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Abstract: This review presents synthetic procedures applied to the preparation of chiral (mainly
optically active) pentacoordinated, hypervalent mono and bicyclic phosphoranes. The mechanisms
of their stereoisomerization and their selected interconversions are also presented.
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1. Introduction

The phenomenon of chirality plays a very important role in organic chemistry and biological
processes [1–5]. Therefore an easy access to chiral compounds, especially optically active species,
constitutes a vital challenge in modern synthetic organic chemistry. At least two reasons are responsible
for this fact. Firstly, single stereoisomers are used very often as active components in formulations
which serve as drugs, food additives or substances having the requested flavor or fragrance. The second
reason stems from their application as chiral catalysts in various asymmetric reactions [6,7]. Moreover,
detailed mechanistic description of a number of reactions would not be possible without taking into
account their stereochemical aspects. These can be studied only with the use of optically active species
which allow simultaneous application of kinetic and polarimetric measurements carried out with
the use of the suitably designated model substrates (enantiomerically or diastereomerically pure or
enriched samples) containing an appropriate chirality element [8]. In the organophosphorus chemistry
the phenomenon of chirality is very common among organic derivatives having different valency
and/or coordination number [9,10]. Their optical activity can be related to the presence of the following
elements of chirality:

(a) a stereogenic center (for trivalent, tricoordinated, tetravalent tetracoordinated, pentavalent
tetracoordinated derivatives)

(b) “trigonal bipyramidal chirality”
(c) “tetragonal bipyramidal chirality”

Organophosphorus derivatives in which optical activity results from the presence of a phosphorus
atom at a center of trigonal bipyramid, are commonly named phosphoranes [11,12]. They have the
general formula P(La)2(Le)3, where “a” means an axial position and “e” means an equatorial position
(Figure 1).
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concept was for the first time proposed by Musher in 1969) [13]. According to general systematic 
scheme proposed by Martin and coworkers [14,15] [N-P-L (nAmB) coding system, in which N stands 
for the number of valence electrons associated formally with a central phosphorus atom and L shows 
the number of ligands (A and B stand for the bonding element)]—this group should be considered 
as the family of 10-P-5 derivatives. The definition of hypervalency is also formally fulfilled by the 
corresponding phosphonium ylides (in which a phosphorus atom has also expanded its formal valence 
shell from 8 to 10 electrons). However, when one considers that the important resonance structures of 
these compounds are polarized from phosphorus to carbon it becomes evident that they represent  
8-P-4 species (Figure 2). Therefore they do not meet the condition of hypervalency and they are 
excluded from this review. 
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The nature of bonding of hypervalent derivatives is presented in details in a few chapters of “The 
Chemistry of Hypervalent Compounds” [16,17] and more recently has again been studied using the 
topological analysis of the electron localization function (ELF)” [18]. Their structure and reactivity 
are dominated by the weak three-center-four-electron (3c-4e) bond. Its weakness results from the fact 
that two of the four electrons that participate in the bonding are in a nonbonding molecular orbital. 

Phosphoranes, like other compounds having a trigonal bipyramide (TBP) geometry can exist in 
an enantiomeric form when the number of different ligands is sufficiently large to induce chirality of 
such a structure. For 10-P-5 derivatives having the general structure with five substituents (Figure 1) 
bonded to the central phosphorus atom the numbers of achiral and chiral structures are given in Table 1. 
According to the Mutterties rule [19] in hypervalent structures the more electronegative ligands tend 
to occupy the apical positions whereas the lone electron pair “should be located at the equatorial 
position” [19]. Moreover, “five- and six-membered rings, which stabilize the hypervalent molecules, 
span both the axial and equatorial positions” [14]. 

Table 1. Number of chiral and achiral species of 10-P-5 (TBP geometry). 

General Structure Number of Different Structures and Their Chirality 
PL5 1 achiral 

PL14L2 2 achiral 
PL13L22 3 achiral 

PL13L2L3 2 achiral and 2 pairs of enantiomers 
PL12L22L3 2 achiral and 3 pairs of enantiomers 

PL12L2L3L4 1 achiral and 6 pairs of enantiomers 
PL1L2L3L4L5 10 pairs of enantiomers 

It is evident from this table that phosphoranes containing at least three different ligands can be 
chiral and for structures PL12L22L3 chirality may appear in the symmetric bicyclic spiro derivatives 

Figure 1. General formula of a phosphorus-containing trigonal bipyramid.

They constitute the family of hypervalent derivatives, showing “trigonal bipyramidal chirality”
in which the central phosphorus atom has expanded its valence shell from 8 to 10 electrons (the
concept was for the first time proposed by Musher in 1969) [13]. According to general systematic
scheme proposed by Martin and coworkers [14,15] [N-P-L (nAmB) coding system, in which N stands
for the number of valence electrons associated formally with a central phosphorus atom and L shows
the number of ligands (A and B stand for the bonding element)]—this group should be considered
as the family of 10-P-5 derivatives. The definition of hypervalency is also formally fulfilled by the
corresponding phosphonium ylides (in which a phosphorus atom has also expanded its formal valence
shell from 8 to 10 electrons). However, when one considers that the important resonance structures of
these compounds are polarized from phosphorus to carbon it becomes evident that they represent 8-P-4
species (Figure 2). Therefore they do not meet the condition of hypervalency and they are excluded
from this review.

