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Abstract: Over the last several years there has been a huge increase in the development and 

applications of new efficient organocatalysts for enantioselective pericyclic reactions, which 

represent one of the most powerful types of organic transformations. Among these processes 

are cycloaddition reactions (e.g., [3+2]; formal [3+3]; [4+2]; vinylogous [4+2] and 1,3-dipolar 

cycloadditions), which belong to the most utilized reactions in organic synthesis of complex 

nitrogen- and oxygen-containing heterocyclic molecules. This review presents the breakthrough 

realized in this field using chiral BINOL-derived phosphoric acids and N-triflyl 

phosphoramide organocatalysts. 

Keywords: cycloaddition reactions; BINOL-derived phosphoric acids; N-triflyl 

phosphoramides; enantioselective pericyclic reactions 

 

1. Introduction 

The enantioselective Diels-Alder reaction is one of the most important and powerful pericyclic 

reactions for the synthesis of complex molecules [1–3]. This [4+2] and related cycloaddition reactions 

(e.g., [3+2]; formal [3+3]; vinylogous [4+2] and 1,3-dipolar cycloadditions) provide straightforward 

access to versatile chiral carbo- and heterocyclic compounds. As a result, extensive research effort has 
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been dedicated to the development of chiral organocatalysts for highly stereo- and regioselective 

versions of different cycloaddition transformations. Many excellent results have been achieved by 

applying BINOL-derived phosphoric acids and N-triflyl phosphoramides. In this review, we discuss 

recent achievements in developing enantioselective cycloaddition transformations using bifunctional 

chiral phosphoric acids and N-triflyl phosphoramides with the general structures given in Figure 1. 

 

Figure 1. Schematic presentation of bifunctional organocatalysts discussed in this article. 

LB = Lewis Base; BA = Brønsted Acid. 

After a corresponding short overview of the development of the selected organocatalysts, different 

cycloaddition reactions and their formal versions ([3+2]; formal [3+3]; [4+2]; vinylogous [4+2] and  

1,3-dipolar cycloadditions), catalyzed by these powerful organocatalysts, will be described in this  

review article. 

2. Cycloadditions Catalyzed by Chiral BINOL-Derived Phosphoric Acids 

Since the pioneering studies of the groups of Akiyama [4] and Terada [5] in 2004 on the application 

of chiral BINOL-derived phosphoric acids as powerful Brønsted acid catalysts in different C-C bond 

formation reactions, the development of novel BINOL-phosphate catalyzed reactions has been 

continuously studied and resulted in great progress in recent years [6–11]. 

Several research groups have already reported the application of BINOL-phosphates in numerous 

highly enantioselective transformations [6–11]. In most cases the key aspect of catalysis is the 

bifunctional character (Brønsted acid/Lewis base) of the phosphoric acid moiety. Asymmetric catalysis 

in the cycloaddition reactions (e.g., [3+2], formal [3+3], [4+2], vinylogous [4+2] and 1,3-dipolar 

cycloadditions) has also been successfully realized using chiral Brønsted-acid catalysts and opened up a 

promising new frontier in organic synthesis. 

As such, BINOL-phosphate catalyzed [3+2] cycloadditions have been introduced as a convenient 

direct method for the synthesis of pyrazolidine heterocycles [12–14], which are ubiquitous in 

pharmaceutical compounds with antitumor, antimicrobial, anticonvulsant and other biological activities. 
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Furthermore, recent asymmetric [4+2], formal [3+3] and 1,3-dipolar cycloadditions developed by 

other research groups represent facile methods for the enantioselective construction of several versatile 

heterocyclic core structures (e.g., six-membered piperidine frameworks [15], 4-aminobenzopyrans [16], 

tetrahydrocarbazoles [17], 3-methylenepyrrolidines [18], hexahydrochromeno[4,3-b]pyrrolidines [19], 

spirocyclic oxindole derivatives [20,21] and spiro[pyrazolidin-3,3′-oxindoles] [22]) widely present in 

numerous bioactive compounds and natural products. 

