
Article

Comparison of Fluorescent Microspheres and
Colloidal Gold as Labels in Lateral Flow
Immunochromatographic Assays for the
Detection of T-2 Toxin
Xiya Zhang 1, Chao Wu 1, Kai Wen 1,2, Haiyang Jiang 1,3, Jianzhong Shen 1,2,4, Suxia Zhang 1,2

and Zhanhui Wang 1,3,*

Received: 4 November 2015 ; Accepted: 17 December 2015 ; Published: 28 December 2015
Academic Editor: Mary Fletcher

1 Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine,
China Agricultural University, Beijing 100193, China; zhangxiya@cau.edu.cn (X.Z.);
xyzshuishou-899@163.com (C.W.); wenkai@cau.edu.cn (K.W.); haiyang@cau.edu.cn (H.J.);
sjz@cau.edu.cn (J.S.); suxia@cau.edu.cn (S.Z.)

2 Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety,
College of Veterinary Medicine, China Agricultural University, Beijing 100193, China

3 Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine,
China Agricultural University, Beijing 100193, China

4 National Reference Laboratory for Veterinary Drug Residues, College of Veterinary Medicine,
China Agricultural University, Beijing 100193, China

* Correspondence: wangzhanhui@cau.edu.cn; Tel.: +86-106-273-4565; Fax: +86-106-273-1032

Abstract: A new highly specific and sensitive monoclonal antibody (MAb) to T-2 toxin (T-2) was
produced, providing an IC50 value of 1.02 ng/mL and negligible cross-reactivity (CR) to other related
mycotoxins. Based on the new MAb, a lateral-flow immunochromatographic assay (LFIA) using
colloidal gold (CG) and fluorescent microspheres (FMs) as labels was proposed for T-2. Under the
optimized conditions, in rapid qualitative assay, the cut-off values of the CG-LFIA were 400 µg/kg in
rice and 50 µg/L in fresh milk, and the cut-off values of the FMs-LFIA were 100 µg/kg in both rice
and chicken feed. For the quantitative assay with the FMs-LFIA, the limit of detection (LOD) were
0.23 µg/kg and 0.41 µg/kg in rice and chicken feed, respectively, and the average recoveries ranged
from 80.2% to 100.8% with the coefficient of variation (CV) below 10.8%. In addition, we found
that the CG-LFIA could tolerate the matrix effect of fresh milk better than the FMs-LFIA, while the
FMs-LFIA could tolerate the matrix effect of chicken feed better than CG-LFIA under the same
experimental conditions. These results provide a certain reference for the selection of appropriate
labels to establish a rapid LFIA in various biological samples.

Keywords: monoclonal antibody; colloidal gold; fluorescent microsphere; lateral-flow
immuno-chromatographic assay; T-2 toxin

1. Introduction

T-2 toxin (T-2), a type A trichothecene, is mainly produced by Fusarium species [1].
It is a ubiquitous contaminant of cereals and processed foods, occurring mainly in cold climate regions
or during wet storage conditions [2–4]. Acute T-2 poisoning causes nausea, dizziness, vomiting, chills,
abdominal distension, abdominal pain, thoracic stuffiness, diarrhea and shock-like syndrome [5,6].
Furthermore, T-2 is associated with deoxyribonucleic acid (DNA) damage [7], induction of apoptosis [8]
and inhibition of protein synthesis [9]. Several studies have shown that T-2 and even some of
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its metabolites were toxic [10–12]. Once exposed to it, no effective solution is available to avoid
the hazard [13], thus a rapid, sensitive and accurate analytical method must be necessarily established.

