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Abstract: The relationship between the electrophilicity ω index and the Hammett constant σp has
been studied for the [2+3] cycloaddition reactions of a series of para-substituted phenyl azides towards
para-substituted phenyl alkynes. The electrophilicity ω index—a reactivity density functional theory
(DFT) descriptor evaluated at the ground state of the molecules—shows a good linear relationship
with the Hammett substituent constants σp. The theoretical scale of reactivity correctly explains the
electrophilic activation/deactivation effects promoted by electron-withdrawing and electron-releasing
substituents in both azide and alkyne components.
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1. Introduction

The [3+2] cycloaddition (32CA) reaction between azides, acting as the three-atom-component
(TAC) and carbon–carbon triple bonds is a classical organic reaction initially established by Huisgen, in
which five-membered 1,2,3-triazolic compounds are prepared as a mixture of 1,4 and 1,5-regioisomers.
Since then, triazoles have played central roles in coordination chemistry as nitrogen-containing
heterocyclic ligands, in bioconjugation issues, and in peptide-based drug design by mimicking peptide
and disulfide bonds, leading to secondary structural components of peptides [1–3]. The interest in
triazoles has recently attracted great attention, since the introduction of copper(I)-catalyzed 32CA
reactions between azides and alkynes (CuCAA) [4]. The CuCAA reaction is classified as a click
chemical process that takes place in a regioselective manner, giving only the 1,4-disubstituted triazole
isomer [5]. A large number of mechanistic investigations were established describing the mechanistic
pathways of these 32CA reactions (Scheme 1) [6,7].

Unlike 1,3-dienes participating in Diels–Alder reactions [8], the electronic structure of TACs
participating in 32CA reactions strongly depends on the type and hybridization of the atoms present
in the TAC. Thus, depending on their electronic structure, TACs have recently been classified as
pseudodiradical, carbenoid, and zwitterionic TACs (see Scheme 2) [9,10]. It should be noted that only
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1,2-zwitterionic TACs such as nitrone or azides have the electronic structure of a 1,3-dipole as Huisgen
proposed [6].
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Scheme 2.Electronic structure of three-atom-components (TACs) and the proposed reactivity types 
in [3+2] cycloaddition (32CA) reactions. 

Molecular Electron Density Theory [10,11] studies devoted to the understanding of the mechanisms 
of 32CA reactions have allowed the establishment of a useful classification of these reactions into 
pseudodiradical-type (pr-type)[9], carbenoid-type (cb-type) [10], and zwitterionic-type (zw-type) [9] 
reactions, in such a manner that TACs with a pseudodiradical character participate in pr-type 32CA 
reactions taking place easily through earlier transition states (TSs) with a very low polar character 
[9,12]; TACs with a carbenoid character participate in cb-type 32CA reactions whose feasibility 
depends on the polar character of the reaction (i.e., the nucleophilic character of the carbenoid TAC 
and the electrophilic character of the ethylene derivative)[10]; and finally, TACs with a zwitterionic 
character participate in zw-type 32CA reactions controlled by nucleophilic/electrophilic interactions 
taking place at the TSs, similarly to cb-type reactions [9,13]. 

The simplest azide, HNNN—which has a zwitterionic structure—presents low nucleophilic 
character, N = 1.81 eV, and very low electrophilic character, ω = 0.66 eV [13]. Consequently, it is 
expected that it participates neither as nucleophile nor as electrophile in zw-type 32CA reactions [13]. 
Consequently, the simplest azide must be electronically activated in order to easily participate in a 
zw-type 32CA reaction with low activation energy. 

Substituent effects on the TACs (regarded as a zwitterionic species), and alkynes’ reactivities in 
the 32CA reaction rate and stereoselectivity leading to triazoles remain unfortunately unclear, and 
need further theoretical investigation [14]. A very recent report shows that the substituent effect could 
change the reaction mechanism from concerted single-step to stepwise pathway for some of the TAC 
azide compounds [15]. The linear free energy relationship is among the empirical methods that can 
help to develop an understanding of the substituent effects on the reactivity of both azides and alkynes. 
Linear free-energy relationships are empirical relationships between thermodynamic quantities known 
as extra-thermodynamic equations [16]. They have been invaluable in the investigation of the structural 
properties and reactivities of organic compounds in solution. Among them, the Hammett constants σp 
have been permanently used in relating the nature of the substituents to their electronic effects 
(inductive and resonance) on chemical reactivity and other properties [17]. Today, these constants 
remain an excellent guide for structure–property and structure–activity studies [18]. The fact that the 
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Scheme 2. Electronic structure of three-atom-components (TACs) and the proposed reactivity types in
[3+2] cycloaddition (32CA) reactions.

