Supplementary Material

NMR Parameters

Solution NMR spectra were recorded on a Bruker DRX 400 (9.4 Tesla, 400.13 MHz for ${ }^{1} \mathrm{H}, 100.62 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}, 40.54 \mathrm{MHz}$ for ${ }^{15} \mathrm{~N}$ and 376.50 MHz for ${ }^{19} \mathrm{~F}$) spectrometer with a $5-\mathrm{mm}$ inverse-detection $\mathrm{H}-\mathrm{X}$ probe equipped with a z-gradient coil $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}\right)$ and with a QNP 5 mm probe $\left({ }^{19} \mathrm{~F}\right)$, at 295 K . Chemical shifts (δ in ppm) are given from internal solvent, DMSO- $d_{6} 2.49$ for ${ }^{1} \mathrm{H}$ and 39.5 for ${ }^{13} \mathrm{C}, \mathrm{CDCl}_{3} 7.26$ for ${ }^{1} \mathrm{H}$ and 77.0 for ${ }^{13} \mathrm{C}$, HMPA- $d_{18} 2.51$ to the upfield multiplet for ${ }^{1} \mathrm{H}$ and 35.8 for ${ }^{13} \mathrm{C}$. External references were used for ${ }^{15} \mathrm{~N}$ and ${ }^{19} \mathrm{~F}$, nitromethane and CFCl_{3}, respectively. Coupling constants (J in Hz) are accurate to $\pm 0.2 \mathrm{~Hz}$ for ${ }^{1} \mathrm{H}, \pm 0.8 \mathrm{~Hz}$ for ${ }^{19} \mathrm{~F}$ and $\pm 0.6 \mathrm{~Hz}$ for ${ }^{13} \mathrm{C}$. Typical parameters for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were spectral width 6500 Hz and pulse width $7.5 \mu \mathrm{~s}$ at an attenuation level of 0 dB . Typical parameters for ${ }^{19} \mathrm{~F}$-NMR spectra were spectral width 55 kHz , pulse width $13.75 \mu \mathrm{~s}$ at an attenuation level of -6 dB and relaxation delay 1 s . Typical parameters for ${ }^{13} \mathrm{C}$-NMR spectra were spectral width 21 kHz , pulse width $10.6 \mu \mathrm{~s}$ at an attenuation level of -6 dB and relaxation delay 2 s ; WALTZ- 16 was used for broadband proton decoupling; the FIDs were multiplied by an exponential weighting ($\mathrm{lb}=2 \mathrm{~Hz}$) before Fourier transformation. 2D $\left({ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\right)$ gs- HMQC and, $\left({ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\right) \mathrm{gs}-\mathrm{HMBC}$ were acquired and processed using standard Bruker NMR software and in non-phase-sensitive mode [77]. Gradient selection was achieved through a 5% sine truncated shaped pulse gradient of 1 ms . Selected parameters for $\left({ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\right)$ gs-HMQC and gs-HMBC spectra were spectral width 3500 Hz for ${ }^{1} \mathrm{H}$ and 20.5 kHz for ${ }^{13} \mathrm{C}, 1024 \times 256$ data set, number of scans 2 (gs-HMQC) or 4 (gs-HMBC) and relaxation delay 1 s . The FIDs were processed using zero filling in the F_{1} domain and a sine-bell window function in both dimensions was applied prior to Fourier transformation. In the gs-HMQC experiments, GARP modulation of ${ }^{13} \mathrm{C}$ was used for decoupling. Selected parameters for $\left({ }^{1} \mathrm{H}-{ }^{-15} \mathrm{~N}\right)$ gs-HMQC spectra were spectral width 6500 Hz for ${ }^{1} \mathrm{H}$ and 12.5 kHz for ${ }^{15} \mathrm{~N}, 1024 \times 256$ data set, number of scans 4 , relaxation delay 1 s . The FIDs were processed using zero filling in the F_{1} domain and a sine-bell window function in both dimensions was applied prior to Fourier transformation. Variable-temperature experiments (DNMR) were recorded with the same spectrometer and a Bruker BVT3000 temperature unit was used to control the temperature of the cooling gas stream and an exchanger to achieve low temperatures.