Several analytical methods for detecting T-2 have been reported, including high-performance
liquid chromatography (HPLC) with a fluorescence detector and liquid chromatography-tandem
mass spectrometry (LC-MS/MS) [14–16]. However, those methods are unsuitable for high-throughput
screening of large numbers of samples because they are time consuming and labor intensive.
Some enzyme-linked immunosorbent assay (ELISA) methods have also been reported for T-2
screening [13,17,18]. ELISA method still require labor-intensive operations, including incubation,
washing and enzymatic reactions [19]. Recently, lateral-flow immunochromatographic assays (LFIA)
are becoming increasingly popular as an efficient screening method for conducting onsite tests
because of their simplicity, speed, specificity and sensitivity [20]. Compared with ELISA, the LFIA
results can be obtained within 3–10 min. However, limited literatures on LFIA methods to detect
T-2 residues could be found [21–23]. A highly specific anti-T-2 monoclonal antibody (MAb) which
could distinguish T-2 and HT-2 has been produced [13,23], but the IC50 value of the anti-T-2 MAb was
23 ng/mL, lacking enough sensitivity for the development of LFIA. To establish a better LFIA for
screening T-2, the preparation of a higher specificity and sensitivity MAb is necessary.

Colloidal gold have been commonly used as labels in LFIA (CG-LFIA) in the field of food
safety [19,20,24]. But CG was only suitable for high concentrations of analyte due to the low assay
sensitivity. Recently fluorescent microspheres (FMs) were reported as attractive labels in LFIA
(FMs-LFIA) for their stable configuration and high fluorescence intensity [25]. The practical advantages
of FMs could enhance the sensitivity of the LFIA [26], however, no comparative evaluations of
FMs-LFIA vs. CG-LFIA for matrix tolerance in different biological samples has been conducted.

In present work, an anti-T-2 MAb with high specificity and sensitivity was produced and
LFIA- labelled CG and FMs were developed to detect T-2. Moreover, to fully determine the feasibility
of the proposed assay, the tolerance of the two labels for different matrices was estimated.

2. Results and Discussion

2.1. MAb Production

The mice antisera were collected 7 days after the third immunization and characterized by
an indirect competitive ELISA (icELISA). The inhibition curves of the six antisera are shown in Figure 1A.
Mouse No. 2 was sacrificed for fusion because of its highest affinity to T-2. The hybridoma with the
highest inhibition to T-2 was cloned three times by the limiting dilution method and further expanded
for characterization. A standard curve of the best Mab, named 9C7, with an IC50 value of 1.02 ng/mL is
shown in Figure 1B. The cross-reactivity (CR) of the MAb towards HT-2, T-2 triol, T-2 tetraol, NEO, DON
and NIV were definitely lower than 0.1%. Like the MAb reported previously [13], MAb 9C7 was highly
specific to T-2, while the sensitivity of MAb 9C7 was approximately 20 times higher. The selection of
KLH as the carrier protein could induce high affinity [27], accounting for this phenomenon.
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2.2. LFIA Optimization

To optimize the sensitivity and clear red color of the CG-LFIA, the pH of the gold nanoparticles
solution, the amounts of the MAb and the coating antigen and several NC membranes from different
manufacturers were evaluated as described previously [16]. pH 8.5 of the gold nanoparticles solution,
the M135 NC membrane (Figure 2A), 6 µg of MAb (Figure 2B) and 1 mg/mL of the T-2-OVA were
selected as the optimized conditions for highest color intensity and the inhibition to T-2.
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Given the effect of FMs-anti-T-2-MAb on assay sensitivity, the following three parameters were
optimized as described previously [25,28–30]. Two hundred nm-diameter FMs were selected for
their strong signals and inhibition of T-2 (Figure 2C). When the amount of MAb loaded on the FMs
was lower than 6 µg, the fluorescence intensity and the amount of MAb were positively correlated
(Figure 2D). An amount of 0.4 mg of the EDC was suitable for the conjugation of FMs and MAb
(Figure 2E). Negative or positive results could be obtained immediately under the UV-Light, and the
quantitative analysis was realized by an ESE-Quant LFR fluorescence reader. The fluorescence intensity
increased rapidly during the first 15 min and then remained stable at 15–20 min. Thus, LFIA assays
should be dried for 15 min at 37 ˝C before analysis (Figure 2F), which was consistent with the data of
reference [30].