Molecular Electron Density Theory [10,11] studies devoted to the understanding of the
mechanisms of 32CA reactions have allowed the establishment of a useful classification of these
reactions into pseudodiradical-type (pr-type) [9], carbenoid-type (cb-type) [10], and zwitterionic-type
(zw-type) [9] reactions, in such a manner that TACs with a pseudodiradical character participate in
pr-type 32CA reactions taking place easily through earlier transition states (TSs) with a very low polar
character [9,12]; TACs with a carbenoid character participate in cb-type 32CA reactions whose feasibility
depends on the polar character of the reaction (i.e., the nucleophilic character of the carbenoid TAC
and the electrophilic character of the ethylene derivative) [10]; and finally, TACs with a zwitterionic
character participate in zw-type 32CA reactions controlled by nucleophilic/electrophilic interactions
taking place at the TSs, similarly to cb-type reactions [9,13].

The simplest azide, HNNN—which has a zwitterionic structure—presents low nucleophilic
character, N = 1.81 eV, and very low electrophilic character, ω = 0.66 eV [13]. Consequently, it is
expected that it participates neither as nucleophile nor as electrophile in zw-type 32CA reactions [13].
Consequently, the simplest azide must be electronically activated in order to easily participate in a
zw-type 32CA reaction with low activation energy.

Substituent effects on the TACs (regarded as a zwitterionic species), and alkynes’ reactivities in
the 32CA reaction rate and stereoselectivity leading to triazoles remain unfortunately unclear, and
need further theoretical investigation [14]. A very recent report shows that the substituent effect could
change the reaction mechanism from concerted single-step to stepwise pathway for some of the TAC
azide compounds [15]. The linear free energy relationship is among the empirical methods that can
help to develop an understanding of the substituent effects on the reactivity of both azides and alkynes.
Linear free-energy relationships are empirical relationships between thermodynamic quantities known
as extra-thermodynamic equations [16]. They have been invaluable in the investigation of the structural
properties and reactivities of organic compounds in solution. Among them, the Hammett constants
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σp have been permanently used in relating the nature of the substituents to their electronic effects
(inductive and resonance) on chemical reactivity and other properties [17]. Today, these constants
remain an excellent guide for structure–property and structure–activity studies [18]. The fact that
the constants derived from these equations were empirical led to efforts to look for correlations
between them and other theoretically-derived parameters which might be obtained from quantum
chemical calculations. Several indices derived from conceptual density functional theory (DFT) have
been increasingly used in the interpretation of organic reactivity. They include reactivity indices like
chemical potential, hardness, softness, electrophilicity, and nucleophilicity indices [19].

It is known that the Hammett equation [2,3] relates the relative magnitude of the equilibrium
constants to a reaction constant (ρ) and a substituent constant (σp), according to Equation (1) [20].

log(K/K0) = ρ σp (1)

From a theoretical point of view, the electrophilic and nucleophilic behaviors of organic
molecules can be characterized by using the reactivity indices defined within the conceptual DFT
framework [19,21]. Parr et al. [22] introduced the following definition of the electrophilicityω index of
a molecule in terms of its chemical potential µ and chemical hardness η through Equation (2).

ω = µ2/2η (2)

where µ and η are the electronic chemical potential and chemical hardness of the ground state of the
atoms and molecules, respectively [23]. Electrophilicity indexωmeasures the stabilization in energy
when the system acquires an additional electronic charge from the environment [22]. By definition,
it encompasses both the ability of an electrophile to acquire additional electronic charge and the
resistance of the system to exchanging electronic charge with the environment.

Linear relationships between σp andω have recently been obtained for para-substituted benzyl
cations. Domingo et al. have systematically compared the experimental σp values and electronic
electrophilicity indexω for a series of forty-two substituted ethylene derivatives [24]. They developed
a statistical procedure to obtain intrinsic electronic contributions to σp based on the comparison
between the experimental Hammett constant σp and the electrophilicity indexω, evaluated for a series
of functional groups that are present in organic compounds.