2.1. [3+2] Cycloadditions 

In their continuous efforts to develop new efficient procedures for the synthesis of bioactive  

nitrogen-containing heterocycles [23], the Tsogoeva group became interested in the stereoselective 

synthesis of pyrazolidines by reliable cycloaddition reactions. As a continuation of their research in 

developing organocatalytic approaches to reactions involving N-acylhydrazones [24–26] as readily 

available and stable reactants, they initiated the investigation of the cycloaddition reaction, which could 

constitute a first catalytic metal-free intermolecular [3+2] cycloaddition of different N-acylhydrazones 

to dienes providing pyrazolidines. 

As a result, in 2011, Tsogoeva and co-workers demonstrated for the first time that the [3+2] 

cycloaddition reaction between N-acylhydrazones and cyclopentadiene can be successfully performed 

in high yields (up to 99%), with diastereoselectivity up to 98:2 dr using catalytic amounts of TMSOTf 

(trimethylsilyl triflate, 1) as readily available achiral silicon Lewis acid catalyst (Scheme 1) [12,14]. 

 

Scheme 1. [3+2] Cycloaddition reaction between N-acylhydrazones and cyclopentadiene 

catalyzed by TMSOTf (trimethylsilyl triflate, 1). 

Additionally to the experimental findings, DFT (density functional theory) calculations on the 

reaction mechanism were carried out (Scheme 2). 

It was found that the hydrazone isomer B is stabilized relative to A. The DFT results suggest that, 

once B emerges, a complex C with the Lewis acidic silicon center is formed. Since the triflate is an 

excellent leaving group, it is eliminated when the catalyst approaches. From this point, the calculations 

suggest a plausible mechanistic pathway, which is based on the formation of a stable Si-O-bond. 
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Scheme 2. Mechanistic studies at density functional theory (DFT) level—B3LYP/TZV 

(energies in frames: ΔH/ΔG in kcal/mol); * the dissociation energy of TMSOTf 

(trimethylsilyl triflate, 1) is overestimated; TMS+ + TfO− is used as reference state. 

Nonetheless, identification of an enantioselective metal-free catalyst system for this useful 

intermolecular reaction remained an important challenge at that time. 

Towards this goal, Tsogoeva and co-workers envisioned the achievement of an enantioselective  

intermolecular [3+2] cycloaddition of N-acylhydrazones to olefins by combining an achiral silicon Lewis 

acid catalyst with chiral BINOL-phosphates (Figure 2). 

 

Figure 2. Design of new chiral catalyst for [3+2] cycloaddition reaction. 

Therefore, in 2012 the Tsogoeva group further reported an enantioselective [3+2] cycloaddition as a 

convenient method towards chiral pyrazolidines in good yields and with high levels of dia- and 

enantioselectivities, utilizing a cooperative catalytic system of BINOL-derived phosphoric acid 2 and an 

in situ generated BINOL-phosphate-derived silicon Lewis acid (Scheme 3, Figure 3) [13]. 
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Scheme 3. Enantioselective [3+2] cycloaddition reaction catalyzed by a combination of 

chiral BINOL-phosphate with achiral silicon compound. 

Notably, the weak Lewis acid additive Ph2SiCl2 alone was inactive in the catalysis under these 

reaction conditions. Also BINOL-phosphate itself showed low reactivity and moderate enantioselectivity 

(13% yield, 47% ee, 99:1 dr). Interestingly, the combination of both components resulted in very good 

reaction outcome (Scheme 3), implying the in situ activation of a weak Si-Lewis acid (Ph2SiCl2) by 

connection to a strongly electron-withdrawing group, which is represented by the BINOL-derived 

phosphoric acid moiety. The assumption that the presence of the leaving group in the in situ generated 

catalyst (Figure 3) is required for efficient catalysis is supported by the fact that no reaction occurs using 

the combination of 2 with Ph3SiCl. 

 

Figure 3. Proposed mechanisms for [3+2] cycloaddition reaction by using BINOL-phosphate 

alone (I) and applying BINOL-phosphate/Ph2SiCl2 (2:1) as a catalytic system (II). 