Solid-state NMR ${ }^{13} \mathrm{C}(100.73 \mathrm{MHz})$ and ${ }^{15} \mathrm{~N}(40.60 \mathrm{MHz})$ CPMAS spectra have been obtained on a Bruker WB 400 spectrometer at 300 K using a 4 mm DVT probehead. Samples were carefully packed in a 4 mm diameter cylindrical zirconia rotor with Kel-F end-caps. Operating conditions involved $3.2 \mu \mathrm{~s}$ $90^{\circ}{ }^{1} \mathrm{H}$ pulses and decoupling field strength of 86.2 kHz by TPPM sequence. ${ }^{13} \mathrm{C}$ spectra were originally referenced to a glycine sample and then the chemical shifts were recalculated to the $\mathrm{Me}_{4} \mathrm{Si}$ (for the carbonyl atom δ (glycine) $=176.1 \mathrm{ppm}$) and ${ }^{15} \mathrm{~N}$ spectra to ${ }^{15} \mathrm{NH} 4 \mathrm{Cl}$ and then converted to nitromethane scale using the relationship: $\delta{ }^{15} \mathrm{~N}$ (nitromethane) $=\delta{ }^{15} \mathrm{~N}$ (ammonium chloride) - 338.1 ppm . Typical acquisition parameters for ${ }^{13} \mathrm{C}$ CPMAS were: spectral width, 40 kHz ; recycle delay, $30-100 \mathrm{~s}$; acquisition time, 30 ms ; contact time, 5 ms ; and spin rate, 12 kHz . In order to distinguish protonated and unprotonated carbon atoms, the NQS (Non-Quaternary Suppression) experiment by conventional cross-polarization was recorded; before the acquisition the decoupler is switched off for a very short time of $25 \mu \mathrm{~s}$ [78-80]. And for ${ }^{15} \mathrm{~N}$ CPMAS were: spectral width, 40 kHz ; recycle delay, $30-100 \mathrm{~s}$; acquisition time, 35 ms ; contact time, 6 ms ; and spin rate, 6 kHz .

Solid-state ${ }^{19}$ F (376.94 MHz) NMR spectra have been obtained on a Bruker WB 400 spectrometer using a MAS DVT BL2.5 X/F/H double resonance probehead. Samples were carefully packed in 2.5 mm
diameter cylindrical zirconia rotors with Kel-F end-caps. Samples were spun at the magic angle at rates of 25 kHz and the experiments were carried out at ambient probe temperature. Typical parameters for single pulse ${ }^{19} \mathrm{~F}$ MAS NMR spectra were: spectral width, 75 KHz ; pulse width, $2.5 \mu \mathrm{~s}$; recycle delay, 10 s ; scans, 128 ; and spin rate, 25 kHz . The typical acquisition parameters ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ MAS were: spectral width, 75 kHz ; recycle delay, 10 s ; pulse width, $2.5 \mu \mathrm{~s}$ and proton decoupling field strength of 100 kHz by SPINAL-64 sequence; recycle delay, 10 s ; acquisition time, 25 ms ; 128 scans ; and spin rate, 25 kHz . The ${ }^{19} \mathrm{~F}$ spectra were referenced to ammonium trifluoroacetate sample and then the chemical shifts were recalculated to the $\mathrm{CFCl}_{3}\left(\delta \mathrm{CF}_{3} \mathrm{COO}^{-} \mathrm{NH}_{4}{ }^{+}=-72.0 \mathrm{ppm}\right)$.

Table S1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ in solution of pyrazole derivatives (chemical shifts δ in ppm, J coupling constants in Hz).

Table S1. Cont.

