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Abstract: Cecropin is a cationic antibacterial peptide composed of 35–39 residues. This peptide
has been identified as possessing strong antibacterial activity and low toxicity against eukaryotic
cells, and it has been claimed that some types of the cecropin family of peptides are capable of
killing cancer cells. In this study, the host effect of cloning antibacterial peptide cecropinB2 was
investigated. Three different host expression systems were chosen, i.e., Escherichia coli, Bacillus subtilis
and Pichia pastoris. Two gene constructs, cecropinB2 (cecB2) and intein-cecropinB2 (INT-cecB2), were
applied. Signal peptide and propeptide from Armigeres subalbatus were also attached to the gene
construct. The results showed that the best host for cloning cecropinB2 was P. pastoris SMD1168
harboring the gene of pGAPzαC-prepro-cecB2 via Western blot confirmation. The cecropinB2 that was
purified using immobilized-metal affinity chromatography resin showed strong antibacterial activity
against the Gram-negative strains, including the multi-drug-resistant bacteria Acinetobacter baumannii.
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1. Introduction

In 1929, Alexander Fleming identified penicillin, the first chemical compound with antibiotic
properties [1]. More and more antibiotic compounds were then found and used in the medical field.
Due to the antibiotics’ overuse, multi-drug-resistant bacteria have become a big issue for treatment
with antibiotics [2]. Using antibacterial peptides was believed to be a good way to eliminate the
multi-drug resistant (MDR) bacteria issue in the medical field [3–5].

Cecropins are a family of cationic antibacterial peptides and have six isoforms (A–F) with
the common homologous sequences of 35–39 amino acids [6]. These cecropins, originally found
in the immune hemolymph of skin worm pupae, have a broad antibacterial spectrum against the
Gram-negative and Gram-positive bacteria, and even against the MDR bacteria [3,7]. Experimental
results also showed that they possessed an anti-tumor effect without damaging the eukaryotic
cells [3,4,8]. Therefore, they might have high potential for the application in medicine, agriculture and
animal husbandry.

To date, various constructs have been established for production of antibacterial peptides.
However, difficulties have been encountered in peptide expression because the toxicity of antibacterial
peptide might be toxic to its expression hosts [9,10]. The host strains play an important role in
the process of efficiently expressing large amounts of recombinant antibacterial peptides. The most
commonly-used host strains, E. coli, B. subtilis and P. pastoris, have their individual advantages and
disadvantages [11–13]. To conquer the difficulty of host self-destruction by the toxic target peptides,
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the fusion protein method was proposed to reduce the toxicity. This method has been used for
many peptides expression, including thioredoxin [10], green fluorescent protein (GFP) [14], small
ubiquitin-related modifier (SUMO) [15], and cationic elastin-like polypeptides (CELP) [16]. In this
study, intein (INT) was used as the fusion peptide to reduce the toxicity of the antibacterial cecropin B2.

In this study, three hosts, E. coli, B. subtilis and P. pastoris, were chosen, and two target peptide
genes, cecB2 and INT-cecB2, were carried out to compare their effect on cecropinB2 expression.
Armigeres subaltatus mosquitoes are the original source of the peptide cecropinB2. In order to help the
transport and folding of the target cecropinB2, signal peptide and propeptide from Armigeres subalbatus
were also applied to the gene constructs with host P. pastoris SMD1168. The best production construct
was selected and the antibacterial activity was tested for the obtained purified cecropinB2. This study
revealed the host effect on antibacterial peptide cecropinB2 production.

