Supplementary Materials

Figure S1. ¹H-NMR (DMSO-*d*₆) spectra of *N*-(4,6-dimethoxy-1,3,5-triazin-2-yl)iminodiacetic acid **4**.

Figure S2. ¹³C-NMR (DMSO-*d*₆) spectra of *N*-(4,6-dimethoxy-1,3,5-triazin-2-yl)iminodiacetic acid **4**.

Figure S3. ¹H-NMR (DMSO-*d*₆) spectra of 2-(4,6-dimethoxy-1,3,5-triazin-2-ylamino)acetic acid **5**.

Figure S4. ¹³C-NMR (DMSO-*d*₆) spectra of 2-(4,6-dimethoxy-1,3,5-triazin-2-ylamino)acetic acid **5**.

Figure S5. ¹H-NMR (DMSO-*d*₆) spectra of 2-(4,6-dimethoxy-1,3,5-triazin-2-ylamino)propanoic acid **6**.

Figure S6. ¹³C-NMR (DMSO-*d*₆) spectra of 2-(4,6-dimethoxy-1,3,5-triazin-2-ylamino)propanoic acid **6**.

Figure S7. ¹H-NMR (DMSO-*d*₆) spectra of 2-(4,6-dimethoxy-1,3,5-triazin-2-ylamino)-3-methylbutanoic acid 7.

Figure S8. ¹³C-NMR (DMSO-*d*₆) spectra of 2-(4,6-dimethoxy-1,3,5-triazin-2-ylamino)-3-methylbutanoic acid 7.

Figure S9. ¹H-NMR (DMSO-*d*₆) spectra of 2-(4,6-dimethoxy-1,3,5-triazin-2-ylamino)-3-phenylpropanoic acid **8**.

Figure S10. ¹³C-NMR (DMSO-*d*₆) spectra of 2-(4,6-dimethoxy-1,3,5-triazin-2-ylamino)-3-phenylpropanoic acid **8**.

Figure S11. ¹H-NMR (400 MHz, DMSO-*d*₆) spectra of 2-(4,6-dimethoxy-1,3,5-triazin-2-ylamino)-4-methylpentanoic acid **9**.

Figure S12. ¹³C-NMR (400 MHz, DMSO-*d*₆) spectra of 2-(4,6-dimethoxy-1,3,5-triazin-2-ylamino)-4-methylpentanoic acid **9**.

Figure S13. ¹H-NMR (400 MHz, DMSO-*d*₆) spectra of 2-(4,6-dimethoxy-1,3,5-triazin-2-ylamino)-3-methylpentanoic acid **10**.

Figure S14. ¹³C-NMR (400 MHz, DMSO-*d*₆) spectra of 2-(4,6-dimethoxy-1,3,5-triazin-2-ylamino)-3-methylpentanoic acid **10**.

Figure S15.¹H-NMR (400 MHz, DMSO-*d*₆) spectra of *N*-(4,6-dipiperidino-1,3,5-triazin-2-yl) iminodiacetic acid **15**.

Figure S16. ¹³C-NMR (400 MHz, DMSO- d_6) spectra of N-(4,6-dipiperidino-1,3,5-triazin-2-yl)iminodiacetic acid **15**.

Figure S17. ¹H-NMR (DMSO-*d*₆) spectra of 2-(4,6-di(piperidin-1-yl)-1,3,5-triazin-2-ylamino) acetic acid **16**.

Figure S18. ¹³C-NMR (DMSO-*d*₆) spectra of 2-(4,6-di(piperidin-1-yl)-1,3,5-triazin-2-ylamino) acetic acid **16**.

Figure S19. ¹H-NMR (DMSO-*d*₆) spectra of 2-(4,6-di(piperidin-1-yl)-1,3,5-triazin-2-ylamino) propanoic acid **17**.

Figure S20. ¹³C-NMR (DMSO-*d*₆) spectra of 2-(4,6-di(piperidin-1-yl)-1,3,5-triazin-2-ylamino) propanoic acid **17**.

Figure S21. ¹H-NMR (500 MHz, DMSO-*d*₆) spectrum of 2-(4,6-di(piperidin-1-yl)-1,3,5-triazin-2-ylamino)-3-methylbutanoic acid **18**.

Figure S22. ¹H-NMR (DMSO-*d*₆) spectra of 2-(4,6-di(piperidin-1-yl)-1,3,5-triazin-2-ylamino)-3-phenylpropanoic acid **19**.

Figure S23. ¹³C-NMR (DMSO-*d*₆) spectra of 2-(4,6-di(piperidin-1-yl)-1,3,5-triazin-2-ylamino)-3-phenylpropanoic acid **19**.

Figure S24. ¹H-NMR (DMSO-*d*₆) spectra of 2-(4,6-di(piperidin-1-yl)-1,3,5-triazin-2-ylamino)-4-methylpentanoic acid **20**.

Figure S25. 13 C-NMR (DMSO- d_6) spectra of 2-(4,6-di(piperidin-1-yl)-1,3,5-triazin-2-ylamino)-4-methylpentanoic acid **20**.