Molecules 2016, 21, 1573 2 of 43 

 

 
Figure 1. General formula of a phosphorus-containing trigonal bipyramid. 

They constitute the family of hypervalent derivatives, showing “trigonal bipyramidal chirality” 
in which the central phosphorus atom has expanded its valence shell from 8 to 10 electrons (the 
concept was for the first time proposed by Musher in 1969) [13]. According to general systematic 
scheme proposed by Martin and coworkers [14,15] [N-P-L (nAmB) coding system, in which N stands 
for the number of valence electrons associated formally with a central phosphorus atom and L shows 
the number of ligands (A and B stand for the bonding element)]—this group should be considered 
as the family of 10-P-5 derivatives. The definition of hypervalency is also formally fulfilled by the 
corresponding phosphonium ylides (in which a phosphorus atom has also expanded its formal valence 
shell from 8 to 10 electrons). However, when one considers that the important resonance structures of 
these compounds are polarized from phosphorus to carbon it becomes evident that they represent  
8-P-4 species (Figure 2). Therefore they do not meet the condition of hypervalency and they are 
excluded from this review. 

 
Figure 2. Resonance structure of phosphonium ylides. 

The nature of bonding of hypervalent derivatives is presented in details in a few chapters of “The 
Chemistry of Hypervalent Compounds” [16,17] and more recently has again been studied using the 
topological analysis of the electron localization function (ELF)” [18]. Their structure and reactivity 
are dominated by the weak three-center-four-electron (3c-4e) bond. Its weakness results from the fact 
that two of the four electrons that participate in the bonding are in a nonbonding molecular orbital. 

Phosphoranes, like other compounds having a trigonal bipyramide (TBP) geometry can exist in 
an enantiomeric form when the number of different ligands is sufficiently large to induce chirality of 
such a structure. For 10-P-5 derivatives having the general structure with five substituents (Figure 1) 
bonded to the central phosphorus atom the numbers of achiral and chiral structures are given in Table 1. 
According to the Mutterties rule [19] in hypervalent structures the more electronegative ligands tend 
to occupy the apical positions whereas the lone electron pair “should be located at the equatorial 
position” [19]. Moreover, “five- and six-membered rings, which stabilize the hypervalent molecules, 
span both the axial and equatorial positions” [14]. 

Table 1. Number of chiral and achiral species of 10-P-5 (TBP geometry). 

General Structure Number of Different Structures and Their Chirality 
PL5 1 achiral 

PL14L2 2 achiral 
PL13L22 3 achiral 

PL13L2L3 2 achiral and 2 pairs of enantiomers 
PL12L22L3 2 achiral and 3 pairs of enantiomers 

PL12L2L3L4 1 achiral and 6 pairs of enantiomers 
PL1L2L3L4L5 10 pairs of enantiomers 

It is evident from this table that phosphoranes containing at least three different ligands can be 
chiral and for structures PL12L22L3 chirality may appear in the symmetric bicyclic spiro derivatives 

Figure 2. Resonance structure of phosphonium ylides.

The nature of bonding of hypervalent derivatives is presented in details in a few chapters of
“The Chemistry of Hypervalent Compounds” [16,17] and more recently has again been studied using the
topological analysis of the electron localization function (ELF)” [18]. Their structure and reactivity are
dominated by the weak three-center-four-electron (3c-4e) bond. Its weakness results from the fact that
two of the four electrons that participate in the bonding are in a nonbonding molecular orbital.

Phosphoranes, like other compounds having a trigonal bipyramide (TBP) geometry can exist in
an enantiomeric form when the number of different ligands is sufficiently large to induce chirality of
such a structure. For 10-P-5 derivatives having the general structure with five substituents (Figure 1)
bonded to the central phosphorus atom the numbers of achiral and chiral structures are given in
Table 1. According to the Mutterties rule [19] in hypervalent structures the more electronegative
ligands tend to occupy the apical positions whereas the lone electron pair “should be located at the
equatorial position” [19]. Moreover, “five- and six-membered rings, which stabilize the hypervalent
molecules, span both the axial and equatorial positions” [14].

Table 1. Number of chiral and achiral species of 10-P-5 (TBP geometry).

General Structure Number of Different Structures and Their Chirality

PL5 1 achiral
PL1

4L2 2 achiral
PL1

3L2
2 3 achiral

PL1
3L2L3 2 achiral and 2 pairs of enantiomers

PL1
2L2

2L3 2 achiral and 3 pairs of enantiomers
PL1

2L2L3L4 1 achiral and 6 pairs of enantiomers
PL1L2L3L4L5 10 pairs of enantiomers

It is evident from this table that phosphoranes containing at least three different ligands can be
chiral and for structures PL1