2. Results and Discussion

2.1. CecropinB2 Production in E. coli

To investigate the expression of cecropinB2 in E. coli, five constructs (pET26b-cecB2, pET28a-cecB2,
pET28a-INT-cecB2, pET26b-INT-cecB2, pET26b-10K-INT-cecB2 and pET26b-10R-INT-cecB2, where
10K = 10 lysines, 10R = 10 arginines) were transformed into E. coli ER2566. The individual strain was
cultivated and induced with 1 mM IPTG at 25 ˝C for 6 h. The results showed that three constructs,
pET26b-cecB2, pET28a-cecB2 and pET-28a-INT-cecB2, did not express the target peptide, whereas
the construct of pET26b-INT-cecB2/E. coli ER2566 did successfully express the target peptide as
confirmed by Western blot (Figure 1a). The upper band of Figure 1a, lane 1 with the molecular weight
of 23.5 kDa might be the incomplete cleavage segment of the signal peptide pelB (MW: 2.5 kDa) of
the pET26b plus the cecropinB2 and INT (about 21 kDa). The results indicated that the target protein
of INT-cecB2 might possess lower toxicity than cecropinB2. In addition, the plasmids affected the
production of antibacterial peptides according to the result of pET26b (which can be produced with
the construct pET26b-INT-cecB2) and pET28a (no production with the construct pET28a-INT-cecB2)
systems, suggesting that the target peptide might give lower toxcity to the host when the peptide can
be transferred to periplasm (pET26b). Moreover, to increase the solubility of the target protein, the 10K
and 10R segments [17] were added to the N-terminal of INT-cecB2 and the results were observed by
Western blot (data no shown). The addition of 10K and 10R segments did not improve the solubility of
INT-cecB2, suggesting that the toxicity of target peptides (INT-cecB2) still had some effect on limiting
the protein solubility. The antibacterial peptide cecropinB2 did not express well in E. coli ER2566.
This might be due to the peptide’s toxicity against its host. The fusion protein approach by adding an
INT seemed to slightly improve the expression; however, the production of INT-cecB2 was at a low
level (<10 mg/L).
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Figure 1. Expression of cecropinB2 in E. coli ER2566 and B. subtilis WB800. (a) Western blot of 
pET26b-INT-cecB2/E. coli ER2566; where Lane M, molecular weight markers (kDa); Lane 1, supernatant; 
Lane C: control (supernatant of ET26b/E. coli ER2566); The cell debris was centrifuged at 7000 g at 4 °C 
for 10 min to obtain the supernatant (Lane 1); (b) Western blot of PRPA-cecB2/B. subtilis WB800; 
where Lane M, molecular weight markers (kDa); Lane 1, cell crude extract; Lane 2, 100× concentrated 
extracellular fluid; Lane C: control (cell crude extract of PRPA-/B. subtilis WB800). The culture broth 
was centrifuged at 6000× g at 4 °C for 10 min to obtain the cell and extracellular fluid.  

2.2. CecropinB2 Production in B. subtilis 

To study the expression of cecB2 in B. subtilis, two constructs, PRPA-cecB2 and PRPA-INT-cecB2, 
were transformed into the B. subtilis WB800. The expression results were confirmed by Western blot. 
The construct of PRPA-INT-cecB2 in B. subtilis WB800 did not produce any target protein (INT-cecB2), 
indicating that the host B. subtilis could not express the INT protein well. The construct of PRPA-cecB2 
in B. subtilis WB800 was found capable of expressing the target peptide; however, the expression 
was intracellular with very low yield (<10 mg/L), suggesting the highly-positive-charge property of 
the target peptide might still affect host’s secretion and expression. The larger molecular weight (17 kDa) 
shown in Western blot (Figure 1b) was likely the molecular size of the signal peptide (13 kDa) plus 
cecropinB2 (4 kDa). However, because of the low content of target protein, a longer staining time 
was needed, which resulted in the unspecific band observed in 43 kDa. 