Based on the optimized conditions, the cut-off values of the CG-LFIA and FMs-LFIA in 0.01 M
PBS (pH 7.4) to the naked eye were 40 ng/mL and 10 ng/mL, respectively (Figure 3). The sensitivity of
the FMs-LFIA was four times higher than that of the CG-LFIA, which agreed with the literature [21,24].
The IC50 value of T-2 in PBS by FMs-LFIA, presented in Figure 4 and Table 1, meets the requirements
of residue detection.
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Table 1. LOD, IC50, IC20–IC80 and R2 of T-2 in PBS, rice and chicken feed by FMs-LFIA.

PBS Rice Chicken Feed

LOD 0.28 0.23 0.41
IC50 (ng/mL) 1.58 1.78 1.78

IC20~IC80 (ng/mL) 0.28–8.9 0.23–13.7 0.41–7.8
R2 0.990 0.987 0.989
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2.3. Comparison between CG-LFIA and FMs-LFIA for Matrix Effect

To compare the matrix effect of CG and FMs as labels in LFIA, T-2 was spiked in rice, fresh milk
and chicken feed. As shown in Figure 5A,B, the cut-off values of the CG-LFIA and FMs-LFIA to the
naked eye in rice were 400 µg/kg and 100 µg/kg, respectively. The cut-off value of the CG-LFIA was
higher than the reported value, whereas for FMs-LFIA it was almost the same as in [22,23]. The cut-off
value of the CG-LFIA was 50 µg/L in fresh milk (Figure 5C). In comparison, the FMs-LFIA result was
significantly influenced by the milk matrix (Figure 5D), which might due to a high level of sugar and
protein in fresh milk. A better result could be acquired if the fresh milk were diluted five times with
PBS (containing 0.05% Tween 20) [25,29], whereas the decreasing sensitivity, followed like a shadow.
The matrix effect in chicken feed for LFIAs was the opposite: the cut-off value of the FMs-LFIA was
100 µg/kg (Figure 5F), but CG-LFIA could not tolerate the matrix (Figure 5E). These results indicated
that both LFIAs could tolerate the rice matrix, but the CG could tolerate milk matrix better than FMs,
whereas the FMs could tolerate chicken feed matrix better than CG under the same experimental
conditions. The exact reasons for these results were still unknown.
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A quantitative method to detect T-2 was established in rice and chicken feed with the FMs-LFIA.
The matrix standard curves were nearly indistinguishable from the standard curve constructed in
PBS (Figure 4), indicating that the extraction method was reasonable. The parameters of the standard
curves in PBS, rice and chicken feed are shown in Table 1. In PBS, rice and chicken feed, the IC50

values were 1.58 ng/mL, 1.78 ng/mL and 1.78 ng/mL, respectively, while the corresponding limits of
detection (LODs) were 0.28 µg/kg, 0.23 µg/kg and 0.41 µg/kg. In present study, the LODs in rice and
chicken feed was similar to, or even lower than those of published methods [21–23]. Recoveries, listed
in Table 2, ranged from 80.2% to 100.8%, with coefficients of variation (CV %) under 10.8% in rice and
chicken feed.

Table 2. Recoveries and CV values for T-2 in rice and chicken feed.

Sample Spiked (µg/kg) Test (µg/kg) Recoveries (%) CV (%)