Nuclei	14	15				
Solvent (Temp)	$\begin{gathered} \hline \text { DMSO- } d_{6} \\ 295 K \\ \hline \end{gathered}$	$\begin{aligned} & \text { DMSO- } d_{6} \\ & 295 \mathrm{~K} \end{aligned}$	$\begin{gathered} \mathrm{CDCl}_{3} \\ 300 K \end{gathered}$	$\begin{gathered} \hline \text { DMSO- } d_{6} \\ 295 K \\ \hline \end{gathered}$	$\begin{gathered} \text { DMSO- } d_{6} \\ 360 \mathrm{~K} \end{gathered}$	$\begin{aligned} & \text { HMPA- } d_{18} \\ & 295 \mathrm{~K} \end{aligned}$
NH	$\begin{aligned} & 13.33(46 \%) \\ & 13.17(54 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 13.28(40 \%) \\ & 13.12(60 \%) \end{aligned}$	n. o.	$\begin{aligned} & 13.29(43 \%) \\ & 13.10(57 \%) \end{aligned}$	12.84	$\begin{aligned} & 14.06(35 \%) \\ & 13.94(65 \%) \end{aligned}$
H4	6.98-7.23	$\begin{aligned} & 6.99 \text { (minor) } \\ & 6.91 \text { (major) } \end{aligned}$	6.75	$\begin{aligned} & 7.0 \text { (minor) } \\ & 6.90 \text { (major) } \end{aligned}$	6.84	$\begin{gathered} 6.92 \text { (major) } \\ 7.62-6.98 \\ \text { (minor) } \\ \hline \end{gathered}$
H6	6.98-7.23	$\begin{gathered} 7.06 \\ { }^{3} J_{\mathrm{H} 7}=16.6 \end{gathered}$	$\begin{gathered} 6.97 \\ { }^{3} J_{\mathrm{H} 7}=16.6 \end{gathered}$	7.26-7.06	$\begin{gathered} 7.07 \\ { }^{3} J_{\mathrm{H} 7}=16.3 \\ \hline \end{gathered}$	7.62-6.98
H7	6.98-7.23	$\begin{gathered} 7.15 \\ { }^{3} J_{\mathrm{H} 6}=16.6 \\ \hline \end{gathered}$	$\begin{gathered} 7.05 \\ { }^{3} J_{\mathrm{H} 6}=16.6 \\ \hline \end{gathered}$	7.26-7.06	$\begin{gathered} 7.16 \\ { }^{3} J_{\mathrm{H} 6}=16.3 \\ \hline \end{gathered}$	7.62-6.98
H2 ${ }^{\prime}$	---	---	$\begin{gathered} 7.09 \\ { }^{4} J_{\mathrm{F}}=8.2 \\ { }^{4} J_{\mathrm{H} 6^{\prime}}=2.0 \\ \hline \end{gathered}$	7.50-7.20	$\begin{gathered} 7.32 \\ { }^{4} J_{\mathrm{F}} \sim 8.1 \\ { }^{4} J_{\mathrm{H} 6^{\prime}}=2 \\ \hline \end{gathered}$	7.62-6.98
H3'	---	$\begin{gathered} 6.78(\mathrm{dd}) \\ { }^{4} J_{\mathrm{F} 5^{\prime}}=7.4 \\ { }^{3} J_{\mathrm{F} 2}=11.6 \\ \hline \end{gathered}$	$\begin{gathered} 3.93 \\ (\mathrm{OMe}) \end{gathered}$	$\begin{gathered} 3.90 \\ (\mathrm{OMe}) \end{gathered}$	$\begin{gathered} 3.92 \\ (\mathrm{OMe}) \end{gathered}$	$\begin{gathered} 3.95 \\ (\mathrm{OMe}) \end{gathered}$
OH	10.30	10.6 (s, br)	---	---	---	---
H5'	6.98-7.23	---	$\begin{gathered} 7.05 \\ { }^{3} J_{\mathrm{H} 6^{\prime}}=8.3 \\ { }^{3} J_{\mathrm{F}}=10.9 \end{gathered}$	7.26-7.06	$\begin{gathered} 7.15 \\ { }^{3} J_{\mathrm{H}{ }^{\prime}}=8.5 \\ { }^{3} J_{\mathrm{F}}=11.5 \\ \hline \end{gathered}$	7.62-6.98
H6'	6.98-7.23	7.58 (m)	$\begin{gathered} 6.99 \\ { }^{3} J_{\mathrm{H} 5^{\prime}}=8.3 \\ { }^{4} J_{\mathrm{F}}=4.7 \\ { }^{4} J_{\mathrm{H} 2^{\prime}}=2.0 \end{gathered}$	7.26-7.06	$\begin{gathered} 7.10 \\ { }^{4} J_{\mathrm{F}}=4.7 \\ { }^{3} J_{\mathrm{H} 5^{\prime}}=8.5 \\ { }^{4} J_{\mathrm{H} 2^{\prime}}=2 \end{gathered}$	7.62-6.98
Но	7.80	7.80 (m)	7.71	$\begin{aligned} & 7.80 \text { (major) } \\ & 7.77 \text { (minor) } \end{aligned}$	7.78	$\begin{aligned} & 8.00 \text { (minor) } \\ & 7.84 \text { (major) } \end{aligned}$
Hm	7.42	7.42 (m)	7.43	7.50-7.20	7.42	7.62-6.98
$\mathrm{H} p$	7.30	7.31 (m)	7.36	7.50-7.20	7.31	7.62-6.98

Table S2. ${ }^{13} \mathrm{C}$ - and ${ }^{15} \mathrm{~N}-\mathrm{NMR}$ in solution and solid state of pyrazole derivatives (chemical shifts δ in ppm, J coupling constants in Hz).