2L2
2L3 chirality may appear in the symmetric bicyclic spiro derivatives
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(Figure 3). Therefore, from the synthetic point of view, hypervalent structures exhibiting chirality due to
the presence of one or two bidentate ligands should be more easily available than its acyclic analogues.
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hexacoordinated organophosphorus derivatives included in the subsequent volumes of RSC 
monographic series “Organophosphorus Chemistry” [32–43]. In this respect, a very recent review 
highlighting methods for the asymmetric synthesis of P-chiral pentacoordinated spirophosphoranes 
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2. Chiral Hypervalent Phosphoranes and Their Anions 
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In hypervalent phosphoranes 10-P-5 the apical and equatorial ligands can be interchanged with
each other according to the Berry pseudorotation mechanism (BPR) [20–22] (Scheme 1) or by the
“turnstile” rotation mechanism (TR) proposed by Ugi and Ramirez [23–26] (Scheme 2). It should
be noted here that the very recent DFT calculations of the fluxional behavior of experimentally
known pentavalent molecules have suggested the equivalence of the turnstile rotation with the Berry
pseudorotation. This suggestion is based on identification of three principal mechanisms by which the
substituents interchange can be achieved (Berry pseudorotation, threefold cyclic permutation, and
half-twist axial-equatorial interchange) [27].
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As early as 1949, Wittig and Rieber [28] reported isolation of pentaphenylphosphorane as
the first example of a pentacoordinated organophosphorus derivative. However, a real opening
in the hypervalent organophosphorus chemistry can be ascribed to a much later finding that the
Ramirez reaction affords oxyphosphoranes by an oxidative addition of α-diketones to trivalent
phosphines [29,30] and Westheimer’s proposal that a pentacoordinate phosphorane (able to
stereomutate by pseudorotation) is involved in the hydrolysis of phosphoric esters [31]. Since that
time, studies devoted to the synthesis, structural determinations, stereochemistry and reactivity of
this group of the organophosphorus derivatives, have been carried out in a number of academic
and industrial laboratories. Their results are regularly published in renowned chemical journals and,
fortunately for those who work on these topics, are regularly presented in the chapters devoted to
penta- and hexacoordinated organophosphorus derivatives included in the subsequent volumes of
RSC monographic series “Organophosphorus Chemistry” [32–43]. In this respect, a very recent review
highlighting methods for the asymmetric synthesis of P-chiral pentacoordinated spirophosphoranes
should also be mentioned [44].

2. Chiral Hypervalent Phosphoranes and Their Anions

2.1. Chiral Phosphoranes as Reactive Intermediates

In most cases the papers describing the involvement of unstable chiral phosphoranes as reactive
intermediates tackle the problem of the mechanism of SN-P reactions. This is connected with the fact
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that a nucleophilic substitution at phosphorus can occur either synchronously according to an SN2-P
mechanism or in a stepwise manner by an addition-elimination mechanism (A-E). The later involves
formation of a phosphorane as an intermediate, by the addition of a nucleophiles (Nu) to a chiral
substrate. It is now generally accepted that diaxial or diequatorial disposal of entering “Nu” and
leaving “L” groups in a trigonal bipyramidal structure of a transient or intermediary phosphorane
should lead to inversion of the configuration at phosphorus while the steric course of axial-equatorial
substitution (which is possible if a phosphorane intermediate undergoes pseudorotation) is predicted
to be a retention (Scheme 3).
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The stereochemical consequences (retention or inversion) of such substitution reactions may be
conveniently discussed with the aid of the Desargues–Levi graph [45], which originally was proposed
by Mislow [46] for stereoisomerization of pentacoordinate phosphoranes.

The participation of such chiral phosphoranes I–V as intermediates and their pseudorotation
was suggested by Juge and coworkers [47] to explain retention of configuration during the
rearrangement of the lithium salts 2a–c derived from the 2-bromophenylphosphinite boranes 1a–c to
the o-hydroxyphenylphosphine boranes 3a–c induced by halogen–metal exchange (Scheme 4) [47].
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Earlier the same group proposed that pseudorotation of the intermediate phosphoranes VI, VII
was responsible for predominant retention of configuration during the regiospecific ring opening
reaction of the diastereomerically pure dioxaphospholane borane 4 with organolithium reagents which
afforded phosphinite boranes 7a,b (Scheme 5) [48].
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Similarly, the participation of the chiral hydridophosphorane 12 as an intermediate in the 
intramolecular transesterification of the 2-hydroxyphenyl phosphite 11 to the 3-hydroxypropyl 
phosphite 13 (Scheme 7) was supported by low temperature 31P-NMR measurements [50]. 
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As another example of such a transformation, hydrolysis of quasiphosphonium salts, cis- and
trans-3-methoxy-2,2,6-trimethyl-3-phenyl-1,3-oxaphosphorinanium tetrafluoroborate salts 8a and 8b
can be presented, by which the corresponding phosphine oxides 9a and 9b were formed with complete
retention of configuration at phosphorus. The detailed NMR and stereochemical studies allow
rationalization of the stereochemical outcome of this reaction in terms of the addition-elimination
mechanism, A-E, involving two hydroxyphosphorane intermediates 10a and 10b (that are able to
undergo pseudorotation) in which at least one oxygen is apical as shown in Scheme 6 [49].
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Similarly, the participation of the chiral hydridophosphorane 12 as an intermediate in the
intramolecular transesterification of the 2-hydroxyphenyl phosphite 11 to the 3-hydroxypropyl
phosphite 13 (Scheme 7) was supported by low temperature 31P-NMR measurements [50].
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Earlier, the participation of chiral hydridophosphoranes was proposed in the intermolecular
transesterification of chiral asymmetric phenyl phosphites [51] and in the addition of achiral
alcohols to compounds having a stereogenic tricoordinated phosphorus atom [52] and very recently
in the hydrolysis of a trinucleoside monophosphate by the intramolecular 2α-hydroxy group
neighbouring the scissile phosphodiester linkage [53]. The regioselective formation of chiral
3-hydroxypropylphosphinates 17 from cyclic oxaphospholane 14 and Grignard reagents was explained
by assuming that during the reactions a pentavalent TBP phosphorane intermediate 15 is formed,
which could not undergo pseudorotation to generate another phosphorane 16 due to a high energetic
barrier. Therefore, the endocyclic P–O bond in 15 is cleaved almost exclusively to form the phosphinates
17 in high yields (Scheme 8) [54].
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2.2. Chiral Phosphoranes and Their Anions as Isolable Species

