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Abstract: During a screening program for new agrochemicals from Chinese medicinal herbs,
the ethanol extract of Notopterygium incisum rhizomes was found to possess strong nematicidal
activity against the two species of nematodes, Bursaphelenchus xylophilus and Meloidogyne incognita.
Based on bioactivity-guided fractionation, the four constituents were isolated from the ethanol
extract and identified as columbianetin, falcarindiol, falcarinol, and isoimperatorin. Among the four
isolated constituents, two acetylenic compounds, falcarindiol and falcarinol (2.20–12.60 µg/mL and
1.06–4.96 µg/mL, respectively) exhibited stronger nematicidal activity than two furanocoumarins,
columbianetin, and isoimperatorin (21.83–103.44 µg/mL and 17.21–30.91 µg/mL, respectively)
against the two species of nematodes, B. xylophilus and M. incognita. The four isolated constituents
also displayed phototoxic activity against the nematodes. The results indicate that the ethanol
extract of N. incisum and its four isolated constituents have potential for development into natural
nematicides for control of plant-parasitic nematodes.

Keywords: Notopterygium incisum; Bursaphelenchus xylophilus; Meloidogyne incognita; nematicidal
activity

1. Introduction

Plant-parasitic nematodes are a serious worldwide threat to forestry and agriculture because of
their wide range of host plants and short biological cycles. It has been estimated that plant parasitic
nematodes have caused as much as $100 billion in annual losses of crops and plants worldwide [1].
The southern root-knot nematode (Meloidogyne incognita (Kofoid & White) Chitwood) is the most
economically important and widely distributed nematode throughout China, and considerable
crop loss is caused by this nematode [1]. The pine wood nematode (Bursaphelenchus xylophilus
(Steiner & Buhrer) Nickle) causes pine wilt disease by inducing rapid wilting and leads to death of host
pines [2]. Nematode management is generally based upon chemical treatments (soil fumigation, e.g.,
methylbromide and dichloropropane), but environmental concerns and governmental regulations are
now resulting in a strong interest in nematicides of natural origin [3,4]. Plants are a prominent source of
new nematicidal chemicals, since many plants have been reported to possess nematicidal activities [5–14].
A series of nematicidal substances of plant origin such as triglycerides, sesquiterpenoids, alkaloids,
steroids, diterpenoids, monoterpenoids, and flavonoids have been identified [3,4,8–10,15–19].
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During the screening program for new agrochemicals from Chinese medicinal herbs and wild
plants, the ethanol extract of the rhizomes of Notopterygium incisum Ting ex H. T. Chang (Family:
Umbelliferae) (Figure S1) was found to possess nematicidal toxicity against the two species of
nematodes, B. xylophilus and M. incognita. Notopterygium incisum is perennial herb native to China
(Gansu, Qinghai, Shaanxi, Sichuan province, and Tibet Autonomous Region). It grows at a range of
1600 to 5000 m above sea level and lives among forest edges and scrubs that border the grasslands
of these elevated slopes [20]. The rhizomes of N. incisum known as “Qianghuo” in Chinese, is
a well-known traditional Chinese medicinal herbs. They are used in herbal preparations for a
series of symptoms from the common cold, chills, fever, rheumatoid arthritis, and general limb
or body aches and pains [14]. Previous phytochemical investigations revealed that the rhizomes of
N. incisum contained phenolic compounds, alkaloids, polyacetylenes, coumarins, sesquiterpenoids,
and glycosides [21–34]. Pharmacological studies have revealed that its extracts or constituents possess
anti-inflammatory, antioxidative, analgesic, and anti-influenza activity as well as antiproliferative
activity against several cancer cell lines [21,22]. However, a literature survey shows that there is no
report on nematicidal activity of the ethanol extract of N. incisum rhizomes. Thus, the objective of this
study was to investigate the nematicidal activity of the ethanol extract of N. incisum rhizomes against
the two species of nematodes and isolation of active constituents from the ethanol extract.