2.3. CecropinB2 Production in P. pastoris 

To study the cecropinB2 expression in P. pastoris, three constructs, pGAPZαC-cecB2, 
pGAPZαC-INT-cecB2 and pGAPZαC-prepro-cecB2, were transformed into the host P. pastoris 
SMD1168. The construct of pGAPZαC-INT-cecB2 in host P. pastoris SMD1168 could not translate 
the target protein (INT-cecB2) well (data not shown). The protein INT originally discovered from 
bacteria might prohibit the expression in P. pastoris. In contrast, the constructs of pGAPZαC-cecB2 
and pGAPZαC-prepro-cecB2 in host P. pastoris SMD1168 could properly express the target peptide. 
Among them, the construct pGAPZαC-prepro-cecB2 could express the target peptide with its signal 
peptide intracellularly to a high soluble level within 24 h (>80 mg/L) (Figure 2a). Meanwhile, the 
target peptides could be secreted out to the culture broth for a 96 h cultivation (Figure 2b). The target 
peptides with their highly positive charge might exhibit a large affinity to the host’s inner membrane 
(nagative-charge), which might cause the delay of the cecropinB2 secretion as shown in the time 
course of the production. For a longer cultivation time of 120 h, both the intracellular and extracellular 
target protein contents were significantly decreased, suggesting that the cells might gradually 
decompose the target protein (Figure 2c). 

  

Figure 1. Expression of cecropinB2 in E. coli ER2566 and B. subtilis WB800. (a) Western blot of
pET26b-INT-cecB2/E. coli ER2566; where Lane M, molecular weight markers (kDa); Lane 1, supernatant;
Lane C: control (supernatant of ET26b/E. coli ER2566); The cell debris was centrifuged at 7000 g at
4 ˝C for 10 min to obtain the supernatant (Lane 1); (b) Western blot of PRPA-cecB2/B. subtilis WB800;
where Lane M, molecular weight markers (kDa); Lane 1, cell crude extract; Lane 2, 100ˆ concentrated
extracellular fluid; Lane C: control (cell crude extract of PRPA-/B. subtilis WB800). The culture broth
was centrifuged at 6000ˆ g at 4 ˝C for 10 min to obtain the cell and extracellular fluid.

2.2. CecropinB2 Production in B. subtilis

To study the expression of cecB2 in B. subtilis, two constructs, PRPA-cecB2 and PRPA-INT-cecB2,
were transformed into the B. subtilis WB800. The expression results were confirmed by Western blot.
The construct of PRPA-INT-cecB2 in B. subtilis WB800 did not produce any target protein (INT-cecB2),
indicating that the host B. subtilis could not express the INT protein well. The construct of PRPA-cecB2
in B. subtilis WB800 was found capable of expressing the target peptide; however, the expression was
intracellular with very low yield (<10 mg/L), suggesting the highly-positive-charge property of the
target peptide might still affect host’s secretion and expression. The larger molecular weight (17 kDa)
shown in Western blot (Figure 1b) was likely the molecular size of the signal peptide (13 kDa) plus
cecropinB2 (4 kDa). However, because of the low content of target protein, a longer staining time was
needed, which resulted in the unspecific band observed in 43 kDa.

2.3. CecropinB2 Production in P. pastoris

To study the cecropinB2 expression in P. pastoris, three constructs, pGAPZαC-cecB2,
pGAPZαC-INT-cecB2 and pGAPZαC-prepro-cecB2, were transformed into the host P. pastoris
SMD1168. The construct of pGAPZαC-INT-cecB2 in host P. pastoris SMD1168 could not translate
the target protein (INT-cecB2) well (data not shown). The protein INT originally discovered from
bacteria might prohibit the expression in P. pastoris. In contrast, the constructs of pGAPZαC-cecB2
and pGAPZαC-prepro-cecB2 in host P. pastoris SMD1168 could properly express the target peptide.
Among them, the construct pGAPZαC-prepro-cecB2 could express the target peptide with its signal
peptide intracellularly to a high soluble level within 24 h (>80 mg/L) (Figure 2a). Meanwhile, the
target peptides could be secreted out to the culture broth for a 96 h cultivation (Figure 2b). The target
peptides with their highly positive charge might exhibit a large affinity to the host’s inner membrane
(nagative-charge), which might cause the delay of the cecropinB2 secretion as shown in the time course
of the production. For a longer cultivation time of 120 h, both the intracellular and extracellular target
protein contents were significantly decreased, suggesting that the cells might gradually decompose the
target protein (Figure 2c).
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Figure 2. Western blot of pGAPZaC-prepro-cecB2/P. pastoris SMD1168. Lane M, molecular weight
markers (kDa); Lane C: control (cell crude extract of pGAPZaC/P. pastoris SMD1168) lane 1–4, crude
extract, pellet, supernatant, 100ˆ concentrated extracellular fluid, at 24; lane 5–8, the same items at
48 h; lane 9–12, at 72 h; lane 13–16, at 96 h; lane 16–20, at 120 h cultivation time.