As it was mentioned above, from the synthetic point of view, hypervalent structures exhibiting
chirality due to the presence of one or two bidentate ligands should be more easily available than
their acyclic analogues. Therefore, the majority of isolated hypervalent phosphoranes constitute mono-
and especially bicylic derivatives in which a cyclic frame include pentacoordinated phosphorus atom
bonded to a carbon and/or heteroatoms.

2.2.1. Chiral Monocyclic Phosphoranes and Their Anions as Isolable Species

The non-concerted [2 + 2] cycloaddition reaction of P-haloylides 18 with trifluorometyl ketones
led to the stereoselective formation of monocyclic halophosphoranes 19 (Scheme 9) [55].
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Scheme 9. Monocyclic halophosphoranes 19.

The monocyclic vinyl phosphoranes 21 were prepared by the reaction of cyclic phosphite 20 with
dimethyl acetylenedicarboxylate in the presence of the appropriate phenol (Scheme 10) [56].
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The formation of monocyclic phosphorane 23 was observed in the reaction of ylide 22 with
hexafluoroacetone (Scheme 11) [57].
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A similar reaction of ylide 24 with hexafluoroacetone gave monocyclic phosphorene 25
(Scheme 12) [57].
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The tricoordinate organophosphorus derivatives 26a–c were found to react with hexafluoroacetone
to give chiral monocyclic phosphoranes 27a–c (Scheme 13) in which no ligand exchange processes
were observed at room temperature. However, the chiral phosphonic acid ester 29 was isolated upon
hydrolysis of the chlorophosphorane 27a, which proceeds most probably via hydroxyphosphorane 28
(Scheme 13) [58].
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Preparation of monocyclic halophosphoranes 31a,b and 31c was based on the reaction of
the tricoordinate phosphinites 30a,b with benzyl chloride or benzyl bromide. The corresponding
fluorophosphoranes 31d or 31e were isolated upon the chloride-fluoride or bromide-fluoride exchange
reactions when the chloride 31a or bromide 31c were used as a substrate respectively (Scheme 14) [59].
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Scheme 14. Preparation of monocyclic halophosphoranes 31a–e.

Monocyclic (ethylthio)fluorophosphorane 34 was isolated in quantitative yield upon fluoride
anion abstraction from BF4 counter anion of phosphonium salt 33 easily generated by the reaction
of cyclic phosphinothionate 32 with triethyloxonium tetrafluoroborate. Defluorination of the
fluorophosphorane 34 with trimethylsilyl trifluoromethanesulfonate gave phosphonium salt 35 [60]
(Scheme 15).
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2.2.2. Chiral Bicyclic Phosphoranes and Their Anions as Isolable Species

A relatively rich number of isolable bicyclic hypervalent phosphoranes have been well
documented in the older and more recent chapters by Hellwinkel [61], Burger [62], Holmes [63],
Husband and McNab [64], Burgada and Setton [65], Akiba [16], and Kawashima [66]. These chapters
mention, more or less extensively, chiral bicyclic phosphoranes, but without deeper comments devoted
to the phenomenon of chirality in such derivatives. Therefore, in this part of our compilation we
are going to present, as comprehensively as possible, isolable hypervalent derivatives in which their
chirality results from the presence of two heterocyclic units forming a P-spiro system. They are divided
in accord with the commonly accepted Martin’s N-P-L (nAmB) coding system, in which N stands for
the number of valence electrons associated formally with a central phosphorus atom and L shows the
number of ligands (A and B stand for the bonding element) [14].

10P-5C Phosphoranes

Hellwinkel as early as 1966 reported on the isolation of the first optically active
pentaarylphosphorane. Initially, hexacoordinate phosphorane potassium salt 37 was synthesized
in good yield in racemic form by the reaction of bis(biphenyl)phosphonium iodide 36 with 2,2′-dilithio-
4-methyl-biphenyl. The optical resolution of the racemic salt 37 was based on its conversion into
two diastereomeric ammonium salts by the treatment with N-methylammonium iodide derived
from brucine. The isolation of the levorotatory diastereoisomer ([α]578 = −1200) was achieved in
moderate yield by recrystallization of a crude crystalline fraction from acetone. The dextrorotatory
diastereoisomer of the ammonium salt was isolated from a mother liquor in poor yield and with
a lower optical purity ([α]578 = +986). The isolated diastereoisomers were reconverted into the
enantiomeric potassium salts upon the treatment with potassium iodide in acetone followed by
repeating crystallizations. Their maximum specific rotation reached values [α]578 = + and −1870.
Acidification of optically active potassium salts of hexacoordinate phosphorus derivatives (+) and
(−)-37 with HCl in methanol/acetone solution provided the mixture of spirophosphoranes from
which enantiomeric spirophosphoranes 38 having [α]578 = + and −94, respectively were isolated by
multiple recrystallization (Scheme 16). Additionally, the structure of 38 as a racemate was confirmed
by the alternative method for its preparation using biphenyl-biphenylyl-2-phosphine 39 as the starting
material (Scheme 17) [67].
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Scheme 17. Preparation of 38 using biphenyl-biphenylyl-2-phosphine 39.