2. Results and Discussion

2.1. Isolated Bioactive Compounds

Four bioactive compounds were isolated and based on bioassay-guided fractionation and
identified based on their spectroscopic data and comparison with literature vales. Their chemical
structures are given in Figure 1.
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Figure 1. Constituent compounds isolated from the ethanol extract of Notopterygium incisum rhizomes. Figure 1. Constituent compounds isolated from the ethanol extract of Notopterygium incisum rhizomes.
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2.2. Nematicidal Activity

Among the four isolated constituents, falcarindiol and falcarinol exhibited strong nematicidal
activity against the pine wood nematode (B. xylophilus) in dark with LC50 values of 2.20 µg/mL and
12.62 µg/mL, respectively. Isoimperatorin and columbianetin also had LC50 values of 21.83 µg/mL
and 103.44 µg/mL against B. xylophilus, respectively (Table 1). Moreover, based on LC50 values, the two
polyacetylene compounds demonstrated stronger nematicidal activity (no overlap of the 95% FLs)
than a positive control, 2% avermectin (dark, LC50 = 3.57 µg/mL) and two coumarins (isoimperatorin
and columbianetin) against the pine wood nematodes (Table 1). When using 12 h light and 15 min
UV light treatment, the nematicidal activity of the four isolated constituents against B. xylophilus
increased. For example, falcarindiol had LC50 values of 0.95 µg/mL (light) and 0.73 µg/mL (UV)
against B. xylophilus, two-to-three times more toxic than in dark (Table 1) while falcarinol showed
almost nine times more toxic in UV light treatment than in dark against B. xylophilus. Moreover, after
15 min UV light treatment, the two coumarins also possessed two-to-three times more toxic to the pine
wood nematodes than the dark treatment.

Table 1. Nematicidal activity of bioactive compounds from Notopterygium incisum rhizomes against
Bursaphelenchus xylophilus.

Compound Treatment LC50 (µg/mL) (95% FL) * RT ** LC90 (µg/mL) (95% FL) * Slope ± SE

Columbianetin
Dark 103.44 (84.52–123.10) - 375.11 (288.16–560.48) 2.29 ± 0.21
Light 72.12 (59.98–83.82) 1.43 268.50(217.65–361.20) 2.25 ± 0.24
UV 32.11 (25.05–38.74) 3.22 85.64 (67.29–128.53) 3.01 ± 0.34

Falcarindiol
Dark 2.20 (1.82–2.61) - 11.82 (8.66–18.82) 1.76 ± 0.20
Light 0.95 (0.54–1.30) 2.32 13.97 (7.82–48.18) 1.10 ± 0.21
UV 0.73 (0.62–0.83) 3.01 2.65 (2.17–3.50) 2.29 ± 0.32

Falcarinol
Dark 12.61 (9.82–15.19) - 69.87 (54.61–100.05) 1.72 ± 0.20
Light 7.42 (4.93–9.66) 1.69 30.79 (21.45–63.14) 1.63 ± 0.30
UV 1.43 (1.15–1.71) 8.82 3.98 (3.18–5.54) 2.88 ± 0.23

Isoimperatorin
Dark 21.83 (16.66–27.54) - 236.64 (135.22–660.45) 1.24 ± 0.20
Light 15.14 (9.05–20.59) 1.44 250.35 (128.36–1071.92) 2.25 ± 0.21
UV 12.07 (10.13–13.86) 1.81 35.90 (30.39–45.16) 2.71 ± 0.29

Ethanol extract Dark 45.21 (40.12–49.23) - 234.67 (211.56–256.78) 2.23 ± 0.24

Avermectin 0.07 (0.06–0.08) - 0.24 (0.21–0.26) 2.45 ± 0.20

* Fiducial limits; ** Relative toxicity = LC50 value in dark treatment/LC50 values (in light or UV).

Based on LC50 values, the two polyacetylene compounds (falcarindiol and falcarinol, in
dark LC50 = 1.08 µg/mL and 4.96 µg/mL, respectively) exhibited stronger nematicidal activity
(no overlap of the 95% FLs) than two coumarins (isoimperatorin and columbianetin, dark treatment
LC50 = 7.57 µg/mL and 30.91 µg/mL, respectively) against the southern root-knot nematodes
(M. incognita) (Table 2). Falcarindiol also possessed the same level of nematicidal activity against the
southern root-knot nematodes as the positive control, 2% avermectin (in dark, LC50 = 1.25 µg/mL) and
the three other constituents showed less toxic than the positive control (Table 2). When using 15 min
UV light treatment, falcarindiol, falcarinol, and isoimperatorin demonstrated almost five times more
toxic to the southern root-knot nematodes than in dark treatment while columbianetin showed only
two times more toxic (Table 2).