Rice
5 4.748 94.9 5.42

10 10.08 100.8 7.51
20 19.22 96.1 9.78

Chicken Feed
5 4.02 80.2 10.8

10 8.901 89 9.87
20 17.56 87.8 7.56

3. Experimental Section

3.1. General Information

T-2 toxin, HT-2 toxin, deoxynivalenol (DON), neosolaniol (NEO), nivalenol (NIV), T-2-triol,
T-2-tetraol, keyhole limpet hemocyanin (KLH), bovine serum albumin (BSA), ovalbumin (OVA),
Freund’s incomplete adjuvant (FIA), Freund’s complete adjuvant (FCA), PEG1500, hypoxanthine
aminopterin thymidine (HAT), and a mouse MAb isotyping kit were obtained from Sigma-Aldrich
(St. Louis, MO, USA). Peroxidase-conjugated goat antimouse IgG was obtained from Jackson
ImmunoResearch Laboratories, Inc. (West Grove, PA, USA). Nitrocellulose membranes (Millipore 135
and Millipore 180) were purchased from Millipore (Bedford, MA, USA). Nitrocellulose membrane
(Pall Vivid PV90 (PV90), Pall Vivid PV170 (PV170), Sartorius CN 90 (SCN90) and Whatman AE99
(AE99)) were purchased from Shanghai JieYi Biological Technology Co. Ltd. (Shanghai, China).
FluoSpheresr Carboxylate-Modified Microspheres (200 nm, 100 nm, 20 nm, red fluorescent (580/
605 nm, Ex/Em), 2% solids) were obtained from Invitrogen (Carlsbad, CA, USA). The sample
pad (CFKJ-0328) and the absorbance pad (CH37K) were supplied by Shanghai Liangxin Co. Ltd.
(Shanghai, China). 1-[3-(Dimethylamino) propyl]-3 ethylcarbodiimide hydrochloride (EDC¨HCl), and
N-hydroxysuccinimide (NHS) were purchased from Aladdin Chemistry Co. Ltd. (Shanghai, China).
The other reagents and solvents were of analytical grade or higher. Eight-week-old female BALB/c
mice were obtained from Vital River Laboratory Animal Technology Co. Ltd. (Beijing, China) and
raised under strictly controlled conditions. The experimental procedures involving animals in this
study were approved by the Animal Care Center of the China Agricultural University, Beijing, China.

3.2. Preparation of Anti-T-2 MAb

The T-2 toxin was coupled with the carrier proteins KLH or OVA by using the active ester method
as described previously [13,31,32]. Six female 8-week-old BALB/c mice were injected subcutaneously
three times with the immunogen of T-2-KLH [24]. The mouse that produced a high titer of antibodies
and showed competitive inhibition with T-2 was sacrificed for fusion. Spleen cells from the immunized
mouse were fused with Sp2/0 cell using PEG1500 [31,33,34]. The supernatants of the hybridoma
were collected and screened by icELISA described below. The positive hybridomas were subcloned
three times by limiting dilution method. Ascites fluids were produced and purified by the ammonium
sulphate precipitation.
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3.3. Indirect Competitive ELISA (icELISA)

Microplates were coated with 100 µL/well of T-2-OVA (50 ng/well) in 0.05 M carbonate
bicarbonate buffer (CB, pH 9.6) and then incubated at 4 ˝C for 8 h. The plates were blocked with
200 µL of 1% BSA in PBS (blocking buffer) and incubated at 37 ˝C for 2 h. After the blocking buffer
was discarded, 50 µL/well of T-2 standard was serially diluted in PBS at 0, 0.5, 1, 2, 4 and 8 ng/mL
and 50 µL/well of MAb (40,000-fold diluted in PBS) was added and incubated for 30 min at 37 ˝C.
Other steps were described as the previous reference [29,35]. In order to evaluate the specificity of the
MAb, the inhibitions of binding of the MAb with HT-2, T-2-triol, T-2-tetraol, DON, NEO and NIV were
tested. The cross-reactivity (CR) values were calculated as follows:

CR “ pIC50 of T´ 2{IC50 of competitorqˆ 100% (1)

3.4. Preparation of CG-Anti-T-2-MAb Conjugates

Uniform gold nanoparticles (40 nm in diameter) were synthesized as described previously [16,17].
K2CO3 (0.1 mol/L) was used to adjust the pH of the gold nanoparticles solution to 8.5 for conjugation
with MAb. Six µg of the MAb was added dropwise to 1 mL of pH-adjusted gold nanoparticles solution
with gentle stirring. The mixture was reacted for 10 min and blocked by 20 µL 20% (w/v) filtered BSA
for another 10 min. Then the mixture was centrifuged at 8000 g for 10 min at 4 ˝C and the pellets
were re-suspended by adding 1 mL of 0.01 M PBS (pH 7.4) with 0.5% BSA, 0.2% PVP, 2% sucrose and
0.5% Tween-20.

