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Abstract: The validity of the maximum hardness principle (MHP) is tested in the cases of 50 chemical
reactions, most of which are organic in nature and exhibit anomeric effect. To explore the effect of
the level of theory on the validity of MHP in an exothermic reaction, B3LYP/6-311++G(2df,3pd) and
LC-BLYP/6-311++G(2df,3pd) (def2-QZVP for iodine and mercury) levels are employed. Different
approximations like the geometric mean of hardness and combined hardness are considered in case
there are multiple reactants and/or products. It is observed that, based on the geometric mean of
hardness, while 82% of the studied reactions obey the MHP at the B3LYP level, 84% of the reactions
follow this rule at the LC-BLYP level. Most of the reactions possess the hardest species on the product
side. A 50% null hypothesis is rejected at a 1% level of significance.

Keywords: density functional theory; maximum hardness principle; anomeric effect; disproportionation
reactions

1. Introduction

The conceptual density functional theory (CDFT) [1,2] has been shown to be useful in
analyzing popular concepts in chemistry like electronegativity (χ) [3–6], chemical hardness (η) [7–10],
electrophilicity (ω) [11–14], etc. The idea of hardness was first introduced by Pearson in the context
of his famous hard-soft acids and bases (HSAB) principle [7,10,15–18], which states that “hard acids
prefer to coordinate with hard bases and soft acids prefer to coordinate with soft bases”. In 1987,
Pearson proposed the maximum hardness principle (MHP) [19] as “there seems to be a rule of nature
that molecules arrange themselves so as to be as hard as possible”. Now, for the ground state of an N
electronic system, hardness (η) is defined as:

η =

(
∂2E
∂N2

)
v(
→
r )

(1)

where E is the total energy of the system, and this equation is valid for constant external
potential (v(

→
r )).

A finite difference approximation to Equation (1) gives

η = (I − A) (2)

where I and A are the ionization potential and electron affinity, respectively.
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Now according to Koopmans’ theorem [20], I and A can be approximated in terms of the
energies of the frontier molecular orbitals (I = −EHOMO and A = −ELUMO) and the Equation (2)
can be modified as

η = (ELUMO − EHOMO) (3)

where EHOMO and ELUMO are the energies of the highest occupied molecular orbital (HOMO) and the
lowest unoccupied molecular orbital (LUMO), respectively.

Thus, the stability of molecules, atoms or ions is connected to their HOMO-LUMO energy
difference. Moreover, the favorable direction of a chemical reaction can also be understood by
comparing the HOMO-LUMO energy gaps of the reactants and the products.

A statistical mechanical proof of the MHP was given by Parr and Chattaraj [21] in 1991. They
showed that the MHP holds good under two conditions; (i) constant electronic chemical potential (µ)
and (ii) constant external potential (v(

→
r )). The validity of MHP has been checked for a wide range of

physico-chemical processes and found to be valid in many situations like internal rotations [22–28],
molecular vibrations [29–32], isomer stability [33], chemical reactions [34–45], Woodward-Hoffmann
rules [46,47], aromaticity [48–50], stability of magic clusters [51], atomic shell structure [52,53],
time-dependent situations [54–56], electronic excitations [57], chaotic ionizations [58], etc. There
are also certain examples in literature where the MHP is not properly obeyed [59–66].

In an article, Poater et al. [67] studied 34 reactions given in the BH76 set, of which 28 are exothermic
and the other 6 reactions are thermoneutral. They found that the products have greater hardness
than the reactants in only 46% of the reactions, and this is reduced to only 18% of the total reactions
upon the inclusion of another criterion, lower hardness in the transition state than that of the reactant.
The reason may be that very hard atoms (like H, N, O, F, etc.) or molecules (like H2, N2, HF, HCN,
CH4, etc.) were present on the reactant side. Recently, Pan et al. studied 101 chemical reactions to
check the validity of the MHP in which most of them were inorganic reactions [68]. The study showed
that the null hypothesis associated with the chemical reactions obeying the MHP is rejected at the 5%
level of significance.