In the previous reports, several naturally occurring polyacetylenes have been demonstrated to
possess toxic or phototoxic activity against insects, especially larval mosquitoes [35–40]. Falcarinol and
falcarindiol were also demonstrated to possess larvicidal activity against the common house mosquito
(Culex pipiens) with 24 h LC50 values of 3.49 ppm and 6.51 ppm, respectively [41]. There were several
reports on nematicidal activity of natural occurring polyacetylenes (derived from Carthamus tinctorius)
against plant parasitic nematodes such as, rice white tip nematode (Aphelencoides besseyi) with
more than 80% mortality after five days at a concentration of 10 ppm treatment [42,43]. Moreover,
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14 polyacetylenes or their thiophene derivates, isolated from species of the Asteraceae were found
to possess toxicity against adult nematodes (Caenorhabditis elegans) and toxicity of the compounds
was found to be enhanced greatly by irradiation with near-UV radiation or natural sunlight [44].
However, their investigation with falcarindiol showed no photoactivation with UVA radiation [41].
Moreover, falcarinol and falcarindiol have been identified as antifungal compounds in many Apiaceae
plant species inhibiting spore germination of different fungi in concentrations ranging from 20 to
200 µg/mL [45]. Falcarinol and falcarindiol also exhibited significant anti-Candida, antibacterial, and
antimycobacterial activity, with an ability to kill Mycobacterium tuberculosis and isoniazid-resistant
Mycobacterium avium at 10 µg/disk in a disk diffusion assay [46]. However, this is the first report of
nematicidal activity and photoactivation with UV treatment of falcarinol and falcarindiol against the
two species of nematodes. The mode of action of falcarinol and falcarindiol on nematodes was not
investigated; however, the mechanism for antifungal activity of falcarinol and falcarindiol is believed
to involve disruption of cell membranes [47]. Thus, falcarinol, the more lipophilic compound, was
more toxic than falcarindiol against the two species of nematodes, the more polar acetylene (Table 1).
However, it was also suggested that the potent insecticidal action of falcarinol might be related to the
GABAergic block associated with the higher intake expected in herbivorous insects because GABAA

receptors are important targets of neuroactive pesticides [48,49].

Table 2. Nematicidal activity of bioactive compounds from Notopterygium incisum rhizomes against
Meloidogyne incognita.

Compound Treatment LC50 (µg/mL) (95% FL) * RT ** LC90 (µg/mL) (95% FL) * Slope ± SE

Columbianetin
Dark 30.91 (26.04–36.18) - 161.08 (124.53–227.93) 1.79 ± 0.16
Light 28.29 (14.78–40.44) 1.09 171.12 (138.24–262.45) 1.61 ± 0.27
UV 12.33 (9.45–14.85) 2.51 43.09 (35.06–58.65) 2.36 ± 0.31

Falcarindiol
Dark 1.08 (0.89–1.28) - 5.99 (4.36–9.68) 1.72 ± 0.20
Light 0.56 (0.44–0.67) 1.93 2.33 (1.79–3.47) 2.07 ± 0.19
UV 0.22 (0.15–0.29) 4.91 2.31 (1.54–4.65) 1.26 ± 0.09

Falcarinol
Dark 4.96 (4.20–5.76) - 24.00 (19.10–32.27) 1.87 ± 0.15
Light 3.44 (2.95–3.90) 1.44 10.55 (9.11–12.74) 2.63 ± 0.23
UV 1.00 (0.86–1.15) 4.96 5.50 (4.12–8.30) 1.73 ± 0.17

Isoimperatorin
Dark 17.21 (14.86–19.85) - 74.55 (58.88–101.81) 1.79 ± 0.19
Light 7.57 (4.52–10.30) 2.27 125.18 (64.18–535.96) 1.05 ± 0.13
UV 3.30 (1.96–4.46) 5.22 18.22 (14.41–26.25) 1.73 ± 0.17

Ethanol extract Dark 22.34 (19.89–24.67) - 130.56 (119.25–142.79) 1.56 ± 0.14

2% Avermectin – 0.03 (0.02–0.03) - 0.24 (0.22–0.27) 2.08 ± 0.16

* Fiducial limits; ** Relative toxicity = LC50 value in dark treatment/LC50 values (in light or UV).

Columbianetin and isoimperatorin had been demonstrated to possess insecticidal activity
against several insects, such as the cabbage aphid (Brevicoryne brassicae), Egyptian cottonworm
(Spodoptera littoralis), larvae of Aedes albopictus, A. aegypti, Culex pipiens pallens [50–52]. Columbianetin
also exhibited antibacterial, antifungal, and cytotoxic activity [53–55]. However, this is first report of
nematicidal activity against the two species of plant-parasitic nematodes.