Based on the previous DFT calculations [12] and 29Si-NMR studies two independent catalytic cycles 

were proposed by the authors. As it has already been noted, BINOL-phosphate alone is sufficient to 

generate the desired products (Figure 3, cycle I), although, with only moderate results. Cooperative 

silicon-Lewis acid/Brønsted acid catalysis, therefore, has been suggested to be more efficient (Figure 3, 

cycle II). The Lewis basic phosphoryl oxygen in cycle II might capture the HCl, generated through the 
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in situ formation of O-silylated BINOL-phosphate species and, hence, inhibit competitive non-enantioselective 

catalysis by the achiral Brønsted acid. The additional molecule of chiral Brønsted acid 2 likely 

coordinates to the hydrazone via hydrogen bonds stabilizing the proposed transition state structure. 

2.2. Formal [3+3] Cycloadditions 

Chiral six-membered heterocycles are present as core structures in natural alkaloids and bioactive 

molecules. Due to their significant importance, the development of a convenient preparation method is 

a challenging task for organic chemists. An elegant way towards these compounds is the catalytic 

asymmetric azomethine ylide-involved cycloaddition which, however, has only been investigated very 

sparsely to date. 

In this context, the high potential of BINOL-phosphate catalysts for the asymmetric formal [3+3] 

cycloaddition of an in situ generated azomethine ylide with isatin-derived 3-indolylmethanol towards 

chiral six-membered piperidine frameworks has been recently demonstrated by Shi, Tu and co-workers 

(Scheme 4) [15]. 

 

Scheme 4. Asymmetric formal [3+3] cycloaddition of isatin-derived 3-indolylmethanols and 

an in situ generated azomethine ylide. 

The generality of this cycloaddition method was proven by construction of structurally diverse 

spiro[indoline-3,4′-pyridoindoles] with good to high yields and excellent enantioselectivities in most 

cases. Nonetheless, it was evident that the electronic nature of the aldehydes had an influence on the 

stereoselectivity of the reaction. 

The authors proposed the reaction mechanism and related transition state structures to describe the 

stereochemistry of the formal [3+3] cycloaddition (Figure 4). The reaction might proceed via a sequential 

Michael addition (TS-I) and Pictet-Spengler reaction (TS-II), whereby the chiral phosphoric acid 

simultaneously activates both vinyliminium intermediate and azomethine ylide and, furthermore, the 

chiral environment is created through the bulky substituents of the catalyst. 
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Figure 4. Proposed reaction mechanism and transition state structures. 

2.3. [4+2] and Vinylogous [4+2] Cycloadditions 

Being of great interest for the pharmaceutical industry, piperidine derivatives are important synthetic 

targets as precursors for the biologically significant piperidine alkaloids, peptides, and aza sugars. In 

2006 Akiyama and co-workers successfully developed a first highly enantioselective aza-Diels-Alder 

reaction of Brassard’s diene and imines, promoted by a chiral Brønsted acid catalyst to furnish 

dihydropyridone derivatives in high yields and enantioselectivities (Scheme 5) [27]. 

 

Scheme 5. Asymmetric Diels-Alder reaction of Brassard’s diene and imines. 
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The catalytic system has shown high enantioselectivity for the reaction of a wide range of imine 

substrates with good functional group tolerance. Furthermore, the authors observed a significant increase 

of the yield by substitution of the chiral Brønsted acid catalyst 4a with its corresponding pyridinium salt 

4b. Further NMR studies concerning the stability of Brassard’s diene in the presence of catalyst 4a 

revealed that this phenomenon correlates with the decomposition of the rather labile diene by the stronger 

acidic Brønsted acid catalyst compared to its pyridinium salt. 

A mechanistic explanation was proposed to account for the high enantioselectivity of the  

Diels-Alder reaction described above. Based on mechanistic studies, the authors propose that the reaction 

proceeds via a nine-membered cyclic transition state which involves the hydrogen atom of the hydroxy 

group, demonstrating the significance of this moiety on the N-aryl group. Thus, the attack of the 

nucleophile is directed towards the Re-face of the aldimine (Figure 5). 