Figure S26. ¹H-NMR (DMSO-*d*₆) spectra of 2-(4,6-di(piperidin-1-yl)-1,3,5-triazin-2-ylamino)-3-methylpentanoic acid **21**.

Figure S27. ¹³C-NMR (DMSO-*d*₆) spectra of 2-(4,6-di(piperidin-1-yl)-1,3,5-triazin-2-ylamino)-3-methylpentanoic acid **21**.

Figure S28. ¹H-NMR (500 MHz, DMSO-*d*₆) spectrum of *N*-(4,6-dimorpholino-1,3,5-triazin-2-yl)iminodiacetic acid **22**.

Figure S29. ¹H-NMR (DMSO-*d*₆) spectra of 2-(4,6-dimorpholino-1,3,5-triazin-2-ylamino) acetic acid **23**.

Figure S20. ¹³C-NMR (DMSO-*d*₆) spectra of 2-(4,6-dimorpholino-1,3,5-triazin-2-ylamino) acetic acid **23**.

Figure S31. ¹H-NMR (500 MHz, DMSO-*d*₆) spectrum of 2-(4,6-dimorpholino-1,3,5-triazin-2-ylamino)propanoic acid **24**.

Figure S32. ¹H-NMR (500 MHz, DMSO-*d*₆) spectrum of 2-(4,6-dimorpholino-1,3,5-triazin-2-ylamino)-3-methylbutanoic acid **25**.

Figure S33. ¹H-NMR (500 MHz, DMSO-*d*₆) spectrum of 2-(4,6-dimorpholino-1,3,5-triazin-2-ylamino)-3-phenylpropanoic acid **26**.

Figure S34. ¹H-NMR (500 MHz, DMSO-*d*₆) spectrum of 2-(4,6-dimorpholino-1,3,5-triazin-2-ylamino)-4-methylpentanoic acid **27**.

Figure S35. ¹H-NMR (500 MHz, CDCl₃) spectrum of 2-(4,6-dimorpholino-1,3,5-triazin-2-ylamino)-3-methylpentanoic acid **28**.

Preliminary Biological Tests

The newly synthesized compounds **3–9** and **15–28** were tested to determine their activity toward MAO-A and MAO-B selectivity in the presence of the specific substrate, serotonin or benzylamine ($100 \,\mu\text{M}$), respectively. Bovine brain mitochondria were isolated according to Basford [1]. The activities of MAO-A and MAO-B were determined using a fluorimetric method described by Matsumoto *et al.* [2]. The mitochondrial fractions were incubated at 38 °C for 30 min with the specific inhibitor of one of MAO isoforms, L-deprenyl ($10.5 \,\mu\text{M}$) to determine MAO-A activity or clorgyline ($10.5 \,\mu\text{M}$) to determine MAO-B activity. The activity of MAO-A or MAO-B was determined using the corresponding mitochondrial fraction previously treated and containing one active enzyme, incubation mixture contained 0.1 mL phosphate buffer ($10.25 \,\mu\text{M}$), mitochondrial suspension ($10.5 \,\mu\text{M}$), the specific substrate for MAO-A or MAO-B ($10.5 \,\mu\text{M}$) and test compounds at five different concentrations ranging from $10.5 \,\mu\text{M}$ to $10.5 \,\mu\text{M}$ ($10.5 \,\mu\text{M}$) and $10.5 \,\mu\text{M}$ mad $10.5 \,\mu\text{M}$ were dissolved in propylene glycol. The mixture was incubated in a shaking water-bath at 37 °C for 60 min. The reaction was quenched by adding perchloric acid. The samples were centrifuged at $10.500 \,\mu\text{M}$ min and the supernatant was completed to $10.5 \,\mu\text{M}$ to $10.5 \,\mu\text{M}$ mad $10.5 \,\mu\text{M}$ mad $10.5 \,\mu\text{M}$ min and the supernatant was completed to $10.5 \,\mu\text{M}$ mad $10.5 \,\mu\text{M}$ mad $10.5 \,\mu\text{M}$ min and the supernatant was completed to $10.5 \,\mu\text{M}$ mad $10.5 \,\mu\text{M}$ min and measured with a Perkin-Elmer Lf $10.5 \,\mu\text{M}$ spectrofluorimeter. The $10.5 \,\mu\text{M}$ mad $10.5 \,\mu\text{M}$ mad $10.5 \,\mu\text{M}$ mad $10.5 \,\mu\text{M}$ min and the supernatant was completed to $10.5 \,\mu\text{M}$ mad $10.5 \,\mu\text{M}$ min and $10.5 \,\mu\text{M}$ min an

Software. Inc., Richmond, CA, USA). Protein concentration was determined according to a previously reported method [3]. The MAO-A and MAO-Bresults are expressed as IC₅₀ (Table 1). Propylene glycol was used as negative control and did not show any effect on the enzyme activity.

Table 1. Effect of 2,4-disubstituted-1,3,5-triazine-based amino acid derivatives on MAO-A and MAO-B activity.