The above findings suggest that nematicidal activity of the ethanol extract of N. incisum
rhizomes and its four isolated constituents—especially the two polyacetylene compounds—against
the two species of plant-parasitic nematodes is quite promising. As they are currently commonly used,
nematicides are synthetic pesticides and these synthetic pesticides are also highly toxic to humans and
other non-target organisms, the ethanol extract and its four isolated constituents show potential to be
developed as possible natural nematicides for the control of B. xylophilus and M. incognita.

In traditional Chinese medicine, N. incisum rhizomes are used in herbal preparations for a series
of symptoms from the common cold, chills, fever, rheumatoid arthritis, and general limb or body
aches and pains [20]. It thus seems that this medicinal herb is quite safe for human consumption
because it has been used as a medicinal herb for hundreds of years. Moreover, the four isolated
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constituents are naturally present in many vegetables and fruits, e.g., carrot, celery, parsley, coriander,
ginseng, etc. Thus it seems that the four isolated constituents are quite safe for human consumption.
However, no experimental data about the safety of this herb is available so far, so to develop a practical
application for the ethanol extract and the isolated constituents as novel nematicides, further research
on the safety of the extract/compounds to humans is needed.

3. Experimental

3.1. General

1H and 13C-NMR spectra were recorded on Bruker Avance ACF300 (300 MHz (1H)) and Bruker
Avance AMX500 (500 MHz (1H), Bruker BioSpin AG, Fällanden, Switzerland) instruments using
CDCl3 as the solvent with TMS as internal standard.

3.2. Plant Material and Extraction

The dried rhizomes of N. incisum (5 kg) were purchased from Anguo Chinese Medicinal Herbs
Market (Anguo, Hebei, China), which harvested from Gansu Province, China. The species was
identified by Dr QR Liu, College of Life Sciences, Beijing Normal University, Beijing, China. A voucher
specimen of N. incisum (No. CMH-Qianghuo-Gansu-2015-08) was deposited at the museum of the
Department of Entomology, China Agricultural University, Beijing, China.

The dried rhizomes were cut into pieces and then successively extracted with 40 L different
concentrations of ethanol/ tap water mixtures (95%, 75%, 50%, by volume) and tap water at room
temperature for three days. The extracts were then filtered, mixed and concentrated under vacuum to
afford crude extract (800 g). After that, the crude extract was diluted with distilled water (2 L) and
then successively partitioned with the same volume of n-hexane, chloroform, ethyl acetate and n-butyl
alcohol. Each partition was concentrated separately to obtain four solvent fractions (27 g, 86 g, 31 g,
32 g) and stored in brown glass bottles at 4 ◦C for further experiments.

3.3. Bioassay-Directed Fractionation

The crude ethanol extract and its four solvent fractions were screened for their nematicidal
potential against juveniles of the two species of nematodes as described below. On the basis of 72 h
mortalities at a concentration of 1000 µg/mL, the most active (chloroform fraction) was subjected to
further fractionation.

The chloroform fraction of N. incisum extracts was chromatographed on a silica gel (Merck
grade 9385, 230–400 mesh, Darmstadt, Germany, 1000 g) column (85 mm i.d., 850 mm length),
eluting with a solvent system (petroleum ether/ethyl acetate/ethanol, by volume) of increasing
polarity. Column fractions were analyzed by TLC (precoated GF254 plate; Qingdao Marine Chemical
Plant, Qingdao, China) profiles and similar fractions were combined to yield 12 fractions (Fa1–Fa14).
Nematicidal activity bioassays of these fractions were evaluated at a concentration of 1000 µg/mL
to afford four bioactive principles (Fa2, Fa4, Fa6, Fa7). Fa2 was submitted to preparative silica gel
column chromatography (PTLC) (precoated GF254 plate) using petroleum ether/ethyl acetate (100:5,
by volume) as an eluent to give isoimperatorin (15 mg). The other three fractions were further
purified by silica gel (Merck grade 9385, 230–400 mesh, 300 g) column (10 mm i.d., 500 mm length)
chromatography using a petroleum ether/ethyl acetate solvent system and by PTLC as well as by
Sephadex LH-20 column, to get compounds with the following order: columbianetin (18 mg), falcarinol
(25 mg), and falcarindiol (22 mg). The structure of the compounds was elucidated based on nuclear
magnetic resonance (Figures S2–S5).