						13	
Solvent (Temp)	$\begin{gathered} \text { DMSO- } d_{6} \\ 300 \mathrm{~K}[6] \\ \hline \end{gathered}$	$\begin{gathered} \text { CPMAS } \\ 300 \text { K [6] } \end{gathered}$	$\begin{gathered} \text { DMSO- } d_{6} \\ 295 \mathrm{~K} \\ \hline \end{gathered}$	$\begin{gathered} \text { CPMAS } \\ 300 \mathrm{~K} \\ \hline \end{gathered}$	$\begin{gathered} \text { DMSO- } d_{6} \\ 295 \mathrm{~K} \\ \hline \end{gathered}$	$\begin{gathered} \text { HMPA- } d_{18} \\ 295 \mathrm{~K} \\ \hline \end{gathered}$	$\begin{gathered} \text { CPMAS } \\ 300 \mathrm{~K} \\ \hline \end{gathered}$
C3	$\begin{aligned} & 151.0 \text { (major) } \\ & 151.4 \text { (minor) } \\ & \hline \end{aligned}$	152.6	$\begin{aligned} & 151.0 \text { (minor) } \\ & 150.9 \text { (major) } \end{aligned}$	152.2	$\begin{aligned} & 150.9 \text { (major) } \\ & 151.1 \text { (minor) } \end{aligned}$	$\begin{aligned} & 151.0 \text { (major) } \\ & 151.5 \text { (minor) } \end{aligned}$	151.8
C4	$\begin{gathered} 99.5 \text { (major) } \\ 100.4 \text { (minor) } \\ \hline \end{gathered}$	103.5	$\begin{gathered} 100.0 \text { (major) } \\ 99.3 \text { (minor) } \end{gathered}$	96.9	100.0 (major) 99.3 (minor)	$\begin{aligned} & 99.7 \text { (major) } \\ & 99.3 \text { (minor) } \end{aligned}$	97.9
C5	$\begin{aligned} & 142.6 \text { (major) } \\ & 140.3 \text { (minor) } \end{aligned}$	144.0	$\begin{aligned} & 142.3 \text { (major) } \\ & 142.9 \text { (minor) } \end{aligned}$	144.0	$\begin{aligned} & 142.2 \text { (major) } \\ & 142.8 \text { (minor) } \end{aligned}$	143.0 (major) 143.1 (minor)	143.1
C6	$\begin{aligned} & 112.7 \text { (major) } \\ & 118.4 \text { (minor) } \\ & \hline \end{aligned}$	113.5	$114.9{ }^{\text {a }}$	117.9	$\begin{aligned} & 114.0 \text { (major) } \\ & 119.7 \text { (minor) } \end{aligned}$	$\begin{aligned} & 114.5 \text { (major) } \\ & 120.2 \text { (minor) } \end{aligned}$	125.6
C7	130.1	129.0	$122.0{ }^{\text {a }}$	122.0	$\begin{aligned} & 128.1 \text { (major) } \\ & 128.5 \text { (minor) } \end{aligned}$	$\begin{aligned} & 129.0 \text { (major) } \\ & 129.3 \text { (minor) } \end{aligned}$	130.4
C1'	128.1	129.0	$122.1{ }^{\text {a }}$	117.9	$\begin{aligned} & 129.0 \text { (major) } \\ & 129.3 \text { (minor) } \end{aligned}$	$\begin{aligned} & 128.0 \text { (major) } \\ & 129.3 \text { (minor) } \end{aligned}$	131.6
C2 ${ }^{\prime}$	109.5	112.3	$\begin{gathered} 160.5 \\ { }^{1} J_{\mathrm{F}}=247.3 \end{gathered}$	$\begin{gathered} 161.4 / 158.8 \\ { }^{1} J_{\mathrm{F}} \sim 262 \end{gathered}$	$\begin{gathered} 113.4 \\ { }^{2} J_{\mathrm{F}}=18.6 \end{gathered}$	$\begin{gathered} 113.4 \\ { }^{2} J_{\mathrm{F}}=18.5 \end{gathered}$	109.1
C3'	147.9	148.3	$\begin{gathered} 102.8 \\ { }^{2} J_{\mathrm{F}}=24.3 \\ \hline \end{gathered}$	108.0	$\begin{gathered} 151.2 \\ { }^{1} J_{\mathrm{F}}=240.8 \\ \hline \end{gathered}$	$\begin{gathered} 152.1 \\ { }^{1} J_{\mathrm{F}}=241.8 \\ \hline \end{gathered}$	$\begin{gathered} 156.9 / 154.6 \\ { }^{1} J_{\mathrm{F}} \sim 247 \\ \hline \end{gathered}$
R_{3}	$\begin{aligned} & 55.6 \text { (major) } \\ & 55.5 \text { (minor) } \end{aligned}$	54.0	---	---	---	---	---
C4'	$\begin{aligned} & 147.1 \text { (major) } \\ & 146.6 \text { (minor) } \end{aligned}$	148.3	158.7	156.2	$\begin{gathered} 145.0 \text { (major) } \\ { }^{2} J_{\mathrm{F}}=12.3 \\ 144.5 \text { (minor) } \\ { }^{2} J_{\mathrm{F}}=12.7 \end{gathered}$	$\begin{gathered} 146.7 \text { (major) } \\ { }^{2} J_{\mathrm{F}}=11.8 \\ 146.3 \text { (minor) } \end{gathered}$	144.9
C5'	$\begin{aligned} & 115.6 \text { (major) } \\ & 115.3 \text { (minor) } \end{aligned}$	116.0	112.3	113.6	$\begin{aligned} & 117.9 \text { (major) } \\ & 119.7 \text { (minor) } \end{aligned}$	$\begin{gathered} 118.0 \\ { }^{3} J_{\mathrm{F}}=3.8 \\ \hline \end{gathered}$	114.7
C6'	$\begin{aligned} & 120.2 \text { (major) } \\ & 122.1 \text { (minor) } \end{aligned}$	119.5	128.2	128.5	$\begin{aligned} & 123.4 \text { (major) } \\ & 123.1 \text { (minor) } \end{aligned}$	$\begin{aligned} & 122.7 \text { (major) } \\ & 122.4 \text { (minor) } \end{aligned}$	122.9
Ci	$\begin{aligned} & 133.6 \text { (major) } \\ & 132.0 \text { (minor) } \end{aligned}$	133.2	133.6	130.2	$\begin{aligned} & 133.6 \text { (major) } \\ & 129.0 \text { (minor) } \end{aligned}$	$\begin{aligned} & 135.2 \text { (major) } \\ & 130.8 \text { (minor) } \end{aligned}$	132.3
Co	$\begin{aligned} & 125.1 \text { (major) } \\ & 125.0 \text { (minor) } \end{aligned}$	126.4	125.1	124.3	125.1	$\begin{aligned} & 125.4 \text { (major) } \\ & 125.5 \text { (minor) } \end{aligned}$	126.3
Cm	128.7	129.0	128.7	126.5	$\begin{aligned} & 128.6 \text { (major) } \\ & 128.8 \text { (minor) } \end{aligned}$	$\begin{aligned} & 128.5 \text { (major) } \\ & 128.7 \text { (minor) } \end{aligned}$	128.1
Cp	127.5	129.0	127.4	126.5	$\begin{aligned} & 127.4 \text { (major) } \\ & 128.5 \text { (minor) } \end{aligned}$	$\begin{aligned} & 127.1 \text { (major) } \\ & 127.7 \text { (minor) } \\ & \hline \end{aligned}$	128.1
N1	b	-181.5	b	-177.2	$\begin{aligned} & -177.3 \text { (major) } \\ & -179.7 \text { (minor) } \\ & \hline \end{aligned}$	$\begin{aligned} & -177.0 \text { (major) } \\ & -179.3 \text { (minor) } \end{aligned}$	-168.5
N2	b	-105.3	b	-111.9	b	b	-120.0