 

Figure 5. Proposed nine-membered cyclic transition state; the arrow indicates Re facial attack. 

In the same year, Gong and co-workers presented an alternative route towards chiral substituted 

piperidines within the first chiral Brønsted acid catalyzed asymmetric direct aza-Diels-Alder reaction of 

aromatic aldimines with cyclohexanone furnishing the products with good yields and enantioselectivities 

(Scheme 6) [28]. 

The scope of this methodology was successfully extended to other benzaldimines, affording 

preferably the endo-isomer of the corresponding cycloadducts in good yields and enantioselectivities 

and, hence, convenient access to a wide range of N-containing heterocyclic compounds is provided 

(Scheme 6a). 

Moreover, the reaction could be successfully carried out in a one-pot three-component manner 

without any loss of enantioselectivity (Scheme 6b). 

Furthermore, these authors proposed a possible mechanism, as outlined in Figure 6. At first, 

cyclohexenone is enolized, undergoing a Mannich reaction with the protonated aldimine, which has been 

activated by the chiral phosphoric acid catalyst. Subsequently, the final cycloaddition products are 

generated through a tandem intramolecular 1,4-addition reaction (Figure 6). 
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Scheme 6. (a) Organocatalytic asymmetric Diels-Alder reaction of cyclohexanone with 

aromatic aldimines; (b) one-pot three-component asymmetric aza-Diels-Alder reaction. 

 

Figure 6. Proposed direct aza-Diels-Alder reaction of cyclohexanone with aldimines. 

The 4-aminobenzopyrans and their furan-fused derivatives appear to be very appealing targets  

for synthetic chemists due to their useful biological properties such as anti-hypertensive and  

anti-ischaemic activities. In 2010, Fochi and co-workers developed the BINOL-phosphate catalyzed 

inverse-electron-demand [4+2] cycloaddition reactions of different salicylaldehyde-derived  

N-arylimines with electron-rich dienophiles such as 2,3-dihydro-2H-furan, 2-vinylindole and  

N-vinylcarbamate towards chiral 4-aminobenzopyran derivatives (Scheme 7) [16]. 
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Scheme 7. Inverse-electron-demand [4+2] cycloadditions of N-phenylsalicylaldimines with 

(a) 2,3-dihydro-2H-furan; (b) 2-vinylindole and (c) N-vinylcarbomate. 

Chemoselectivity strongly relied on the nature of the compound employed as the electron-rich 

dienophile. As substrates 2,3-dihydro-2H-furan and 2-vinylindole, for instance, generate only  

4-aminobenzopyrans, whereas N-vinylcarbamate undergoes also a [4+2] aza-Diels-Alder cycloaddition 

(Povarov reaction) with the N-arylimine moiety of salicylaldehyde-derived N-arylimines to afford 

tetrahydroquinolines in addition to 4-aminobenzopyrans (Scheme 7). 

Very recently, Melchiorre and co-workers successfully developed a vinylogous [4+2] Diels-Alder 

reaction with regard to the challenging tetrahydrocarbazoles, important structural units of natural 

products and pharmacologically active compounds [17]. 

In this context, cyclic 2,4-dienones have been proven to be suitable dienophiles for the synthesis, 

applying 2-vinylindoles as electron-rich dienes, and using chiral phosphoric acids as catalysts  

(Scheme 8). The variety of the substrate scope indicates the high potential and generality of the reaction. 

Remarkably, the products were formed exclusively as single diastereomers with good to  

excellent enantioselectivities. 

Based on an observed positive nonlinear effect ((+)-NLE), a mechanistic model was proposed, 

accounting for the involvement of more than one molecule of the chiral phosphoric acid in the transition 

state structure (Figure 7). 
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Scheme 8. Vinylogous Diels-Alder reaction between cyclic 2,4-dienones and 2-vinylindoles. 

 

Figure 7. LUMO-lowering activation of the more distant double bond of  

α,β,γ,δ-unsaturated cyclic ketones. 