More recently the reaction of spirocyclotetraalkylphosphonium salts 41 with a series of
organolithium reagents RLi, was found to give spirobicyclophosphoranes 42a–e in good to low yields
(Scheme 18). Single crystal X-ray analysis of 42a showed a TBP geometry with the axial-equatorial
rings and the methyl group in an equatorial position. Low temperature NMR measurements indicated
that all the pentacoordinate structures 42 show fluxional behaviour in a solution with a very low
pseudorotation barrier [68].
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10P-4C-1O Phosphoranes

Oxaphosphetane (OPA) is a widely recognized intermediate formed via an irreversible [2 + 2]
cycloaddition of an aldehyde or ketone with the phosphonium ylide in the Wittig reactions.
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The stereoselectivity of the reaction is decided by the course of the first irreversible step. Then,
the oxaphosphetane undergoes irreversible [2 + 2] syn cycloreversion to give an alkene and
phosphine oxide. In most cases the diastereomeric ratio of the oxaphosphetane (OPA) intermediate
exactly corresponds to the final alkene, except the cases when a stereochemical drift occurs in the
formation of the alkene product. The process “stereochemical drift” refers to the nonstereospecific
decomposition of the oxaphosphetane (OPA) intermediate in reactions of certain alkylides with
certain aldehydes. The particular investigations on the stereochemical drift in the Wittig reactions
(alkylidenephosphonium ylide with aldehydes) under Li-salt-free conditions were undertaken by
D. G. Gilheany et al. [69], and based on Variable-Temperature NMR measurements. A particularly
suitable candidate for the study of stereochemical drift was intermediate 44a formed in the reaction of
biphenylphenylethylidene-phosphonium ylide 43 with 2-bromobenzaldehyde. It is due to its stability
at room temperature (Scheme 19). It undergoes significant stereochemical drift on decomposition
in THF at reflux: A sample containing cis- and trans-44a in a ratio of 94:6 gave alkenes of a (Z)/(E)
ratio 82:18 under reflux conditions. On the other hand, the decomposition conducted at 50 ◦C was
not complete after 6d, but the maximum possible (Z)/(E) ratio that could have been achieved in
this reaction was 88:12, revealing that a smaller amount of the stereochemical drift had occurred.
A very similar experiment supported with VTNMR spectra analysis over the temperature range−20 to
+40 ◦C on 44b (produced in the reaction of biphenylphenylethylidenephosphonium ylide 43 and
benzaldehyde) was performed. Oxaphosphetane intermediate 44b was formed in a diastereomeric
ratio 71:29 (cis/trans). Again, the ratio of OPA, ylide and phosphine oxide was invariant within the
temperature range from −20 to 30 ◦C, which indicates that no decomposition to alkene and phosphine
oxide occurred. On heating the OPA 44b was decomposed to produce the alkene in 53:47 (Z)/(E)
isomeric ratio. In the 31P NMR spectra recorded for 44a and 44b in the presence of an excess aldehyde
additional signals appeared in the pentavalent region (δ = −50 to −80 ppm). The observation was
consistent with that reported earlier by Vedejs et al. [70]. Thus, the apparent interaction between OPA
and aldehyde was expected to have an impact on the occurrence of the stereochemical drift.
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10P-3C-1N-1O Phosphoranes

In 1996 Kawashima and Okazaki succeeded in preparing pentacoordinate N-apical
1,2-azaphosphetidines, whose structures were fully characterized. They also investigated their
thermolysis. The first observation on the occurrence of the N-equatorial pseudorotamers was also
reported [71]. The synthetic pathway was as follows: the treatment of 2-(methylphenylphosphinyl)-α,
α-bis(trifluoromethyl)phenylmethanol 45 with n-BuLi led to the generation of methylene carbanion
species, which subsequently underwent nucleophilic addition to a Schiff base providing the
β-aminoethyl derivative 46. 1,2-Azaphosphetidine 47 was formed in 93% yield by intramolecular
cyclization followed by dehydration under the Mitsunobu reaction condition (Scheme 20).
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corresponding α-iminoalkylidenephosphoranes via a [2 + 2]-cycloadduct. The intermediate had 
neither been observed nor isolated until the first stable pentacoordinate l,2-λ5-azaphosphetine 51 was 
synthesized by Kawashima et al. [74]. Its preparation was achieved by the cycloaddition reaction of 
the Martin ligand-based iminophosphorane 50 with an alkyne (Scheme 23). X-Ray crystallography of 
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NMR spectra of 51 in C7D8 or CD3CN showed a shift to a lower field with decreasing temperature 
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A typical chemical shift in the NMR spectra was observed for compounds with a TBP geometry
in which an apical position was occupied with O or N atom. X-ray single crystal analysis revealed
the distorted TBP geometry with phosphorus as a central core. Hydrolysis of 47 on silica gel resulted
in its cycloreversion to the starting material 46. Finally, 1,2-azaphosphetidine 47 was converted
into the 3-methoxycarbonyl derivative 48, likewise it had been reported, for the corresponding
1,2-λ5-oxaphosphetanes [72,73]. In the 31P-NMR spectrum recorded for the solution of 47 in deuterated
toluene, apart from the appropriate resonance signal (δP = −29.9), another upfielded peak (δP = −50.9),
was observed which was assigned to the N-equatorial pseudorotamer 49 (Scheme 21). A similar
pseudorotamer (δP = −51) was observed also in the case of 48.
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Thermolysis of 47 or 48 proceeded with the quantitative formation of the corresponding alkenes
and iminophosphorane (Scheme 22), which implies that azaphosphetidines should be considered as
aza-Wittig intermediates.
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Scheme 22. Thermolysis of 47 or 48.