2.4. Comparison of the Host Systems

The cecropinB2 production by applying various host strains of E. coli, B. subtilis and P. pastoris gave
different results in the expression. The fusion protein approach could reduce the host directed toxicity
of cecropinB2 and was successfully expressed in host E. coli. In contrast, it had a negative effect on hosts
B. subtilis and P. pastoris. Comparison of cecropinB2 production by three expression systems showed
that the highest yield occurred when using P. pastoris SMD1168 harboring the pGAPZαC-prepro-cecB2
(Table 1c). The highest yield was about 90 mg/L for a cultivation time of 24 h. This was better than that
of the same construct pGAPZαC-cecB2 without prepro peptide (41 mg/L). Other constructs in this
study gave yields lower than 40 mg/L. Based on the aforementioned results, it might be concluded that
the secretion systems for B. subtilis and P. pastoris were greatly affected by the highly-positive-charge
antibacterial peptide cecropinB2. The affinity between cecropinB2 and the cell membrane might build
a barrier to limit the secretion process. This study also illustrated that, by properly constructing the
host and plasmid system, the antibacterial peptide cecropinB2 production could be achieved.

Table 1. Yield of cecropinB2 under various expression systems.

Construct Total Protein Content (mg/L) 1 Purity (%) 2 Yield of CecropinB2 3

(a) E. coli

pET26b-cecB2/E. coli ER2566 - - -
pET-28a-cecB2/E. coli ER2566 - - -
pET28a-INT-cecB2/E. coli ER2566 - - -
pET26b-INT-cecB2/E. coli ER2566 1022 0.8 +
pET26b-10K-INT-cecB2/E. coli ER2566 987 0.8 +
pET26b-10R-INT-cecB2/E. coli ER2566 1055 0.8 +
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Table 1. Cont.

Construct Total Protein Content (mg/L) 1 Purity (%) 2 Yield of CecropinB2 3

(b) B. subtilis

PRPA-cecB2/B. subtilis WB800 1128 1.8 +
PRPA-INT-cecB2/B. subtilis WB800 - - -

(c) P. pastoris

pGAPZαC-cecB2/P. pastoris SMD1168 1980 2.4 ++
pGAPZαC-INT-cecB/P. pastoris SMD1168 - - -
pGAPZαC-prepro-cecB2/P. pastoris SMD1168 2048 4.3 +++

1 Total protein content was determined by the Bradford protein assay; symbol -: no detection; 2 Purity was
determined by the image scanning; symbol -: no detection; 3 Definition of yield: purity of target protein
(qualified via image scanning) ˆ total protein content (quantified via Bradford); symbols -: no production;
+: yield > 1 mg/L; ++: yield > 40 mg/L; +++: yield > 80 mg/L.

2.5. Antibacterial Tests

To check the antimicrobial activity effect, the purified cecropinB2 and the synthetic cecropinB2
were used to test the antibacterial activity, respectively. In the primary tests, the whole construct
without gene CecB2 was expressed in the same host which didn’t show any activity against sensitive
bacterial cells, indicating the fragments or chimeras did not respond to the antibacterial activity.
In addition, the elution buffer and the extraction of host P. pastoris also displayed none of the inhibitory
effect (data not shown). All these results gave evidence to the correct expression of cecropinB2 in
the purified product. Figure 3 shows the antibactrial test results for E. coli strains. Various strains,
i.e., E. coli strains (in Table 2), B. subtilis WB800, P. pastoris SMD1168, A. baumannii BCRC 15884 and
A. baumannii E1359 (MDR) were used (Table 2). The results showed the purified cecropinB2 possessing
the same activity as the synthetic peptides, which demonstrated strong antibacterial activity against
the Gram-negative strains even in the case of A. baumannii; however, it did not exhibit toxicity toward
the Gram-positive strains and eukaryotic cells such as P. pastoris (Table 2).
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Figure 3. Antibacterial activity with agar diffusion test; where (a) elution buffer as blank;
(b–f) inhibition zone against E. coli ER2566, BL21, Rosetta, JM109 and DH1, respectively. The testing
solution contains purified cecropinB2 (10 µg/mL) in the elution buffer.
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Table 2. Antibacterial spectrum of purified cecropinB2 1.