In this article, we are interested in checking whether the MHP is valid in some selected chemical
reactions. For this purpose we have investigated 50 exothermic chemical reactions, the majority of
which are organic, exhibiting a special steroelectronic effect called the anomeric effect [69–71], to
analyze the validity of the MHP therein. Other than this we have studied some disproportionation
reactions [72] in the light of the MHP. The effect of level of theory on the validity of the MHP in the
studied set is also explored. For the reactions involving more than one reactant and/or product, we
have computed the geometric mean (ηgeo) of the η values. Further, the combined hardness (ηcom) of
the product or reactant side is also calculated as the difference between minimum ionization potential
(Imin) and maximum electron affinity (Amax) values, respectively. The performance of these two
approximations is compared in validating the MHP. Statistical testing of the null hypothesis is also
performed in the validity of the MHP in the studied set of reactions.

2. Computational Details Section

Geometries of all of the studied molecules are modeled in the Gaussview 5.0.8 [73] graphical
interface. The geometries are optimized at the DFT level of theory using two different functionals, the
Becke three-parameter hybrid functional combined with Lee–Yang–Parr correlation, B3LYP [74,75]
and long-range corrected LC-BLYP [75–80]. The 6-311++G(2df,3pd) [81,82] basis set is used for the
calculations, except for iodine and mercury. For iodine and mercury, we have used the def2-QZVP [83]
basis set along with effective core potential to take care of the relativistic effects. Frequency calculations
with the optimized geometries are also carried out at the same level of theory. These frequency
calculations are necessary to ensure that the optimized structures are at the minima of the respective
potential energy surfaces. All of the above calculations are performed with the Gaussian 09 program
package [84]. For these computations, we have used a fine grid, a pruned (75,302) grid with 75 radial
shells per atom and 302 angular points per shell, which is the default in the Gaussian 09 program.
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Furthermore, the default values for convergence criteria of the self-consistent field and geometry are
also used.

The I and A values using the Koopmans’ theorem and the η values using Equation (3) are
calculated for each molecule appearing on the reactant and product sides. The combined hardness,
ηcom [30,85,86], is computed as:

ηcom = (Imin − Amax) (4)

where Imin and Amax are the minimum of the ionization potential and the maximum of the electron
affinity values of the molecules appearing on the reactant or product side.

3. Results and Discussion

The computed values of I and A at the B3LYP/6-311++G(2df,3pd)/def2-QZVP and
LC-BLYP/6-311++G(2df,3pd)/def2-QZVP levels for each molecule involved in the considered set of
reactions are tabulated in Table S1 (in Supplementary Materials). It is found that I and A values differ
considerably at these two levels. I values at the LC-BLYP level are found to be higher by 2.74–4.24 eV
than those at the B3LYP level, whereas A values at the former level are lower by 1.06–3.95 eV than
those at the latter level. Interestingly, while the A values are negative in all species studied here
at the LC-BLYP level, they are positive at the B3LYP level. Therefore, not only do these two levels
provide significantly different I and A values quantitatively, but in the case of A they also produce a
qualitatively different trend. Such huge changes in I and A values led us to check whether they provide
similar results in obeying the MHP, despite considerable changes in η values. Note that LC-BLYP
functional was reported to be superior to B3LYP in predicting such properties. The computed η values
of the reactants and products are presented in Tables 1 and 2 obtained from the B3LYP and LC-BLYP
levels, respectively. All of the reactions are exothermic in nature. Therefore, according to the MHP, the
exothermic reactions are expected to have greater hardness on the product side as compared to the
reactant side, considering the entropy effects to be negligible.