The reaction of an iminophosphorane, the nitrogen analogue of a phosphonium ylide, with
a reactive alkyne has been intensely studied because it constitutes a useful synthetic pathway for
the corresponding α-iminoalkylidenephosphoranes via a [2 + 2]-cycloadduct. The intermediate had
neither been observed nor isolated until the first stable pentacoordinate l,2-λ5-azaphosphetine 51 was
synthesized by Kawashima et al. [74]. Its preparation was achieved by the cycloaddition reaction of
the Martin ligand-based iminophosphorane 50 with an alkyne (Scheme 23). X-ray crystallography of
51 showed a distorted TBP with N and O atoms at the apical positions. The variable temperature 31P
NMR spectra of 51 in C7D8 or CD3CN showed a shift to a lower field with decreasing temperature
indicating that (51) was in an equilibrium with the corresponding ylide structure 52.
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the Wittig intermediate products. Spiro-oxaphosphetanes 54–58, stabilized by the presence of the o-
benzamide moiety, were found to be good candidates for the studies [75]. The OPA’s 54–56 were 
obtained according to the previously reported procedure [76] (Scheme 24). The reactions with the 
hindered ketone, L-(−)-camphor, gave products 57 and 58 (in a 45:55 ratio) arising from the endo attack 
at the CO group of L-camphor. 
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All thermal decompositions of OPAs 54–58 furnished the appropriate alkenes and a phosphinamide, 
quantitatively. On the thermolysis of 55–58, partial isomerization to 55a–58a was observed, which 
resulted in the inverted configuration at phosphorus atom. It has been found that oxaphosphetane 
decomposition took place in a single step via a polar transition state. For the first time the 
stereomutation through three possible mechanisms MB2, MB3, and MB4 involving two, three, and 
four Berry pseudorotations (at phosphorus atom), respectively, supported by DFT calculations has 
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Scheme 23. Cycloaddition reaction of the iminophosphorane 50 with an alkyne.

The isomerization and thermal decomposition of isolable spiro-1,2-oxaphosphetanes has been
studied in details with the aim to recognize a stereomutation mechanism of spiro-1,2-oxaphosphetanes,
the Wittig intermediate products. Spiro-oxaphosphetanes 54–58, stabilized by the presence of the
o-benzamide moiety, were found to be good candidates for the studies [75]. The OPA’s 54–56 were
obtained according to the previously reported procedure [76] (Scheme 24). The reactions with the
hindered ketone, L-(−)-camphor, gave products 57 and 58 (in a 45:55 ratio) arising from the endo attack
at the CO group of L-camphor.
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Scheme 24. Synthesis of spiro-oxaphosphetanes 54–58 and their thermal decompositions.

All thermal decompositions of OPAs 54–58 furnished the appropriate alkenes and a phosphinamide,
quantitatively. On the thermolysis of 55–58, partial isomerization to 55a–58a was observed, which
resulted in the inverted configuration at phosphorus atom. It has been found that oxaphosphetane
decomposition took place in a single step via a polar transition state. For the first time the
stereomutation through three possible mechanisms MB2, MB3, and MB4 involving two, three, and four
Berry pseudorotations (at phosphorus atom), respectively, supported by DFT calculations has been
evidenced [75].
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10P-3C-2O Phosphoranes

The first configurationally stable enantiomeric pair of 10-P-3C-2O phosphoranes with well-defined
sole stereogenic centre at phosphorus atom was successfully obtained and characterized by
Akiba et al. [77]. The synthesis of diastereomeric 60-(RP) and 60-(SP) was achieved via a facile
alkylation of the in situ generated phosphoranide anion by (−)-menthyl chloroacetate in 87% yield
(Scheme 25). The diastereomeric mixture could be resolved effectively by fractional crystallization
to furnish 60-(RP) in 25% and 60-(SP) in 22% yield. Thus, the separation and the selection of suitable
crystals allowed for the determination of absolute configurations for both diastereoisomers by X-ray
diffraction. The alkylation of P–H phosphorane derivatives was recognized to proceed with complete
retention of configuration at the phosphorus sterereogenic centre, most probably due to no detectable
racemization at the step of phosphoranide intermediate formation.
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Scheme 25. Synthesis of diastereomeric phosphoranes 60 and enantiomeric phosphoranes 61.