Bacteria Strain
Antibacterial Activity 2

Purified CecropinB2 (10 µg/mL) Synthetic CecropinB2 (4 µg/mL)

E. coli ER2566 6.5 6.8
E. coli BL21 6.8 7.2

E. coli Rosetta 7.1 7.2
E. coli JM109 6.5 6.6
E. coli DH1 6.5 6.7

B. subtilis WB800 - -
P. pastoris SMD1168 - -

A. baumannii BCRC 15884 7.2 6.8
A. baumannii E1359 7.3 6.9

1 The cecropinB2 was purified from the host P. pastoris SMD1168 with the construct of pGAPZαC-prepro-cecB2;
2 Antibacterial activity was determined by the diameter (mm) of inhibition zone; -: no clear zone observed.
Concentration of the purified cecropinB2 was determined via the Bradford assay and image scanning result.

3. Materials and Methods

3.1. Bacterial Strains, Plasmids and Synthetic CecropinB2

Four strains, i.e., E. coli strains DH5α, ER2566, B. subtilis strain WB800 and P. pastoris strain
SMD1168, were used as the hosts for recombinant DNA manipulation and recombinant protein
expression. The gene templates of antibacterial peptide pre-pro-cecropinB2 and plasmid PRPA were
obtained, respectively, from Prof. Kuang-Hui Lu and Prof. Yeh Chuan-Mei [18] at the National
Chung Hsing University, Taiwan. B. subtilis WB800 and P. pastoris SMD1168 were obtained from
Prof. Chieh-Chen Huang and Prof. Huang Chien-jin at National Chung Hsing University, Taiwan,
respectively. The synthetic cecropinB2 was purchased from Neogene Biomedicals Corp (Taiwan) as
the standard. The number of amino acid and theoretical molecular mass of protein or peptide used in
this study were summarized and are shown in Table 3.

Table 3. Number of amino acid and theoretical molecular mass.

Protein Number of Amino Acid Theoretical Molecular Mass (Da)

CecropinB2 36 3749
INT-cecB2 193 17,569

signal peptide (SP) 18 2085
Propeptide 5 468

3.2. Construction of Expression Systems

The templates of prepero-cecropinB2 and plasmid pTWIN (New England Biolabs, Ipswich,
MA, USA) were used to conduct an overlap extension PCR to obtain cecB2, pre-pro-cecropinB2 and
INT-cecB2 which were further ligated to the vector pET26b, pET28a, PRPA and pGAPZaC, respectively.
To increase the solubility, the amino acid segments of 10K and 10R were also used to fuse in the
N-terminal of INT-cecB2 and ligated to the vector pET26b. The major plasmid constructs used in the
study are showed in Figure 4. All recombinant DNA manipulations were performed following the
standard procedures [19].
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B. subtilis; (c) Plasmid constructs in P. pastoris.

3.3. Production of the Antibacterial Peptide

3.3.1. Culture of E. coli

The plasmid-transformed E. coli was grown overnight in 5 mL of Luria-Bertani (LB) medium,
which was used to inoculate the main culture containing 100 mL of LB medium with 50 µg/mL
kanamycin. The main culture was grown at 37 ˝C until OD600 reached 0.6. The cultivation was
induced with 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) at 25 ˝C for another 6 h. Cells were
then collected by centrifugation (6000ˆ g, 5 min) and stored at 4 ˝C for further analysis.
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3.3.2. Culture of B. subtilis

The plasmid-transformed B. subtilis was grown overnight in 5 mL of LB medium. The harvested
broth was used to inoculate the main culture containing 100 mL of LB medium containing 10 µg/mL
Tetracycline. The culture was grown at 30 ˝C for 24 h. Cells were then collected by centrifugation
(6000ˆ g, 5 min) and stored at 4 ˝C for further analysis.