3.1. Results at the B3LYP Level

Among the 50 reactions considered here, 41 reactions and thus 82.0% of the total reactions obey
the MHP when the geometric means of the η values are considered, while it is violated in nine reactions
(see Table 1). Among these nine reactions, in two reactions (reaction number 29 and 45) the ηgeo values
in the reactant and product sides are almost same. For these nine reactions which do not follow the
MHP, two major observations can be made: (1) In these reactions, the hardest species like CH4, CF4,
CH2Cl2, and CH3F lie on the reactant side, and (2) species with very small η values are found on
the product side, which makes the geometric mean of the η on the product side lower than that of
the reactant side. However, the comparison of ηcom between the reactants and products reduces the
success of the MHP sharply. It is found that only 23 chemical reactions leading to just 46% of the
total 50 reactions obey the MHP. It may be noted that in many cases the Imin and Amax are associated
with the same reactant and/or product, which leads to the wrong trend. Therefore, for these cases
we discourage the use of ηcom to analyze the validity of the MHP. We have also tested the validity of
the criterion that the hardest species lies on the product side. It is noted that only six reactions among
the reactions in this set violate this criterion (88% of the total reactions obey). Interestingly, four of
nine reactions, which previously disobeyed the MHP based on their ηgeo values, follow this criterion.
In one case (reaction number 34), although ηgeo of products is larger than that of the reactants, the
hardest species, (CH3)2CO, lies on the reactant side.
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Table 1. Hardness (η, eV) values of the individual reactants and products, geometric mean (ηgeo, eV) of the hardness values and combined hardness values (ηcom, eV)
for the reactant and product sides at the B3LYP/6-311++G(2df,3pd)/def2-QZVP (def2-QZVP for iodine and Hg) level for the chemical reactions. The enthalpy changes
(∆H) for the reactions are in kcal/mol.

Reactions ηgeo(R) ηgeo(P) P > R? ηcom(R) ηcom(P) P > R? ∆H #

1. 2CH3F → CH4 + CH2F2 9.49 10.12 Yes 9.49 9.64 Yes −14 [69]
9.49 10.62 9.64

2. 2CH3OH → CH4 + CH2(OH)2 7.41 9.02 Yes 7.41 7.66 Yes −15 ± 5 [69]
7.41 10.62 7.66

3. CH3F + CH3OH → CH4 + FCH2OH 8.39 9.55 Yes 7.41 8.58 Yes −ve [69]
9.49 7.41 10.62 8.58

4. CH3NH2 + CH3OH → CH4 + HOCH2NH2 6.86 8.28 Yes 6.31 6.46 Yes −ve [69]
6.35 7.41 10.62 6.46

5. 2CH3NH2 → CH4 + CH2(NH2)2 6.35 8.00 Yes 6.35 6.03 No −ve [69]
6.35 10.62 6.03

6. CH3NH2 + CH3F → CH4 + FCH2NH2 7.77 8.93 Yes 6.35 7.51 Yes −ve [69]
6.35 9.49 10.62 7.51

7. 2SiH3F → SiH4 + SiH2F2 8.94 9.47 Yes 8.94 9.30 Yes −8 [69]
8.94 9.54 9.41

8. 2CF2Cl2 → CF4 + CCl4 7.84 9.22 Yes 7.84 6.76 No −16.3 [69]
7.84 12.59 6.76

9. 3CH3F → 2CH4 + CHF3 9.49 10.78 Yes 9.49 10.62 Yes −31.4 [69]
9.49 10.62 11.11

10. 4CHF3 → CH4 + 3CF4 11.11 12.07 Yes 11.11 10.62 No −22.9 [69]
11.11 10.62 12.59

11. 4CH3F → 3CH4 + CF4 9.49 11.08 Yes 9.49 10.62 Yes −63 [69]
9.49 10.62 12.59

12. 4CH3Cl → 3CH4 + CCl4 7.81 9.49 Yes 7.81 6.76 No −6 [69]
7.81 10.62 6.76
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Table 1. Cont.

Reactions ηgeo(R) ηgeo(P) P > R? ηcom(R) ηcom(P) P > R? ∆H #

13. 4CH3OCH3 → 3CH4 + C(OCH3)4 7.02 9.77 Yes 7.02 7.59 Yes −52 [69]
7.02 10.62 7.59

14. 4CF3Cl → 3CF4 + CCl4 9.11 10.78 Yes 9.11 6.76 No −27.1 [69]
9.11 12.59 6.76

15. 4CH3CH3 → 3CH4 + C(CH3)4 9.25 10.04 Yes 9.25 8.47 No −13 [69]
9.25 10.62 8.47