Melchiorre was the first to use this specific activation principle where the vinylogous position of the 

dienophile is activated by the LUMO-lowering effect of the BINOL-phosphate, coordinating to the 

distant unsaturated cyclic ketones. To achieve high enantioselectivity, the requirement of an additional 

interaction between the Brønsted basic (P=O) moiety of the BINOL-phosphate catalyst and the 

secondary amine group of the diene has also been demonstrated experimentally. 

2.4. 1,3-Dipolar Cycloadditions 

In 2010, Gong and co-workers developed a kinetic resolution of racemic 2,3-allenoates via  

1,3-dipolar cycloaddition by using bisphosphoric acid catalyst 10. This method enables convenient 
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access to both 2,3-allenoates and 3-methylenepyrrolidine derivatives, which are important precursors 

and/or subunits of biologically active compounds (Scheme 9) [18]. 

 

Scheme 9. Kinetic resolution of racemic 2,3-allenoates by 1,3-dipolar cycloaddition catalyzed 

by chiral bisphosphoric acid. 

Thus, the key benefit of the developed method is the simultaneous generation of two versatile  

classes of compounds (3-methylenepyrrolidines and axially chiral 2,3-allenoates) in excellent 

enantiomeric excesses. 

The same research group disclosed an elegant chiral Brønsted acid-catalyzed 1,3-dipolar 

cycloaddition of α-aryl amino esters with aldehydes bearing dipolarophile functionalities towards 

hexahydrochromeno[4,3-b]pyrrolidine derivatives with high levels of enantioselectivity (Scheme 10) [19]. 

The reaction outcome depends on the nature of the α-arylglycine methyl esters and the aldehydes, 

respectively. For instance, the use of α-arylglycine methyl esters with electron withdrawing aryl 

substituents is positively correlated to high levels of enantioselectivity. 

 

Scheme 10. 1,3-Dipolar cycloaddition between 4-(2-formylphenoxy)butenoates and α-aryl 

amino esters. 

In 2013, Shi, Tu and co-workers reported the first catalytic asymmetric 1,3-dipolar cycloaddition of 

alkynes with isatin-derived azomethine ylides using chiral Brønsted acid catalyst 12 providing 

biologically important spiro-oxindole-based 2,5-dihydropyrrole frameworks (Scheme 11) [20]. 
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Scheme 11. 1,3-Dipolar cycloaddition of alkynes with isatin-derived azomethine ylides. 

Based on the obtained experimental results, the mechanism of BINOL-phosphate catalyzed  

1,3-dipolar cycloaddition was proposed to proceed via sequential Michael addition and Mannich-type 

cyclization rather than via a concerted pathway (Figure 8). 
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Figure 8. Proposed mechanism of 1,3-dipolar cycloaddition of alkynes with isatin-derived 

azomethine ylides. 

The broad reaction scope clearly discloses the generality of this method. The catalyst performance 

does not depend on the substituents of the substrates and, hence, the pharmaceutically and synthetically 

important spiro-oxindoles were generated by this straightforward method in good to high yields and with 

excellent levels of enantioselectivity. 

In 2013, Hong, Wang and co-workers developed a novel chiral bisphosphoric acid 13 bearing triple 

axial chirality as excellent catalyst for the generation of spiro[pyrazolidin-3,3′-oxindoles] via a 1,3-dipolar 

cycloaddition reaction of methyleneindolinones and N,N′-cyclic azomethine imine (Scheme 12) [22]. 

While some of the desired products were obtained with only moderate diastereoselectivity, the yields 

and enantioselectivities were excellent for a wide range of diverse substituted spiro-oxindoles. 
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Scheme 12. Enantioselective 1,3-dipolar cycloaddition between methyleneindolinones and 

N,N′-cyclic azomethine imines. 

MS study and DFT calculations revealed a transition state structure wherein both the 

methyleneindolinones (dipolarophiles) and azomethine imines (1,3-dipoles) are activated 

simultaneously via hydrogen bonds through the OH groups of both chiral phosphoric acid moieties 

(Figure 9). This new activation mode may open unprecedented applications in other enantioselective 

organic transformations. 