${ }^{a}$ Broad signal; ${ }^{\text {b }}$ Not detected.

Table S2. Cont.

Table S2. Cont.

Nuclei							16		
Co	125.1	126.8	125.1	128.1	125.6	124.8	125.1	125.3 (major)	124.3127.2
					${ }^{1} J_{\mathrm{H}}=158.4$				
					${ }^{3} J_{\mathrm{H}}=7.1$				
Cm	128.8	132.3	128.7	128.9	128.9	128.0	$\begin{aligned} & 128.7 \text { (major) } \\ & 129.0 \text { (minor) } \end{aligned}$	$\begin{aligned} & 128.6 \text { (major) } \\ & 128.8 \text { (minor) } \end{aligned}$	128.3
					H $=159.8$				
					${ }^{3} J_{\mathrm{H}}=7.7$				
Cp	127.6	129.0		130.9	128.4	127.1	$\begin{aligned} & 127.4 \text { (major) } \\ & 128.1 \text { (minor) } \end{aligned}$	$\begin{aligned} & 127.1 \text { (major) } \\ & 127.7 \text { (minor) } \end{aligned}$	128.3
			127.5 (major)		${ }^{1} J_{\mathrm{H}}=161.2$				
			128.3 (minor)		${ }^{3} J_{\mathrm{H}}=7.5$				
					${ }^{3} J_{\mathrm{H}}=7.5$				
					a	a	-177.6 (major)		
N1	-178.3	-191.7	-178.6	-152.2	a	a	-179.2 (minor)	-176.4	-181.1
N2	a	-93.9	a	-141.1	a	a	a	a	-94.7