Herein, we present a theoretical model to quantitatively describe the Hammett substituent
constants σp in terms of the global electrophilicityω of azides and alkynes used in 32CA reactions by
using a global electrophilicity indexω as well as the logarithm of the global electrophilicity ratios of
para-substituted and unsubstituted compounds (see Figure 1). The global electrophilicity index ω of a
series of aromatic azides and alkynes is classified within an absolute scale in order to illustrate the
rationalization of the substituent effects on the electrophilic activation/deactivation of the substrates.
Indeed, such aromatic substrates were chosen instead of aliphatic substrates because of the substantial
electronic effect of the para-substituted group on either azide or carbon–carbon triple bond facilitated
by the electronic transmission through the aromatic π-conjugated system.
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2. Results and Discussion

The global electrophilicity patterns of the substituted azide (A) and alkyne (B) derivatives used in
the 32CA reactions are ranked in Figure 2. It can be seen that compounds with electron-withdrawing
(EW) substituents occupy the top of the scale, while compounds with electron-releasing (ER)
substituents are in the bottom. Alkynes display slightly higher electrophilicity values than azides with
similar EW substituents, and it is a little lower when using ER ones. It is also possible to rationalize
the electrophilic activating/deactivating effects promoted by substituent groups in both azide and
alkyne compounds. For instance, the unsubstituted reference TAC A1(–H) has an electrophilic value
of (ω = 1.26 eV). Its para-substitution by the weak ER methyl (–CH3) group results in an electrophilic
deactivation as shown in compound A2 (ω = 1.20 eV).
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By substitution of the same para position with the stronger ER methoxy (–OCH3) group, an even
higher electrophilic deactivation is observed in compound A3 (ω = 1.13 eV). As expected, the
substitutions with EW groups show electrophilic activation. For example, substitution with fluorine
causes an activation of about 0.09 eV in compound A5 with respect to the unsubstituted compound A1.
Whereas the most efficient activation with respect to compound A1 is achieved by the cyano group
(–CN) as found in compound A12 (ω = 1.93 eV).
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For the series of alkynes, a similar picture is obtained. So, starting from the reference compound B1
(ω = 1.13 eV), the para substitution with fluorine (–F), chlorine (–Cl), and bromine (–Br) atoms results
in an electrophilic activation in compounds B3 (ω = 1.14 eV), B7 (ω = 1.32 eV), and B8 (ω = 1.33 eV).
The highest activation effect is achieved by EW carbonyl (–CHO) substitution, in compound B6
(ω = 2.10 eV). In this series, the electrophilic deactivation was caused by ER groups as found,
for example, with the methyl substituting –CH3 in compound B2 (ω = 1.05 eV). In line with that,
the substitution by a stronger ER group such as (–t-Bu) results in a higher electrophilic deactivation,
as found for compound B12 (ω = 0.92 eV).

As in single-substituted molecules, a low electrophilicity index ω has been correlated with good
nucleophiles [25]. It is expected that the more favorable azide/alkyne zw-type 32CA reactions take
place when both regents are located at the extreme of Figure 2 (i.e., good electrophilic azides with good
nucleophilic alkyne, or vice versa).

The global values of electrophilicity indexesω for both azides and alkynes series for the ground
state of the substituting agents as well as the Hammett substituent constants σp are listed in Table 1.
The utility of a reactivity scale has been clearly illustrated by Mayr et al. [26,27]. Such a reactivity
scale should be able to address fundamental questions concerning reaction feasibility, intramolecular
selectivity, and other important reactivity aspects.

Table 1. Electronic chemical potential (µ), chemical hardness (η), global electrophilicity (ω), in eV,
Hammett constants σp

a, and the logarithm of the global electrophilicity ratio (ω/ωH).

Compound R µ η ω σp
a Log(ω/ωH)

A1 H −3.62 5.14 1.27 0.00 0.000
A2 Me −3.48 5.03 1.21 −0.17 −0.019
A3 MeO −3.29 4.76 1.13 −0.27 −0.046
A4 Br −3.75 5.01 1.42 0.23 0.048
A5 F −3.67 5.03 1.34 0.06 0.025
A6 Cl −3.78 5.03 1.42 0.23 0.052
A7 COOH −4.82 4.79 1.79 0.45 0.152
A8 COOMe −4.05 4.82 1.71 0.45 0.130
A9 COMe −4.16 4.65 1.86 0.50 0.169

A10 tert-butyl −3.46 5.03 1.19 −0.20 −0.020
A11 CONH2 −3.97 4.93 1.60 0.36 0.103
A12 CN −4.33 4.82 1.94 0.66 0.187
B1 H −3.51 5.52 1.13 0.00 0.000
B2 Me −3.37 5.39 1.06 −0.17 −0.028
B3 F −3.54 5.47 1.14 0.06 0.003
B4 COOMe −4.11 4.84 1.74 0.45 0.187
B5 PhO −3.24 5.12 1.03 −0.03 −0.042
B6 CHO −4.41 4.63 2.10 0.42 0.269
B7 Br −3.73 5.22 1.33 0.23 0.070
B8 Cl −3.75 5.28 1.32 0.23 0.067
B9 COOH −4.22 4.87 1.82 0.45 0.206
B10 COMe −4.22 4.71 1.90 0.50 0.225
B11 CN −4.38 4.90 1.97 0.66 0.241
B12 tert-butyl −3.35 6.07 0.92 −0.20 −0.089

a Hammett substituent constants σp obtained from reference [20].