16. 4SiH3F → 3SiH4 + SiF4 8.94 10.04 Yes 8.94 8.85 No −23 [69]
8.94 9.54 11.72

17. SiF3H + CF4 → SiF4 + CF3H 11.83 11.41 No 11.11 10.44 No −37 [69]
11.11 12.59 11.72 11.11

18. C(OCH3)4 + SiH4 → CH4 + Si(OCH3)4 8.51 8.98 Yes 7.59 7.60 Yes −144 [69]
7.59 9.54 10.62 7.59

19. 2CH3OH → H2O + (CH3)2O 7.41 7.60 Yes 7.41 6.64 No −6.0 [72]
7.41 8.23 7.02

20. 2HOF → H2O + F2O 7.09 7.39 Yes 7.09 5.82 No −5 ± 3 [72]
7.09 8.23 6.63

21. 2HOCl → H2O + Cl2O 5.99 5.90 No 5.99 4.22 No −1 ± 1 [72]
5.99 8.23 4.22

22. 2CH3SH → H2S + (CH3)2S 6.11 6.28 Yes 6.11 5.55 No −2.8 [72]
6.11 6.78 5.82

23. 2HSSH → H2S + (HS)2S 4.37 6.09 Yes 4.37 5.47 Yes −4.4 [72]
4.37 6.78 5.47

24. 2CH3NH2 → NH3 + (CH3)2NH 6.35 6.47 Yes 6.35 5.77 No −4.5 [72]
6.35 7.05 5.94

25. 2(CH3)2NH → (CH3)3N + CH3NH2 5.94 6.01 Yes 5.94 5.65 No −2.4 [72]
5.94 5.69 6.35

26. 2CH3CH3 → CH4 + (CH3)2CH2 9.25 9.67 Yes 9.25 8.80 No −2.5 [72]
9.25 10.62 8.80
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Table 1. Cont.

Reactions ηgeo(R) ηgeo(P) P > R? ηcom(R) ηcom(P) P > R? ∆H #

27. 2CF3H → CH2F2 + CF4 11.11 11.02 No 11.11 9.64 No −0 ± 2 [72]
11.11 9.64 12.59

28. 2CH3Cl → CH4 + CH2Cl2 7.81 9.03 Yes 7.81 7.68 No −1.5 ± 1.4 [72]
7.81 10.62 7.68

29. CH2Cl2 + CCl4 → 2CHCl3 7.20 7.19 No 6.43 7.19 Yes −2.7 ± 1 [72]
7.68 6.76 7.19

30. CH4 + CH2I2 → 2CH3I 7.21 5.77 No 4.89 5.77 Yes −4.4 [72]
10.62 4.89 5.77

31. 2H(CH3)C=CH2 → H2C=CH2 + (CH3)2C=CH2 6.94 6.98 Yes 6.94 5.56 No −1.3 [72]
6.94 7.40 6.60

32. 2HFC=CF2 → H2C=CF2 + F2C=CF2 7.37 7.42 Yes 7.37 7.34 No −4.5 ± 4 [72]
7.37 7.50 7.34

33. H2C=CCl2 + Cl2C=CCl2 → 2HClC=CCl2 6.12 6.74 Yes 5.82 6.74 Yes −2 ± 4 [72]
6.43 5.82 6.74

34. H2CO + (CH3)2CO → 2CH3CHO 6.10 6.25 Yes 5.31 6.25 Yes −1.7 ± 1.5 [72]
5.94 6.26 6.25

35. COCl2 + (CH3)2CO → 2Cl(CH3)CO 6.61 6.98 Yes 4.98 6.98 Yes −13.5 [72]
6.98 6.26 6.98

36. (CH3)2Hg + Cl2Hg → 2MeHgCl 6.11 6.79 Yes 3.94 6.79 Yes −12 ± 3 [72]
6.39 5.84 6.79

37. 2COS → CO2 + CS2 7.24 7.32 Yes 7.24 5.38 No 0.0 [72]
7.24 9.95 5.38

38. 2CH2CO → CO2 + CH2=C=CH2 5.66 8.58 Yes 5.66 7.00 Yes −27 ± 2 [72]
5.66 9.95 7.40

39. 2CH2CO → CO2 + CH4 5.66 10.28 Yes 5.66 7.24 Yes −60 ± 2 [72]
5.66 9.95 10.62

40. 2CH2CS → CS2 + CH4 4.01 7.56 Yes 4.01 5.38 Yes −30 ± 4 [72]
4.01 5.38 10.62
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Table 1. Cont.