3.4. Nematodes

Eggs of M. incognita were extracted from infected roots of tomato (Solanum lycopersicum L.). All the
tomatoes were reared in a growth chamber (16:8 h L:D, 25–28 ◦C, 75%–80% RH). When reaching the
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five-leaf stage, tomato plants were used for inoculations; and 43 days later, infected tomato plants
were uprooted and the roots were washed free of soil with tap water. Egg masses were hand-picked
using sterilized tweezers from infected roots and rinsed three times with sterilized distilled water.
To obtain second-stage juveniles (J2) of M. incognita, egg masses were placed on a mesh nylon filter
(openings 30 µm in diameter) [56]. J2s that passed through the filter were collected daily and used for
bioassays immediately.

B. xylophilus was collected from sawdusts of infected pine woods in Fuling District,
Chongqing City, China (29.70◦ N and 107.39◦ E) in September 2015, and obtained through the modified
Baermann funnel technique [57]. Colonies of B. xylophilus were maintained on Botrytis cinerea cultures.
The fungus B. cinerea was cultured on potato dextrose agar (PDA) in a growth chamber (25–28 ◦C
in dark). When B. cinerea was fully grown on PDA, the plates were inoculated with B. xylophilus
and cultured in the growth chamber (25–28 ◦C in dark) until the fungal mycelium were completely
consumed by B. xylophilus. Then, B. xylophilus were collected using the modified Baermann funnel
technique [48], washed with a mixture of 0.1% streptomycin sulfate and 0.002% actinone three times to
remove any surface bacterial or fungal contaminants and immediately used for bioassays.

3.5. Nematicidal Activity Bioassays

Nematicidal activity bioassays of M. incognita were taken under laboratory conditions at 25–28 ◦C.
The standard nematode suspensions of M. incognita were prepared by appropriate dilution with
sterilized distilled water to get approximately 100 J2s/mL. All the tested extracts or compounds
were dissolved in ethanol and diluted with distilled water to obtain stock solutions of double the
treatment concentrations, which were determined by a series of range-finding tests. However, the final
concentration of ethanol in each treatment never exceeded 1% (by volume). Then, each well of
24-well tissue culture plates were added with 500 µL standard J2 suspension. Numbers of active J2
in every well were counted under a stereoscope at 10× and 5× before 500 µL stock solution was
added to the corresponding well. Plates were then covered with rice paper to avoid evaporation. Each
test was composed of five concentrations with three replicates. Commercial avermectin (purchased
from Aladdin-Reagent Company, Shanghai, China)—serving as a positive control and distilled water
containing ethanol (1%, by volume)—was used as a negative control. Both treated and control J2
nematodes were placed in a growth chamber at 25–28 ◦C in dark or in light. To measure photoactive
effect, 15 min UV radiation was provided and the treated sets were placed to the growth chamber
at 25–28 ◦C in dark. Mortality recordings were taken 72 h after treatment. J2 nematodes that showed
no movements when stimulated with a fine needle were considered to be dead.

Nematicidal activity bioassays of B. xylophilus were taken as almost the same as M. incognita
bioassays, but only juveniles were used.

3.6. Isolated Constituent Compounds

Falcarindiol (1, Figure 1). Brownish oil, 1H-NMR (CDCl3, 500 MHz) δ (ppm): δ 6.00–5.92 (1H, m, H-2),
5.64 (1H, dd, J = 17.8, 7.7 Hz, H-10), 5.52 (2H, dd, J = 24.3, 13.4 Hz, H-1), 5.23 (1H, d, J = 8.3 Hz, H-8),
4.97 (1H, d, J = 4.8 Hz, H-3), 2.13 (2H, q, J = 7.4 Hz, H-11), 1.44–1.37 (3H, m, H-12), 1.29 (8H, d, J = 10.5
Hz, H-13, 14, 15, 16), 0.90 (3H, t, J = 6.4 Hz, H-17). 13C-NMR (CDCl3, 125 MHz) δ (ppm): 135.8 (C-2),
134.7 (C-10), 127.6 (C-9), 117.4 (C-1), 78.8 (C-7), 78.4 (C-4), 72.4 (C-5), 63.6 (C-6), 63.5 (C-3), 58.6 (C-8),
31.8 (C-11), 29.28–29.07 (C-12, 13, 14), 27.8 (C-15), 22.7 (C-16), 14.1 (C-17). The data matched with
previous reports [58,59].