Figures 3 and 4 show a positive slope in the relationship between the Hammett constants
σp of para-substituents in the azide/alkyne derivatives and the global electrophilicity index ω.
It should be noted that the para position is the best one that leads to the activation of the azide
and carbon–carbon triple bond groups and then to a nice correlationω = f (σp), by comparison with
the ortho- and meta-positions.
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Figure 4. Plot of the globalω electrophilicity against the Hammett constants for para substituents in the
alkyne series. The value of the regression coefficient for the least-squares fit to a linear plot is R2 = 0.95.

The resulting regression equations of the logarithm of the global electrophilicity ratio (ω/ωH)
versus the Hammett substituent constants σp of the substituted and unsubstituted molecules at the
ground state for the same series of azides and alkynes, evaluated at the DFT/6-31G(d) level are also
represented in Figures S1 and S2 (Supplementary Materials), obeying Equations (3) and (4), respectively.

Log (ω/ωH) = 0.26 σp + 0.02 (3)

Log (ω/ωH) = 0.40 σp − 0.01 (4)

The two plots represented in Figures 2 and 3, as well as those represented in Figures S1 and S2,
confirm the existence of good linear relationships between both variable parameters, namely the
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global electrophilicity ω descriptor of reactivity and the Hammett substituent constants σp of the
series of azides and alkynes involved in 32CA reactions. However, some improvements can still
be made by taking into account the catalyst used, particularly under the click regime of 32CA
reactions, and evaluating the global electrophilicity of both substrates at a more realistic stage of
the reaction—namely, the transition state (TS). The electrophilicity scale correctly accounts for the
electrophilic activation/deactivation effects promoted by the substituents in the ground state of the
electrophiles involved in 32CA reactions. Indeed, it is proven that the EW substituents increase the
global electrophilicity of the reagent (either azide or alkyne), unlike ER substituents, which behave
oppositely. This behavior is due to the great activation of the azide, and alkyne’s carbon–carbon triple
bond function promoted by electronic resonance effects of the EW substituents, instead of the great
stabilization and then deactivation promoted by the ER groups in the alkyne and azide derivatives.
In light of the above-mentioned results, it appears that the 32CA reaction of a 4-substitued phenyl
azide with an activating EW substituent to a 4-substituted phenyl alkyne with a deactivating ER group
is more favorable, and may lead to a fast and quantitative reaction, and vice-versa.

3. Computational Details

All chemical structures discussed in this study are depicted in Figure 1. They were optimized at
the B3LYP/6-31G(d) level of theory using the Gaussian 09 suite of programs [28].

The global electrophilicity index, ω [22], which measures the stabilization in energy when the
system acquires an additional electronic charge ∆N for the environment, is given by the following
expression,ω = µ2/2η in terms of the electronic chemical potential (µ) and the chemical hardness (η).
Both quantities may be approached in terms of the one-electron energies of the frontier molecular
orbital HOMO and LUMO, and εH and εL as µ = (εH + εL)/2 and η = (εL − εH) respectively [23].
Although absolute values of the reactivity indices can change with the computational level, functionals,
and bass sets, the relative position of the compounds in the corresponding scales does not modify. So,
we have selected the B3LYP/6-31G(d) level used in most of the scales of the reactivity indices [14,29].

4. Conclusions

In conclusion, the linear correlation between the global electrophilicity indices ω and its
logarithm for a series of para-substituted phenyl azide and para-substituted phenyl alkyne compounds
participating in 32CA reactions exhibit a high correlation coefficient with the experimental Hammett
substituent constants σp. The reactivity of both azide and alkyne derivatives is promoted by the
electronic withdrawing and releasing effects of the substituents, leading to their stabilization or
destabilization. A theoretical scale of the global electrophilicity ω of the two series of azides and
alkynes considered in this study by using the global electrophilicity index ω is nicely described for the
first time.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/21/
11/1434/s1.
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