Reactions ηgeo(R) ηgeo(P) P > R? ηcom(R) ηcom(P) P > R? ∆H #

41. 2COCl2 → CO2 + CCl4 6.98 8.20 Yes 6.98 6.76 No −12 [72]
6.98 9.95 6.76

42. 2COF2 → CO2 + CF4 9.26 11.20 Yes 9.26 9.95 Yes −14 ± 4 [72]
9.26 9.95 12.59

43. HC(OH)3 → HCOOH + H2O 8.11 7.99 No 8.11 7.75 No −7 [72]
8.11 7.75 8.23

44. SiH3Cl + CH3F → SiH3F + CH3Cl 8.78 8.36 No 8.63 7.56 No −20 [70]
8.13 9.49 8.94 7.81

45. SiH3PH2 + CH3NH2 → SiH3NH2 + CH3PH2 6.62 6.60 No 6.17 6.46 Yes −16 [70]
6.91 6.35 6.68 6.53

46. SiH3SiH3 + CH3CH3 → 2SiH3CH3 8.54 8.67 Yes 7.89 8.67 Yes −7 [70]
7.89 9.25 8.67

47. SiH3I + HOF → SiH3F + HOI 6.65 6.02 No 5.45 4.05 No −80 [70]
6.25 7.09 8.94 4.05

48. 2CH2F2 → CHF3 + CH3F 9.64 10.27 Yes 9.64 9.49 No −8.5 [71]
9.64 11.11 9.49

49. 2NH2F → NHF2 + NH3 7.51 7.69 Yes 7.51 7.01 No −10.0 [71]
7.51 8.39 7.05

50. 2NHF2 → NF3 + NH2F 8.39 8.66 Yes 8.39 7.51 No −6.0 [71]
8.39 9.99 7.51

# The reference numbers from where the enthalpy values are taken are given in the square brackets. Hardness values (in eV) are provided below each molecule.
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Table 2. Hardness (η, eV) values of the individual reactants and products, geometric mean (ηgeo, eV) of the hardness values and combined hardness values (ηcom, eV)
for the reactant and product sides at the LC-BLYP/6-311++G(2df,3pd)/def2-QZVP (def2-QZVP for iodine and Hg) level of theory for the chemical reactions.
The enthalpy changes (∆H) for the reactions are in kcal/mol.

Reactions ηgeo(R) ηgeo(P) P > R? ηcom(R) ηcom(P) P > R? ∆H #

1. 2CH3F → CH4 + CH2F2 14.10 14.72 Yes 14.10 14.21 Yes −14 [69]
14.10 15.22 14.21

2. 2CH3OH → CH4 + CH2(OH)2 12.08 13.81 Yes 12.08 12.52 Yes −15 ± 5 [69]
12.08 15.22 12.52

3. CH3F + CH3OH → CH4 + FCH2OH 13.05 14.24 Yes 12.08 13.32 Yes −ve [69]
14.10 12.08 15.22 13.32

4. CH3NH2 + CH3OH → CH4 + HOCH2NH2 11.42 12.93 Yes 10.77 10.98 Yes −ve [69]
10.80 12.08 15.22 10.98

5. 2CH3NH2 → CH4 + CH2(NH2)2 10.80 12.62 Yes 10.80 10.47 No −ve [69]
10.80 15.22 10.47

6. CH3NH2 + CH3F → CH4 + FCH2NH2 12.34 13.58 Yes 10.80 12.11 Yes −ve [69]
10.80 14.10 15.22 12.11

7. 2SiH3F → SiH4 + SiH2F2 13.99 14.19 Yes 13.99 14.03 Yes −8 [69]
13.99 14.03 14.34

8. 2CF2Cl2 → CF4 + CCl4 14.01 15.33 Yes 14.01 13.16 No −16.3 [69]
14.01 17.85 13.16

9. 3CH3F → 2CH4 + CHF3 14.10 15.41 Yes 14.10 15.22 Yes −31.4 [69]
14.10 15.22 15.78

10. 4CHF3 → CH4 + 3CF4 15.78 17.16 Yes 15.78 15.22 No −22.9 [69]
15.78 15.22 17.85

11. 4CH3F → 3CH4 + CF4 14.10 15.84 Yes 14.10 15.22 Yes −63 [69]
14.10 15.22 17.85

12. 4CH3Cl → 3CH4 + CCl4 12.41 14.68 Yes 12.41 13.16 Yes −6 [69]
12.41 15.22 13.16



Molecules 2016, 21, 1477 9 of 16

Table 2. Cont.