Falcarinol (2, Figure 1). Yellow oil, 1H-NMR (CDCl3, 500 MHz) δ (ppm): 5.96 (1H, ddd, J = 17.0, 10.1,
5.4 Hz, H-10), 5.53–5.50 (1H, m, H-10), 5.47 (1H,s, H-1), 5.40 (1H, d, J = 10.5 Hz, H-9), 5.28–5.24 (1H, m,
H-1), 4.94 (1H, d, J = 5.3 Hz, H-3), 3.06 (2H, dd, J = 6.9, 0.7 Hz, H-8), 2.06 (1H, d, J = 7.8 Hz, H-3), 2.04
(1H, s, H-11), 1.40–1.36 (2H, m, H-12), 1.31–1.29 (8H, m, H-13, 14, 15, 16), 0.90 (3H, t, J = 6.9 Hz, H-17).
13C-NMR (CDCl3, 125 MHz) δ (ppm): 136.1 (C-2), 133.1 (C-10), 121.9 (C-9), 117.1 (C-1), 80.3 (C-7), 74.2
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(C-4), 71.3 (C-5), 64.0 (C-6), 63.6 (C-3), 31.8 (C-15), 29.2 (C-12, 13, 14), 27.2 (C-11), 22.6 (C-16), 17.7 (C-8),
14.1 (C-17). The data matched with previous reports [58,59].

Isoimperatorin (3, Figure 1). Crystal, 1H-NMR (CDCl3, 500 MHz) δ (ppm): 8.18 (1H, d, J = 9.8 Hz, H-4),
7.62 (1H, s, H-2’), 7.18 (1H, s, H-8), 6.98 (1H, s, H-3’), 6.29 (1H, d, J = 9.7 Hz, H-3), 5.56 (1H, t, J = 6.4 Hz,
H-2”), 4.94 (2H, d, J = 7.0 Hz, H-1’), 1.82 (3H, s, H-4”), 1.72 (3H, s, H-5”). 13C-NMR (CDCl3, 125 MHz)
δ (ppm): 161.4 (C-2), 158.2 (C-7), 152.7 (C-9), 149.0 (C-5), 144.9 (C-2’), 139.8 (C-3”), 139.7 (C-4), 119.1
(C-2”), 114.3 (C-6), 112.5 (C-3), 107.6(C-10), 105.0 (C-3’), 94.3 (C-8), 69.8 (C-1”), 25.8 (C-4”), 18.2 (C-5”).
The data matched with previous reports [50].

Columbianetin (4, Figure 1). Crystal, 1H-NMR (MeOD, 500 MHz) δ (ppm): δ 7.88 (1H, d, J = 9.5 Hz,
H-4), 7.43 (1H, s, H-5), 6.75 (1H, s, H-8), 6.22 (1H, d, J = 9.5 Hz, H-3), 4.78 (1H, t, J = 8.7 Hz, H-12), 3.28
(2H, d, J = 9.6 Hz, H-11), 1.32 (3H, s, H-14), 1.26 (3H, s, H-15). 13C-NMR (MeOD, 125 MHz) δ (ppm):
163.9 (C-7), 162.4 (C-2), 155.5 (C-10), 144.9 (C-4), 125.9 (C-6), 123.6 (C-5), 112.7 (C-9), 110.8 (C-3), 96.8
(C-8), 91.1 (C-12), 70.9 (C-13), 28.9 (C-11), 24.0 (C-14), 23.9 (C-15). The data matched with previous
reports [59,60].

3.7. Data Analysis

Data were corrected for control mortality using Abbott’s formula [61]. LC50 and LC90 values,
along with 95% confidence limits (CLs), and chi-square values were calculated using SPSS 14.0 software.
LC50 values of the tested materials were considered to be significantly different when their 95%
confidence limits (CLs) failed to overlap. Chi-square values were significant at the p < 0.05 level.

4. Conclusions

The present work indicated that the ethanol extract of N. incisum rhizomes and its four isolated
constituents demonstrated strong nematicidal activity against B. xylophilus and Meloidogyne incognita.
Our results suggested that the extract of N. incisum rhizomes and its four isolated constituents,
especially falcarinol and falcarindiol, have potential for development into natural nematicides for
control of plant-parasitic nematodes.
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