 

Figure 9. Transition state structure based on DFT calculations and MS experiments. 

3. Cycloadditions Catalyzed by BINOL-(/SPINOL-)Derived N-Triflyl Phosphoramides 

The relatively low acidity of BINOL-derived phosphoric acids limits the use of these organocatalysts 

to transformations requiring less acidic catalysts. 

An approach to circumvent such limitation was earlier reported by the Koppel group via a 

modification of the acid moiety to increase its acidity. The effect of stepwise replacement of =O oxygen 

atoms by =NTf fragments in the sulfonyl group of toluene-p-sulfonamide and benzenesulfonamide on 

their acidity has been studied by Koppel and co-workers and it was demonstrated that the pKa of organic 

acids can be dramatically decreased and, thus, the activity of the corresponding catalyst can be raised [29,30]. 
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This strategy was successfully employed for the first time in 2006 by Yamamoto and co-workers for 

the development of a highly enantioselective organocatalyst for the asymmetric Diels-Alder reaction [31]. 

Through the introduction of an NHTf-moiety into the BINOL-derived phosphoric acid the highly active 

and acidic chiral Brønsted acid catalysts were developed (Figure 10) [31]. 

 

Figure 10. Acidity enhancement of BINOL-derived phosphoric acids via introduction of a 

NHTf-moiety [32]. 

Since then, many researchers have been encouraged to explore further asymmetric cycloaddition 

reactions catalyzed by highly acidic N-triflyl phosphoramide catalysts [32]. 

3.1. [3+2] Cycloadditions 

As a continuation of prior reported BINOL-phosphate catalyzed [3+2] cycloadditions towards 

pyrazolidines [14], Rueping and co-workers investigated the [3+2] cycloaddition of N-acyl hydrazones 

and different alkenes catalyzed by N-triflyl phosphoramides (Scheme 13) [33]. 

 

Scheme 13. [3+2] Cycloaddition of N-acyl hydrazones to cyclic and terminal alkenes. 

The more acidic, and, hence, active N-triflyl phosphoramides (pKa 6–7 in MeCN), compared to parent 

BINOL-derived phosphoric acids (pKa 12–14 in MeCN), promoted the cycloaddition reactions 

selectively towards the syn diastereomers as the major products providing fair to excellent yields, 

excellent diastereoselectivities throughout, and very good to excellent enantioselectivities. 
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When using unsubstituted N-acyl hydrazone, the catalyst loading can be reduced to 1 mol% with only 

slightly lower yield and enantioselectivity. The employment of further dienophiles was also investigated. 

A series of aromatic terminal alkenes was successfully converted to a variety of pyrazolidines bearing a 

quarternary and a tertiary stereocenter at the 3- and 5-positions with very good to excellent enantioselectivity. 

The abovementioned approach towards enantiomerically enriched pyrazolidines was further pursued 

by the groups of Rueping and Houk in 2014. SPINOL-derived N-triflyl phosphoramide 15 was applied 

as a suitable catalyst for the [3++2] cycloaddition between hydrazones and ethyl vinyl thioether towards 

a series of polysubstituted pyrazolidines with excellent enantioselectivity throughout (Scheme 14) [34]. 

 

Scheme 14. [3+2] Cycloaddition of hydrazones and alkenes catalyzed by N-triflyl phosphoramides. 

Alternative ethyl vinyl ether was also well tolerated in the presence of N-triflyl phosphoramide 

catalyst 16 giving the corresponding adducts with enantioselectivity of up to 87%. 

All mechanistic aspects of this reaction were supported by detailed computational calculations. The 

authors reached important conclusions concerning the mechanism of the cycloaddition by DFT (density 

functional theory) calculations. 

There are two possible pathways for the complexation of the hydrazone and the phosphoramide: either 

through proton transfer (ion-pair complex formation) or through hydrogen-bonding. Based on calculated 

Gibbs free energies, transition state TS1 (Figure 11a), resulting from a proton transfer of the Brønsted 

acid to the hydrazone, is energetically most favorable among all transition states with ion-pair complexes. 