The removal of the menthyl unit by treating the diastereoisomers 60-(RP) and 60-(SP) with
an excess of LiAlH4 provided the enantiomerically pure phosphoranes 61-(RP) and 61-(SP), respectively,
with a single chirality center at the pentacoordinated phosphorus atom. In order to verify enantiomeric
purity of the obtained P-chiral 2-hydroxyethylphosphoranes 61, they were converted into the (R)-(+)
Mosher esters 62 using (R)-(+)-2-methoxy-2-(trifluoromethyl)phenylacetic acid chloride ((+)-MTPA-Cl))
(Scheme 26) [78].
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Scheme 26. Conversion of phosphoranes 61 to esters 62.

Independently, the H-phosphorane 59 was converted (by the treatment with n-BuLi) into an anion,
which was reacted with CH2I2 affording the alkylating product 63 in 82% yield. Subsequently
α-iodomethyl phosphorane derivative was treated with α-methylbenzylamine to give a diastereomeric
mixture of 64 in 56% yield (Scheme 27). The pure diastereoisomers were isolated by recrystallization
and their absolute configuration was determined by X-ray analysis.

It was also found that deprotonation of the nitrogen-bonded proton in each single diastereomer
64 afforded enantiomeric phosphoroanidates 65-(RP) and 65-(SP) (via imine elimination). They, after
acidification, gave the desired optically active P-H phosphoranes 59-(RP) and 59-(SP) (Scheme 28).



Molecules 2016, 21, 1573 15 of 44

Molecules 2016, 21, 1573 15 of 43 

 

 
Scheme 27. Synthesis of diastereomeric phosphoranes 64. 

 
Scheme 28. Conversion of diastereomeric phosphoranes 64 to enantiomeric phosphoranes 59. 

Later on, Akiba and co-workers reported the first example of an “anti-apicophilic” (O-cis) 
spirophosphoranes 67 [79–81], in which the oxygen atom occupies an equatorial position and the carbon 
atom is located in an apical position of a five membered ring, which is in contrast to the general concept 
of apicophilicity. According to the procedure shown in Scheme 29 (O-cis) phosphoranes 66 were obtained. 
The treatment of P–H phosphorane 59 with an excess of alkyl(aryl)lithium resulted in the formation of a 
dianionic intermediate which upon treatment with I2, as an oxidizing agent, afforded P–I equatorial 
phosphorane. Its cyclization, initiated by the nucleophilic attack of the alkoxide anion at the phosphorous 
centre and the simultaneous extrusion of I− produced O-cis-alkyl-or aryl spirophosphoranes 66. 

 
Scheme 29. Synthesis of (O-cis) spirophosphoranes 66 and their stereomutation to (O-trans) phosphoranes 67. 

The effects of substituents in the monodentate aryl ring of O-cis arylphosphoranes on the 
stereomutation process, along with a kinetic study on the stereomutation of O-cis 66k–n to O-trans 
67k–n were studied in details. The exclusive generation of O-cis 66 could be observed for the alkyl 
derivatives 66a–c right after oxidation, however, in the case of the phenyl derivative 66d the O-cis 

Scheme 27. Synthesis of diastereomeric phosphoranes 64.

Molecules 2016, 21, 1573 15 of 43 

 

 
Scheme 27. Synthesis of diastereomeric phosphoranes 64. 

 
Scheme 28. Conversion of diastereomeric phosphoranes 64 to enantiomeric phosphoranes 59. 

Later on, Akiba and co-workers reported the first example of an “anti-apicophilic” (O-cis) 
spirophosphoranes 67 [79–81], in which the oxygen atom occupies an equatorial position and the carbon 
atom is located in an apical position of a five membered ring, which is in contrast to the general concept 
of apicophilicity. According to the procedure shown in Scheme 29 (O-cis) phosphoranes 66 were obtained. 
The treatment of P–H phosphorane 59 with an excess of alkyl(aryl)lithium resulted in the formation of a 
dianionic intermediate which upon treatment with I2, as an oxidizing agent, afforded P–I equatorial 
phosphorane. Its cyclization, initiated by the nucleophilic attack of the alkoxide anion at the phosphorous 
centre and the simultaneous extrusion of I− produced O-cis-alkyl-or aryl spirophosphoranes 66. 

 
Scheme 29. Synthesis of (O-cis) spirophosphoranes 66 and their stereomutation to (O-trans) phosphoranes 67. 

The effects of substituents in the monodentate aryl ring of O-cis arylphosphoranes on the 
stereomutation process, along with a kinetic study on the stereomutation of O-cis 66k–n to O-trans 
67k–n were studied in details. The exclusive generation of O-cis 66 could be observed for the alkyl 
derivatives 66a–c right after oxidation, however, in the case of the phenyl derivative 66d the O-cis 

Scheme 28. Conversion of diastereomeric phosphoranes 64 to enantiomeric phosphoranes 59.

Later on, Akiba and co-workers reported the first example of an “anti-apicophilic” (O-cis)
spirophosphoranes 67 [79–81], in which the oxygen atom occupies an equatorial position and the
carbon atom is located in an apical position of a five membered ring, which is in contrast to the general
concept of apicophilicity. According to the procedure shown in Scheme 29 (O-cis) phosphoranes 66
were obtained. The treatment of P–H phosphorane 59 with an excess of alkyl(aryl)lithium resulted
in the formation of a dianionic intermediate which upon treatment with I2, as an oxidizing agent,
afforded P–I equatorial phosphorane. Its cyclization, initiated by the nucleophilic attack of the alkoxide
anion at the phosphorous centre and the simultaneous extrusion of I− produced O-cis-alkyl-or aryl
spirophosphoranes 66.
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Scheme 29. Synthesis of (O-cis) spirophosphoranes 66 and their stereomutation to (O-trans)
phosphoranes 67.