Reactions ηgeo(R) ηgeo(P) P > R? ηcom(R) ηcom(P) P > R? ∆H #

13. 4CH3OCH3 → 3CH4 + C(OCH3)4 11.48 14.68 Yes 11.48 12.12 Yes −52 [69]
11.48 15.22 12.12

14. 4CF3Cl → 3CF4 + CCl4 14.89 16.54 Yes 14.89 13.16 No −27.1 [69]
14.89 17.85 13.16

15. 4CH3CH3 → 3CH4 + C(CH3)4 13.65 14.60 Yes 13.65 12.89 No −13 [69]
13.65 15.22 12.89

16. 4SiH3F → 3SiH4 + SiF4 13.99 14.79 Yes 13.99 13.89 No −23 [69]
13.99 14.03 17.31

17. SiF3H + CF4 → SiF4 + CF3H 16.90 16.53 No 16.00 15.77 No −37 [69]
16.00 17.85 17.31 15.78

18. C(OCH3)4 + SiH4 → CH4 + Si(OCH3)4 13.04 13.58 Yes 12.12 12.11 No −144 [69]
12.12 14.03 15.22 12.11

19. 2CH3OH → H2O + (CH3)2O 12.08 12.41 Yes 12.08 11.40 No −6.0 [69]
12.08 13.42 11.48

20. 2HOF → H2O + F2O 13.54 13.81 Yes 13.54 1.42 No −5 ± 3 [69]
13.54 13.42 14.22

21. 2HOCl → H2O + Cl2O 11.79 12.02 Yes 11.79 10.76 No −1 ± 1 [69]
11.79 13.42 10.76

22. 2CH3SH → H2S + (CH3)2S 10.58 10.68 Yes 10.58 9.95 No −2.8 [69]
10.58 11.36 10.04

23. 2HSSH → H2S + (HS)2S 11.27 11.19 No 11.27 11.02 No −4.4 [69]
11.27 11.36 11.02

24. 2CH3NH2 → NH3 + (CH3)2NH 10.80 11.00 Yes 10.80 10.26 No −4.5 [69]
10.80 11.80 10.26

25. 2(CH3)2NH → (CH3)3N + CH3NH2 10.26 10.37 Yes 10.26 9.96 No −2.4 [69]
10.26 9.97 10.80

26. 2CH3CH3 → CH4 + (CH3)2CH2 13.65 14.15 Yes 13.65 13.14 No −2.5 [69]
13.65 15.22 13.14
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Table 2. Cont.

Reactions ηgeo(R) ηgeo(P) P > R? ηcom(R) ηcom(P) P > R? ∆H #

27. 2CF3H → CH2F2 + CF4 15.78 15.93 Yes 15.78 14.21 No −0 ± 2 [69]
15.78 14.21 17.85

28. 2CH3Cl → CH4 + CH2Cl2 12.41 13.87 Yes 12.41 12.64 Yes −1.5 ± 1.4 [69]
12.41 15.22 12.64

