
Supplementary Materials

SIGPVADLTISNGAVSPDGFSRQAILVNDVFPSPLITGNKGDRFQLNVIDNMTNHTMLKS 60 TSI**H**WHGFFQHGTNWADGPAFVNQCPISTGHAFLYDFQVPDQAGTFWYHSHLSTQYCDGL 120 RGPIVVYDPQDPHKSLYDVDDDSTVITLADWYHLAAKVGPA<mark>A</mark>PTADATLINGLGRSINTL 180 NADLAVITVTKGKRYRFRLVSLSCDPNYTFSIDGHSLTVIEADGVNLKPQTVDSIQIFPA 240 QRYSFVLNADQDVDNYWIRALP<mark>NS</mark>GTRNFDGGVNSAILRYEGAAPVEPTTTQTPSTQPLV 300 ESALTTLEGTAAPGNPTPGGVDLALNMAFGFAGGRFTINGASFTPPTVPVLLQILSGAQS 360 AQDLLPSGSVYSLPANADIEISLPATSAAPGFPHPFHLHGHTFAVVRSAGSSTYNYANPV 420 YRDVVNTGSPGDNVTIRFRTDNPG<mark>PWFLHCH</mark>IDF<mark>H</mark>LDAGFAVVMAEDTPDTKAANPVPQA 480 WSDLCPIYDALDPSDL 496

Figure S1. Amino acid sequence of chimeric 3A4 laccase used as parent type in this work. Sequence inherited from PcL evolved variant during chimeragenesis is underlined (residues 457–496), while the rest corresponds to PM1-L evolved variant. Copper coordinating residues are highlighted in cyan. Mutated residues located at the substrate binding pocket are shown in magenta.

	4-hydroxy	2,4-dihydroxy	2-methoxy-4-hydroxy (G)	2,4,6-Trihydroxy	2,6-dimethoxy-4- hydroxy (S)
Benzene	1.0 51 0.0 250 350 450 550 650	4.0 3.0 2.0 1.0 250 350 450 550 650	4.0 3.0 2.0 1.0 250 350 450 550 650	4.0 3.0 2.0 1.0 250 350 450 550 650	4.0 3.0 2.0 1.0 250 350 450 550 650
Benzoic acid	4.0 3.0 2.0 1.0 250 350 450 550 650	4.0 3.0 2.0 1.0 250 350 450 550 650	4.0 3.0 2.0 1.0 250 350 450 550 650	4.0 S9 3.0 . 2.0 . 1.0 . 250 350 450 550 650	4.0 3.0 2.0 1.0 250 350 450 550 650
Cinnamic acid	4.0 3.0 2.0 1.0 250 350 450 550 650	4.0 3.0 2.0 1.0 250 350 450 550 650	4.0 3.0 2.0 1.0 250 350 450 550 650	N/A	4.0 3.0 2.0 1.0 250 350 450 550 650

Figure S2. Cont.

Figure S2. Changes in UV-Vis absorption spectra of the different phenols upon oxidation by laccase. Spectra shown correspond to initial time (**blue**), 30 min (**red**), 1 h (**green**), 2 h (**purple**), 4 h (**cyan**), 6 h (**orange**), 8 h (**light blue**) and 24 h (**pink**).

250 350 450 550 650

0.0

0.0

250 350 450 550 650

0.0

250 350 450 550 650