${ }^{a}$ Not detected.

ORTEP plot (40\% Ellipsoid Probability) of 13 and 16 Showing the Labeling of Their Asymmetric Units

Figure S1. (E)-5-[β-(3-Fluoro-4-hydroxyphenyl)-ethenyl]-3-phenyl-1H-pyrazole (13).

Figure S2. (E)-5-[β-(4-Fluoro-3-methoxyphenyl)-ethenyl]-3-phenyl-1H-pyrazole (16).

Figure S3. Percentage of inhibition of nNOS, iNOS and eNOS activities in the presence of the tested curcuminoid pyrazoles (1,7-11) compared to control (0% inhibition). Experimental data represent the means \pm S.E.M. of three independent experiments $(n=3)$, each one performed in triplicate ${ }^{\# \# \#} p<0.001 v s$. control.

Figure S4. Percentage of inhibition of nNOS, iNOS and eNOS activities in the presence of the tested curcuminoid pyrazoles (12-16) compared to control (0% inhibition). Experimental data represent the means \pm S.E.M. of three independent experiments $(n=3)$, each one performed in triplicate ${ }^{\# \#} p<0.01{ }^{\text {\#\#\# }} p<0.001 \mathrm{vs}$. control.

Table S3. Free Wilson matrix used to obtain the statistical results of Table 5.

Compound	F2 $^{\prime}$	F3 $^{\prime}$	F4 $^{\prime}$	F5 $^{\prime}$	OH-3' $^{\prime}$	nNOS	iNOS	eNOS
$\mathbf{1}$	0	0	0	0	0	2.560	3.265	3.870
$\mathbf{7}$	0	0	0	0	0	3.085	2.280	4.205
$\mathbf{8}$	0	0	0	0	0	1.495	2.320	0.960
$\mathbf{9}$	0	0	0	0	0	4.245	3.175	3.015
$\mathbf{1 0}$	0	0	0	0	0	1.000	2.400	1.170
$\mathbf{1 1}$	0	0	0	0	0	0.950	3.105	2.030
$\mathbf{1 2}$	1	0	0	0	0	65.900	65.800	37.600
$\mathbf{1 3}$	0	1	0	0	0	36.800	83.700	37.400
$\mathbf{1 4}$	1	0	1	0	1	24.100	33.600	40.300
$\mathbf{1 5}$	1	0	0	1	0	38.900	36.300	44.200
$\mathbf{1 6}$	0	0	1	0	0	21.700	46.000	39.300

$\mathrm{nNOS}=(65.9 \pm 2.5) \mathrm{F} 2^{\prime}+(36.8 \pm 2.5) \mathrm{F} 3^{\prime}+(21.7 \pm 2.5) \mathrm{F} 4^{\prime}-(27.0 \pm 3.6) \mathrm{F} 4^{\prime}-(63.5 \pm 4.4) \mathrm{OH}-3^{\prime}$, $n=11, \mathrm{R}^{2}=0.995$;
$\mathrm{iNOS}=(65.8 \pm 2.8) \mathrm{F} 2^{\prime}+(83.7 \pm 2.8) \mathrm{F}^{\prime}+(46.0 \pm 2.8) \mathrm{F} 4^{\prime}-(29.5 \pm 3.9) \mathrm{F} 4^{\prime}-(78.2 \pm 4.8) \mathrm{OH}-3^{\prime}$, $n=11, \mathrm{R}^{2}=0.997$;
$n N O S=(37.6 \pm 2.9) \mathrm{F}^{\prime}+(37.4 \pm 2.9) \mathrm{F}^{\prime}+(39.3 \pm 2.9) \mathrm{F} 4^{\prime}+(6.6 \pm 3.0) \mathrm{F} 4^{\prime}-(36.6 \pm 4.9) \mathrm{OH}-3^{\prime}$, $n=11, \mathrm{R}^{2}=0.994$.