3.5. Preparation of FMs-Anti-T-2-MAb Conjugates

The anti-T-2 MAb was conjugated to FMs according to the carboxylate-modified microspheres
method [20,23,24,30]. Briefly, 20 µL of 2% FMs was suspended in 1 mL of 0.05 M MES (pH 6.5) with
0.4 mg of EDC and 6 µg of anti-T-2 MAb under dark conditions for 2 h at 25 ˝C. Then 200 µL of
0.1 M glycine was added and incubated for another 30 min in order to terminate the reaction, and the
mixtures were centrifuged at 8000 g for 15 min at 4 ˝C. The precipitates were resuspended in 200 µL of
0.05 M PBS containing 1% BSA, 2% PEG 20,000 and 1% Dextran 4000. Finally the suspensions were
stored at 4 ˝C in the dark and sonicated for 5 min before use.

3.6. Assembly of the LFIA Components and Test Procedure

The components of the test strip consisted of three sections, including NC membrane coated
with the T-2-OVA (1 mg/mL) and the goat anti-mouse antibody (8.1 mg/mL), absorbent pad and
sample pad. The assembly procedure was similar as described previously [16,19,20]. Finally, the whole
assembled plate was cut into 3 mm width strips and stored under dry conditions at room temperature.

The principle of LFIA was based on the competitive binding of T-2 and T-2-OVA to the MAb
labelled with CG or FMs. Briefly, 2 µL of CG-MAb conjugates or FMs-MAb conjugates and 200 µL of
the standard solution or samples for CG-LFIA (or 120 µL for FMs-LFIA) were added into one well of the
96-microtiter plate and mixed for 3 min. Then the strip was vertically inserted into the corresponding
micro-well for another 10 min for CG-LFIA (or FMs-LFIA). The C-line was colored to ensure that
the procedures of the LFIA were correct. For the CG-LFIA, the result was obtained immediately.
For the FMs-LFIA, the result was obtained directly at UV-Light whose excitation wavelength was
set at 365 nm, or the test strips should be dried at 37 ˝C for another 15 min before testing by using
the ESE-Quant reader whose excitation wavelength was at 580 nm and emission wavelength was at
605 nm.

3.7. Assay of T-2 in Rice, Chicken Feed and Fresh Milk by LFIA

Rice or chicken feed (1 g) was weighed into 10 mL polypropylene centrifuge tubes. Methanol
(20% v/v, 2 mL for rice or 3 mL for chicken feed) was added for extraction. The mixture was vortexed
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for 3 min and centrifuged at 3000 g for 10 min. Then the supernatant was diluted two times by
0.01 M PBS (pH 7.4) for the detection of GC-LFIA and FMs-LFIA. T-2-free fresh milk samples were
supplied by the National Reference Laboratory for Veterinary Drug Residues (Beijing, China) and
those samples were directly used for analysis by the GC-LFIA and FMs-LFIA methods without further
extraction steps.

4. Conclusions

In summary, we have developed a rapid LFIA using CG and FMs as labels based on a new MAb
for the detection of T-2 in rice, fresh milk and chicken feed. In addition, from the examination of how
the two labels tolerate different biological matrix effects, we found that both labels in LFIA could
tolerate the rice matrix, but the CG could tolerate the milk matrix better than FMs, whereas the FMs
could tolerate the chicken feed matrix better than CG. These results provide a reference for the selection
of appropriate labels to establish a rapid LFIA in different biological samples.
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