Compound	IC ₅₀ (M)		C-14''4 I1 (CD 8
	MAO-A	MAO-B	Selectivity Index (SI) ^a
3	$5.8 \times 10^{-8} \pm 0.13$	$3.9 \times 10^{-4} \pm 0.28$	6724
4	$8.4 \times 10^{-8} \pm 0.12$	$9.8 \times 10^{-4} \pm 0.32$	11667
5	$6.4\times 10^{-8}\pm 0.14$	$9.4 \times 10^{-4} \pm 0.18$	14688
6	$5.1 \times 10^{-9} \pm 0.48$	$4.4 \times 10^{-4} \pm 0.22$	68275
7	$3.1 \times 10^{-9} \pm 0.24$	$7.4 \times 10^{-4} \pm 0.28$	238710
8	$6.7 \times 10^{-8} \pm 0.44$	$5.8 \times 10^{-4} \pm 0.12$	8657
9	$7.4 \times 10^{-8} \pm 0.22$	$4.8 \times 10^{-4} \pm 0.11$	6486
15	$8.8 \times 10^{-8} \pm 0.28$	$7.4 \times 10^{-4} \pm 0.24$	8409
16	$8.7 \times 10^{-8} \pm 0.13$	$7.4 \times 10^{-4} \pm 0.34$	8506
17	$6.1 \times 10^{-8} \pm 0.26$	$4.4 \times 10^{-4} \pm 0.46$	7213
18	$3.2 \times 10^{-9} \pm 0.22$	$5.4 \times 10^{-4} \pm 0.16$	168750
19	$7.8 \times 10^{-9} \pm 0.28$	$5.5 \times 10^{-4} \pm 0.18$	70513
20	$3.2 \times 10^{-8} \pm 0.22$	$9.8 \times 10^{-4} \pm 0.14$	30625
21	$2.8 \times 10^{-8} \pm 0.18$	$8.2 \times 10^{-4} \pm 0.27$	29286
22	$7.2 \times 10^{-8} \pm 0.36$	$6.1 \times 10^{-4} \pm 0.32$	8472
23	$5.8 \times 10^{-8} \pm 0.38$	$4.8 \times 10^{-4} \pm 0.28$	8276
24	$6.4 \times 10^{-8} \pm 0.14$	$5.7 \times 10^{-4} \pm 0.10$	8906
25	$3.5 \times 10^{-9} \pm 0.28$	$8.6 \times 10^{-4} \pm 0.26$	245714
26	$4.2 \times 10^{-8} \pm 0.32$	$7.8 \times 10^{-4} \pm 0.28$	18571
27	$2.9 \times 10^{-8} \pm 0.12$	$8.8 \times 10^{-4} \pm 0.14$	30345
28	$3.2\times 10^{-8}\pm 0.16$	$9.2 \times 10^{-4} \pm 0.22$	28750
Clorgyline	$2.9 \times 10^{-9} \pm 0.12$	$9.8 \times 10^{-5} \pm 0.16$	33793

The results were expressed as mean \pm S.E.M. Data were analyzed by one-way of variance. Student's test for unpaired observations was used. p-value \leq 0.001 and was significant. The number of experiments was 6. a SI = MAO-B IC₅₀/MAO-A IC₅₀.

Oral acute toxicity of the test compounds was studied using male mice (20 g each, Medical Research Institute, Alexandria University) according to previously reported methods [4]. The animals were divided into groups of six mice each. The compounds were given orally, suspended in 1% gum acacia, in doses of 50, 150, 200, 250 mg/kg. The mortality percentage in each group was recorded after 24 h. Additionally, the test compounds were investigated for their parenteral acute toxicity [5] in groups of mice of six animals each. The compounds or their vehicle, propylene glycol (control), were given by intraperitoneal injection in doses of 25, 50, 75, 100, 125 mg/kg. The percentage survival was followed up to 7 days.

References

- 1. Basford, R.E. Preparation and properties of brain mitochondria. *Methods Enzymol.* **1967**, *10*, 96–101.
- 2. Matsumoto, T.; Suzuki, O.; Furuta, T.; Asai, M.; Kurokawa, Y.; Rimura, Y.; Katsumata, Y.; Takahashi, I. A sensitive fluorometric assay for serum monoamine oxidase with kynuramine as substrate. *Clin. Biochem.* **1985**, *18*, 126–129.
- 3. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal. Biochem.* **1976**, *72*, 248–254.
- 4. Verma, M.; Tripathi, M.; Saxena, A.K.; Shanker, K. Antiinflammatory activity of novel indole derivatives. *Eur. J. Med. Chem.* **1994**, *29*, 941–946.
- 5. Bekhit, A.A.; Fahmy, H.T.Y. Design and Synthesis of Some Substituted 1H-Pyrazolyl-oxazolidines or 1*H*-Pyrazolyl-thiazolidines as Anti-inflammatory-Antimicrobial Agents. *Arch. Pharm. Pharm. Med. Chem.* **2003**, *33*6, 111–118.