3.3.3. Culture of P. pastoris

The plasmid-transformed P. pastoris was grown overnight in 5 mL of LB medium as the seed to
inoculate 100 mL of YPD medium containing 50 µg/mL zeocin. The culture was grown at 30 ˝C for
120 h. The culture at different time intervals was collected and separated into cells and medium by
centrifugation (6000ˆ g, 5 min) and stored at 4 ˝C for further analysis.

3.4. Purification of Target Protein

The harvested cell pellet, with the the construct of pGAPZαC-prepro-cecB2/P. pastoris SMD1168,
was re-suspended in Tris-HCl buffer (20 mM tris-HCl, pH 8.0, 50 mM NaCl) and then lysed by
sonication using an ultrasonic processor at 20 W for 10 cycles (30 s working, 30 s free) to obtain the cell
crude extract. The cell debris was pelleted at 6500 g at 4 ˝C for 20 min to obtain the supernatant and
pellet. The supernatant was collected and applied to an immobilized-metal affinity chromatography
resin (Ni2+-chelating) column. After being washed with the washing buffer (20 mM tris-HCl, pH 8.0,
50 mM NaCl, 20 mM imidazole), the product cecropinB2 was eluted with the elution buffer (20 mM
tris-HCl, pH 8.0, 50 mM NaCl, 200 mM imidazole) and stored at 4 ˝C for futher use.

3.5. Analytical Methods

Protein analysis was carried out using 15% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) and coomassie blue staining according to the method of Laemmli [20].
For Western blot, the protein samples run on SDS-PAGE were transferred onto PVDF membrane.
After being blocked with 1% BSA/TTBS (20 mM tris-HCl, pH 7.5, 0.9% NaCl, 0.1% tween-20) buffer,
the membrane was washed three times with TTBS buffer and incubated with anti-His tag primary
antibody (1:10,000) in 0.5% BSA/TTBS buffer at room temperature overnight. Then, the membrane was
washed with TTBS buffer three times and incubated with anti-goat tag secondary antibody (1:10,000) in
0.5% BSA/TTBS buffer at room temperature for 2 h. After the three washings, staining was performed
using the BCIP/NBT chromogenic system. The Bradford protein assay was used for total protein
content measurement [21] and imageJ software (version 1.49s, NIH, Bethesda, MD, USA) was used for
purity determination [22]. The yield of cecropinB2 was determined by multiple of the protein content
with its purity.

3.6. Antibacterial Assay

Antibacterial activity was analyzed using the agar diffusion test [23]. Some 100 mL of LB broth
containing 0.8% agar (LB agar) was autoclaved and then cooled to a temperature of 45 ˝C, followed
by instantly adding an aliquot of 166 µL tested bacteria dilution solution (OD600 = 0.5, where OD600

represents the cell weight concentration). The 6 mL LB agar was poured over a 9.0 cm petri dish,
giving an agar depth of 1 mm. After the agar solidified, 20 µL of the purified cecropinB2 was added
to a paper disc (6 mm in diameter.) on the surface of the agar. The disc was incubated at 37 ˝C for
12 h. Antibacterial activity was indicated by the clear zone around the testing point. The antibacterial
activity against MDR A. baumannii was tested in the experimental lab of Prof. Wu-Chun Tu at National
Chung Hsing University, Taiwan.
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4. Conclusions

In this study, three host strains were used to produce the antibacterial peptides. It was found that
the relative yield of the cecropin B2 production could be rescribed in the order: P. pastoris > B. subtillis >
E. coli. The best construct pGAPZαC-prepro-cecB2/P. pastoris SMD1168 could produce the antibacterial
peptides within 24 h intracellularly, and the purified cecropinB2 showed strong antibacterial activity
against the Gram-negative strains and even against that of MDR A. baumannii.
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