}$.

Figure S30. Plot of $\lg [\mathrm{DNA}]$ vs. $\lg \left(F_{0} / F-1\right), K_{b}=1.24 \times 10^{4} \mathrm{M}^{-1}$ of compound $\mathbf{8 i}$.

Figure S31. Emission spectra of DNA-GelRed $(165 \mu \mathrm{M})$, in the presence of $0,40,80,120$, $160,200,240,280,320,360$ and $400 \mu \mathrm{M}$ of compound $\mathbf{8 f}$. Arrow indicates the changes in the emission intensity as a function of compound concentration. Inset: SterneVolmer plot of the fluorescence titration data corresponding to the compound $\mathbf{8 f}$.

Figure S32. Emission spectra of DNA-GelRed $(165 \mu \mathrm{M})$, in the presence of $0,15,30,45$, $60,75,90,105$ and $120 \mu \mathrm{M}$ of compound $\mathbf{8 h}$. Arrow indicates the changes in the emission intensity as a function of compound concentration. Inset: SterneVolmer plot of the fluorescence titration data corresponding to the compound $\mathbf{8 h}$.

Figure S33. CD spectra of CT-DNA (3 mL solution, $1.5 \times 10^{-4} \mathrm{M}$) in the absence and presence of compound $\mathbf{8 f}\left(1.5 \times 10^{-5} \mathrm{M}\right)$.

Figure S34. CD spectra of CT-DNA (3 mL solution, $1.5 \times 10^{-4} \mathrm{M}$) in the absence and presence of compound $\mathbf{8 h}\left(1.5 \times 10^{-5} \mathrm{M}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for compound 3: $\delta 7.42(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.8,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.70(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H})$, $2.34(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H})$.

Figure S35. Spectrum of compound 3.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for compound 8a: $\delta 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (qd, $J=7.9,1.3 \mathrm{~Hz}, 3 \mathrm{H}), 6.75(\mathrm{dd}, J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.61(\mathrm{dd}, J=21.0,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.23(\mathrm{~m}, 2 \mathrm{H}), 4.18-3.59(\mathrm{~m}, 4 \mathrm{H}), 2.76(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H})$, $2.34(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}) 21.49(\mathrm{~s})$. HRMS for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{7} \mathrm{P}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: calcd 474.16816: found 474.16656.

Figure S36. Spectrum of compound 8a.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for compound $\mathbf{8 b}: \delta(\mathrm{ppm}) 8.30(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{ddd}, J=8.6$, $5.1,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{dd}, J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{dd}, J=21.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25$ (ddd, $J=15.5,9.3$, $3.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.18-3.65(\mathrm{~m}, 4 \mathrm{H}), 2.74(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.07(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 21.20(\mathrm{~d}, J=4.3 \mathrm{~Hz})$. HRMS for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}_{7} \mathrm{FP}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: calcd 492.15874: found 492.15732.

Figure S37. Spectrum of compound $\mathbf{8 b}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for compound $\mathbf{8 c}: \delta(\mathrm{ppm}) 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.42-7.21(\mathrm{~m}, 4 \mathrm{H}), 6.81(\mathrm{dd}, J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.22-6.16(\mathrm{~m}, 1 \mathrm{H}), 6.14(\mathrm{~s}$, $1 \mathrm{H}), 4.36-4.30(\mathrm{~m}, 2 \mathrm{H}), 4.30-3.64(\mathrm{~m}, 4 \mathrm{H}), 2.79(\mathrm{td}, J=6.1,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.36$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 20.72(\mathrm{~s})$. HRMS for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}_{7} \mathrm{PCl}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: calcd 508.12919; found 508.12781 .

Figure S38. Spectrum of compound $\mathbf{8 c}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for compound 8d: $\delta(\mathrm{ppm}) 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.42 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{dd}, J=8.3,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.78$ (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76$ (s, 1H), 6.13 (d, $J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{dd}, J=21.3,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.23(\mathrm{~m}, 2 \mathrm{H}), 4.21-3.72(\mathrm{~m}, 4 \mathrm{H}), 2.78(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.38(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{dd}, J=7.7,6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{31} \mathrm{P}-\mathrm{NMR}(202 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 21.21(\mathrm{~s})$. HRMS for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}_{7} \mathrm{PCl}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: calcd 508.12919; found 508.12775.

Figure S39. Spectrum of compound 8d.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for compound 8e: $\delta(\mathrm{ppm}) 8.67(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=12.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=11.0$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=21.0,9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.07(\mathrm{~s}, 1 \mathrm{H}), 4.34-4.23(\mathrm{~m}, 2 \mathrm{H}), 4.24-3.58(\mathrm{~m}, 4 \mathrm{H}), 2.77(\mathrm{q}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 20.85(\mathrm{~s})$. HRMS for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}_{7} \mathrm{PBr}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: calcd 552.07868; found 552.07666 .

Figure S40. Spectrum of compound $\mathbf{8 e}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for compound $\mathbf{8 f}: \delta(\mathrm{ppm}) 8.36(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.44$ (dd, $J=15.1,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (dd, $J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.74$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{dd}, J=21.3,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dq}, J=9.3,6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $4.26-3.73(\mathrm{~m}, 4 \mathrm{H}), 2.79(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 21.71(\mathrm{~s})$. HRMS for $\mathrm{C}_{2} \mathrm{H}_{28} \mathrm{NO}_{7} \mathrm{PBr}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$ calcd 552.07868; found 552.07642 .

Figure S41. Spectrum of compound $\mathbf{8 f}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for compound $\mathbf{8 g}: \delta(\mathrm{ppm}) 8.23(\mathrm{dd}, J=9.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.75 \mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}$, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{dd}, J=21.3,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.19-3.70$ (m, 4H), $2.75(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 20.87$ (s). HRMS for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}_{7} \mathrm{PBr}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: calcd 552.07868; found 552.07629.

Figure S42. Spectrum of compound $\mathbf{8 g}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for complex $\mathbf{8 h}: \delta(\mathrm{ppm}) 8.08(\mathrm{dd}, J=9.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.45(\mathrm{~m}$, $1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.91-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{dd}, J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.68$ $(\mathrm{d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.14-6.08(\mathrm{~m}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.19-3.70(\mathrm{~m}$, $4 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{dd}, J=10.4,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.98$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 22.05(\mathrm{~s}) . \mathrm{HRMS}$ for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NO}_{8} \mathrm{P}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: calcd 504.17873; found 504.17688.

Figure S43. Spectrum of compound $\mathbf{8 h}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for complex 8i: $\delta(\mathrm{ppm}) 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.79-7.71(\mathrm{~m}, 3 \mathrm{H})$, 7.63 (dd, $J=8.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{t}$, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 5.80(\mathrm{dd}, J=21.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-3.59(\mathrm{~m}, 6 \mathrm{H}) 2.76(\mathrm{t}, J=6.3 \mathrm{~Hz}$, $2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ 21.44 (s). HRMS for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{7} \mathrm{P}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: calcd 524.18381; found 524.18213.

Figure S44. Spectrum of compound $\mathbf{8 i}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for complex $\mathbf{8 j}:{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.45(\mathrm{dd}, J=9.6$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=7.9,4.1 \mathrm{~Hz}, 3 \mathrm{H}), 6.75(\mathrm{dd}$, $J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.22-3.67$ $(\mathrm{m}, 4 \mathrm{H}), 2.78(\mathrm{td}, J=6.2,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.10(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.09(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 21.33$ (s). HRMS for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NO}_{7} \mathrm{P}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: calcd 488.18381; found 488.18231 .

Figure S45. Spectrum of compound $\mathbf{8 j}$.