Additionally, a comparative energy profile of the monopolar [3++2] and the competitive dipolar [3+2] 

cycloadditon revealed a lower overall barrier (28.6 kcal/mol) for the monopolar cycloaddition (Figure 11b). 

Thus, the proton transfer from the Bronsted acid to the hydrazone is essential for the catalytic efficiency, 

being therefore the predominant pathway. Furthermore, the obtained data demonstrate that the 

phosphoric acid is not capable of protonating the hydrazone due to its lower acidity compared to the N-

triflyl phosphoramide analogues (Figure 11c), generating a hydrogen bonded-complex instead. To 

achieve the “ion pair”-geometry, necessary for the [3+2] cycloaddition transition state, a large distortion 
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of the hydrogen-bonded complex is required, and, hence, the reaction barrier for this catalytic pathway 

turns out to be significantly higher (36.8 kcal/mol). 

The high level of enantioselectivity is owed to the bulky substituents of the N-triflyl phosphoramide 

since it differentiates the stabilities of the possible conformers of the hydrazone-catalyst complex  

(Figure 11d).  
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Figure 11. Mechanistic studies at DFT Level M06-2X/6-311+G(d,p) (energies in frames in 

ΔG = kcal/mol) using the conductor-like polarizable continuum model (CPCM) solvent 

model: A comparison of (a) two possible activation modes; (b) two possible reaction 

pathways; (c) phosphoramide and phosphoric acid catalyzed [3+2] cycloaddition; (d) 

activation and transition states for the enantioselective N-triflyl phosphoramide-catalyzed 

[3++2] cycloaddition. 
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3.2. [4+2], Ionic [4+2] and Hetero [4+2] Cycloadditions 

In 2006, the first N-triflyl phosphoramide catalyst was developed by Yamamoto and co-workers for 

the asymmetric Diels-Alder reaction of ethyl vinyl ketone and different silyloxydienes. The reaction is 

highly endo-selective and the cyclohexenes were obtained in moderate to excellent yields and good to 

excellent enantioselectivities (Scheme 15) [31]. 

 

Scheme 15. [4+2] Cycloaddition reaction of ethyl vinyl ketones and silyloxydienes. 

A low loading of the highly acidic and active catalyst 17 was sufficient for the generation of diversely 

substituted products. The bulkiness of the silyl moiety had no influence on the enantioselectivity, 

whereas the yields were quite sensitive to the stability of the silyloxydienes due to a possible deactivation 

of the catalyst by silylation. 

In 2013, Nagorny and co-workers described the first example of an asymmetric chiral N-triflyl 

phorsphoramide-catalyzed ionic [4+2] cycloaddition reaction between α,β-unsaturated acetals and 

different dienes (Scheme 16) [35]. 

 

Scheme 16. N-triflyl phosphoramide-catalyzed ionic Diels-Alder reaction between  

α,β-unsaturated acetals and different dienes. 

It was shown, that the reaction rate and selectivity of the catalytic asymmetric ionic cycloaddition 

was strongly affected by the changes in the acetal portion of the dienophile. Moreover, the authors 

proposed a reaction mechanism for the ionic Diels-Alder reaction. The unsaturated acetals are, in an 

initial step, protonated by the Brønsted acid, forming a chiral ion pair in a reversible way, comprising 

the activated vinyl oxocarbenium cation which performs the [4+2] cycloaddition with the corresponding 

diene (Scheme 17a). 
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Scheme 17. (a) Proposed reaction mechanism; (b) two possible transition states for the reaction. 

Furthermore, the authors showed two possible transition states (Scheme 17b). It was assumed that the 

reaction could proceed either through a defined oxocarbenium ion-like transition state A or through a 

transition state B wherein the cycloaddition step is coupled with the breakage of the C-O bond. A 

complete clarification of the reaction mechanism, however, can be achieved via computational studies. 