29. CH2Cl2 + CCl4 → 2CHCl3 12.90 12.88 No 12.64 12.88 Yes −2.7 ± 1 [72]
12.64 13.16 12.88

30. CH4 + CH2I2 → 2CH3I 12.53 10.74 No 10.31 10.74 Yes −4.4 [72]
15.22 10.31 10.74

31. 2H(CH3)C=CH2 → H2C=CH2 + (CH3)2C=CH2 11.24 11.42 Yes 11.24 10.82 No −1.3 [72]
11.24 12.06 10.82

32. 2HFC=CF2 → H2C=CF2 + F2C=CF2 11.88 12.02 Yes 11.88 11.81 No −4.5 ± 4 [72]
11.88 11.94 12.11

33. H2C=CCl2 + Cl2C=CCl2 → 2HClC=CCl2 11.43 11.47 Yes 11.12 11.47 Yes −2 ± 4 [72]
11.49 11.36 11.47

34. H2CO + (CH3)2CO → 2CH3CHO 11.53 11.51 No 11.14 11.51 Yes −1.7 ± 1.5 [72]
11.94 11.14 11.51

35. COCl2 + (CH3)2CO → 2Cl(CH3)CO 12.12 12.40 Yes 11.14 12.40 Yes −13.5 [72]
13.19 11.14 12.40

36. (CH3)2Hg + Cl2Hg → 2MeHgCl 11.32 12.04 Yes 9.89 12.04 Yes −12 ± 3 [72]
10.79 11.88 12.04

37. 2COS → CO2 + CS2 12.63 12.55 No 12.63 10.49 No 0.0 [72]
12.63 15.02 10.49

38. 2CH2CO → CO2 + CH2=C=CH2 11.01 13.25 Yes 11.01 11.69 Yes −27 ± 2 [72]
11.01 15.02 11.69

39. 2CH2CO → CO2 + CH4 11.10 15.12 Yes 11.02 12.41 Yes −60 ± 2 [72]
11.01 15.02 15.22

40. 2CH2CS → CS2 + CH4 9.49 12.64 Yes 9.49 10.49 Yes −30 ± 4 [72]
9.49 10.49 15.22
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Table 2. Cont.

Reactions ηgeo(R) ηgeo(P) P > R? ηcom(R) ηcom(P) P > R? ∆H #

41. 2COCl2 → CO2 + CCl4 13.19 14.06 Yes 13.19 13.16 No −12 [72]
13.19 15.02 13.16

42. 2COF2 → CO2 + CF4 15.09 16.38 Yes 15.09 15.02 No −14 ± 4 [72]
15.09 15.02 17.85

43 HC(OH)3 → HCOOH + H2O 12.83 13.15 Yes 12.83 12.72 No −7 [72]
12.83 12.89 13.42

44. SiH3Cl + CH3F → SiH3F + CH3Cl 13.62 13.18 No 12.96 12.41 No −20 [70]
13.16 14.10 13.99 12.41

45. SiH3PH2 + CH3NH2 → SiH3NH2 + CH3PH2 10.97 11.04 Yes 10.80 10.74 No −16 [70]
11.14 10.80 11.33 10.74

46. SiH3SiH3 + CH3CH3 → 2SiH3CH3 13.07 13.20 Yes 12.14 13.20 Yes −7 [70]
12.14 13.65 13.20

47. SiH3I + HOF → SiH3F + HOI 12.38 11.72 No 11.20 9.82 No −80 [70]
11.31 13.54 13.99 9.82

48. 2CH2F2 → CHF3 + CH3F 14.21 14.92 Yes 14.21 14.10 No −8.5 [71]
14.21 15.78 14.10

49. 2NH2F → NHF2 + NH3 12.24 12.42 Yes 12.24 11.74 No −10.0 [71]
12.24 13.07 11.80

50. 2NHF2 → NF3 + NH2F 13.07 14.09 Yes 13.07 12.24 No −6.0 [71]
13.07 16.22 12.24

# The reference numbers from where the enthalpy values are taken are given within the square brackets. Hardness values (in eV) are provided below the molecules.
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3.2. Results at the LC-BLYP Level

Despite large alteration in η values at the LC-BLYP level compared to those at B3LYP level, the
number of reactions obeying the MHP does not change drastically. In fact, the total number of reactions
obeying the MHP increases slightly at this level. 42 of the total 50 reactions are found to have ηgeo

values higher on the product side than that on the reactant side (see Table 2). Thus, 84% of the total
reactions considered here are found to obey the MHP. Importantly, five of the nine reactions for which
the MHP fails at the B3LYP level also give similar results at the LC-BLYP level. Similar to the previous
level, here the use of the ηcom value yields discouraging results where only 21 (i.e., 42%) reactions
have ηcom values higher on the product side than those on the reactant side. On the other hand, only
eight reactions have the hardest species on the reactant side. Note that five of these eight reactions also
contradict the MHP based on the ηgeo values.