Recently, the Rueping group reported the Brønsted acid catalyzed [4+2] hetero-Diels-Alder reaction 

between unactivated alkenes and in situ generated ortho-quinone methides (from ortho-hydroxybenzyl 

alcohols) for the synthesis of chiral chromanes bearing multiple stereogenic centers with excellent 

diastereo- and enantioselectivities by the aid of a N-triflyl phosphoramide catalyst 18 (Scheme 18). 

Remarkably, the reaction proceeds via an open transition state with an exclusive activation of the 

electrophile, whereas the nucleophile does not interact with the catalyst [36]. 

A large substrate scope gives prove of the generality of the cycloaddition reaction, tolerating diversely 

substituted styrenes with various electronic and steric characteristics. Hence, all products, bearing either 

electron withdrawing or donating groups, could be furnished with excellent yields and high levels of 

enantioselectivity and diastereomeric ratio. 

The authors, moreover, proposed a reaction mechanism (Figure 12), further supported by NMR 

studies, which unveils the in situ generation of ortho-quinone methides (o-QM) via initial protonation 
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of the corresponding ortho-hydroxybenzyl alcohol by the Brønsted acid. The catalyst then complexes 

the intermediary o-QM via hydrogen bonding and further stabilizes the methylene group of the o-QM 

with aid of the lone pair of the phosphoryl oxygen atom of the catalyst. In this transition state one face 

of the heterodiene is shielded by the catalyst allowing the alkene to attack selectively in an  

endo fashion. 

 

Scheme 18. (a) The ortho-quinone methides as reactive intermediates; (b) [4+2] 

cycloaddition reaction towards chiral chromanes. 

 

Figure 12. Proposed mechanism for the hetero Diels-Alder reaction, catalyzed by 18. 

3.3. 1,3-Dipolar Cycloadditions 

In 2008, Yamamoto and co-workers carried out a 1,3-dipolar cycloaddition reaction catalyzed by a 

N-triflyl phosphoramide catalyst 19. Within their studies they additionally emphasized the difference 

between Brønsted and Lewis acid catalysts (Scheme 19) [37]. 
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Scheme 19. 1,3-Dipolar cycloaddition of nitrones with ethyl vinyl ether. 

Generally, the corresponding products were obtained in good to high optical purity and with good to 

excellent yields. The activity of the N-triflyl phosphoramide catalyst was demonstrated by rather short 

reaction times and the low catalyst loading needed for complete reaction. 

The high endo selectivity of the reaction can be explained by the transition state (TS) structures. Due 

to steric repulsion between the ethoxy and R2 moieties in the Brønsted acid catalyzed exo TS4, the endo 

TS3 is energetically more favorable than TS4. In contrast, for a Lewis acid mediated reaction the exo 

approach (TS1) is preferred to the endo selective reaction (TS2) due to steric hindrance between the 

alkoxy group and the bulky Lewis acid in TS2 (Figure 13). 

 

Figure 13. Transition-state structures showing the diastereoselectivity of the 1,3-dipolar 

cycloaddition of nitrones catalyzed by LA and BA. 

4. Conclusions 

Over the past few years, a variety of organocatalyzed cycloaddition reactions have been developed 

and investigated in a number of laboratories, and significant progress has been made with chiral  

BINOL-derived organocatalysts. As seen in this review, chiral BINOL- and also SPINOL-derived  

N-triflyl phosphoramide and phosphoric acid catalyzed enantioselective cycloaddition reactions (e.g., [3+2]; 

formal [3+3]; [4+2]; vinylogous [4+2] and 1,3-dipolar cycloadditions) represent powerful transformations 

for the rapid and facile construction of bioactive heterocyclic compounds under mild conditions. Chiral 

Brønsted acids, known as privileged organocatalysts, and, in particular, recent novel chiral bisphosphoric 

acid catalysts are inspiring chemists to test further their full synthetic versatility. 
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The studies presented here add a new dimension to future investigations of applications of powerful 

chiral mono- and bisphosphoric acids, as well as N-triflyl phosphoramides in different pericyclic 

reactions and other new organic transformations and even in industrial-scale synthesis. 
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