3.3. Test of the Null Hypothesis

Among the 50 reactions considered in Table 1, 41 reactions are found to obey the MHP at
B3LYP/6-311++G(2df,3pd)/def2-QZVP level of theory. Thus, 82.0% reactions obey the MHP. Now we
have tested the validity of the 50% null hypothesis for these set of reactions in Table 1. Let P0 be the
population proportion of the chemical reactions mentioned above, and let us check the null hypothesis

H0:P0 = 0.5 (5)

against the alternative hypothesis,
H1:P0 6= 0.5 (6)

We have fixed the level of significance at 1% to check the null hypothesis. Thus, here the level
of confidence is 99%. Note that the sample proportion (P) is binomial with mean P0 and variance
P0(1 − P0)/n. Here, the sample size is 50, and the distribution of the test statistic calculated by the
following expression,

Z =
(P− P0)√

P0(1−P0)
n

(7)

which may be approximated by the standard normal distribution in case the null hypothesis turns out
to be true.

The null hypothesis will be rejected at the 1% level of significance if the absolute value of the
calculated Z is greater than Z0.005(=2.578). The calculated value for Z is found to be 4.525, which is
greater than Z0.005. Hence, the 50% null hypothesis is rejected at the 1% level of significance and it may
be concluded that the proportion of reactions cannot be considered to be equal to 0.5.

Now let us combine the present set of organic type reactions with the previously
reported inorganic-based reactions [68] to have a large set of total 151 reactions studied at the
B3LYP/6-311++G(2df,3pd)/def2-QZVP level. Among these 151 reactions considered, 103 reactions
have a geometric mean of the hardness of the products higher than the geometric mean of hardness of
the reactants. Thus, 68.2% of reactions obey the MHP. Now we have tested the validity of 50% null
hypothesis for the present sample size of 151 reactions. The Z-value is found to be 4.473, which is
greater than Z0.005(2.578). Hence, the 50% null hypothesis is rejected at the 1% level of significance and
it may be concluded that the proportion of reactions cannot be considered to be equal to 0.5.

Thus, the level of the significance remains more or less same in the case of the 50 reactions as well
as the larger set of the reactions with a sample size of 151. Moreover, it is known from ref. [68] that the
calculated hardness values differ significantly by changing the approximate formulas used, the quality
of the basis set and the level of theory used. In the present cases, both the levels provide qualitatively
similar trends regarding the validity of the MHP.
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4. Conclusions

We have studied 50 exothermic reactions, most of which are organic in nature, exhibiting
anomeric effect to investigate whether the maximum hardness principle (MHP) is valid.
The geometric mean values of hardness and combined hardness of the reactants and the products
are used. The calculations are carried out at the B3LYP/6-311++G(2df,3pd)/def2-QZVP and
LC-BLYP/6-311++G(2df,3pd)/def2-QZVP (def2-QZVP for iodine and Hg) theory level to evaluate the
effect of level of theory on the validation of the MHP in a given set of reactions. The results from the
B3LYP/6-311++G(2df,3pd)/def2-QZVP level show that 82% of the studied reactions obey the MHP as
they have a higher geometric mean of the hardness values on the product side compared to that on the
reactant side. However, when the combined hardness is considered, only 46% of the chemical reactions
obey the MHP at the same level of theory. The results at the LC-BLYP/6-311++G(2df,3pd)/def2-QZVP
level are even marginally better. The geometric mean consideration shows that 84% of the chemical
reactions obey the MHP, while the combined hardness values show that only 42% of the chemical
reactions follow the MHP. At both levels, the number of reactions with the hardest species on the
product side is reasonably high (44 at B3LYP and 42 at LC-BLYP out of 50 reactions). In the case where
a total of 151 reactions are considered, the 50% null hypothesis is rejected at the 1% level of significance.
Therefore, the validity of the MHP in so many reactions is not fortuitous.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/21/11/
1477/s1. The calculated ionization potential (I, eV) and electron affinity (A, eV) at B3LYP/6-311++G(2df,3pd)/
def2-QZVP and LC-BLYP/6-311++G(2df,3pd)/def2-QZVP levels for the molecules are provided in the
supplementary materials.
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