The effects of substituents in the monodentate aryl ring of O-cis arylphosphoranes on the
stereomutation process, along with a kinetic study on the stereomutation of O-cis 66k–n to O-trans
67k–n were studied in details. The exclusive generation of O-cis 66 could be observed for the
alkyl derivatives 66a–c right after oxidation, however, in the case of the phenyl derivative 66d the
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O-cis isomer was the minor product. The pseudorotation to O-trans 67d isomer was complete in
30 min at room temperature, which could be explained by the higher apicophilicity of aryl groups
in comparison to alkyl groups. For compounds 66e–g, bearing electron donating groups (tBu, OMe,
NMe2, respectively) in the 4-position of the monodentate aryl groups O-cis isomers were the major
products. Finally, the use of bulky aryl organometallic reagents containing two substituents in ortho
positions led to the exclusive formation of the O-cis isomers (66i–n), having the sufficient lifetimes for
characterization. From the relative stability of 66i–n, it is evident that steric effects contributed mainly
to the stabilization against pseudorotation in these isomers that exhibited reversed apicophilicity.
In the case of 66n, pseudorotation was slow enough to allow for its isolation (purification on silica
gel in 71% yield) and the crystal structure determination by X-ray diffraction. The differences in
the reactivity of O-cis-66b and O-trans-67b toward nucleophiles were also indicated (Scheme 30).
The reaction of O-cis-66 with TBAF as a nucleophile afforded the hexacoordinated phosphate 68 with
the newly formed P–F bond while the trans-isomer did not react. Rapid decomposition of 68 caused
by the presence of traces of water was observed. O-Cis 66b likewise was reacted with MeLi to give
product 69, while O-trans-67b treated with organolithium reagent remained unreacted under the same
conditions; however by increasing MeLi molar equivalency and temperature the product 69 was
successfully isolated.
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A three-component reaction of phosphoranide 70, silane 71, and THF was applied for the
preparation of hypervalent compound 72 containing simultaneously pentacoordinated phosphorus and
silicon atoms (Scheme 31) [82,83]. The 31P-NMR spectrum indicated the presence of two diastereomeric
products in a ratio of 1:1.
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The synthesis of other phosphoranylalkoxysilicates was achieved by the nucleophilic addition
of phosphoranylalkoxides generated from hydroxy(alkyl)phosphoranes 61 and 73a–c to silane
74 (Scheme 32). Hydroxy(alkyl)phosphoranes 61 and 73a–c were prepared by deprotonation of
hydrophosphorane 59 with DBU and subsequent treatment with an electrophile, such as hydrogen
peroxide, formaldehyde, 2-bromoethanol, and 4-bromobutanol, respectively. Their treatment with
KH in the presence of 18-crown-6 followed by the addition of silane 71 in THF afforded the
appropriate phosphoranyloxysilicate 74a (56%), and phosphoranylalkoxysilicates 74b,c and 72
(53%–96%). Potassium silicates 74a–c were obtained as a mixture of two diastereomers (in ratios
of 66:34 for 74a, 53:47 for 74b, 50:50 for 74c, respectively), as estimated by the integrals in the 31P-NMR
spectra [82,83].
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More recently, studies on spirophosphoranes, prepared from a new bulkier analogue of the
Martin ligand containing two decafluoroetyl units, have been carried out by the Yamamoto group.
This new ligand was expected to suppress BPR more efficiently than the Martin ligand [84].
The synthesis of P–H-spirophosphoranes 75a,b was based on a two-step reaction involving
dimetallation of perfluorocumyl alcohol derivatives leading to the corresponding dianion and its
subsequent condensation with PCl3, followed by acidification with 6 molar HCl. The O-equatorial
spirophosphoranes 76a,b were obtained by the reaction of 75a,b with 3 molar equivalents of RLi
followed by the oxidation with I2. Their conversion to the corresponding O-apical stereoisomers 70a,b
proceeded in the solution at high temperatures. The stereomutation of 76a-1 to 77a-1 was found to
proceed with first–order kinetics. The free energy of activation for stereomutation was higher by
3.6 kcal/mol in comparison with the CF3 analogue indicating that steric hindrance of pentafluoroethyl
group is the major factor for freezing pseudorotation. Recently, Jiang and coworkers [85] obtained
a new stable anti-apicophilic phosphorene 76b with four bulky n-C3F7 groups, which was converted
to more stable O-apical phosphorane 77b only by heating, (Scheme 33).
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The same research group elaborated the synthesis of a series of anti-apicophilic phosphoranes
bearing a para-substituted aryl group (–C6H4(p-X); X = H, CF3, F, OMe) or a mesityl group as a more
electronegative monodentate ligand than an alkyl group. The O-equatorial arylphosphoranes 69c–g
were successfully synthesized by the reaction of the P-H spirophosphorane 68a with an excess of
ArLi, followed by treatment with I2 (Scheme 34) [86]. These phosphoranes were found to be stable
at r.t. Their isolation indicates that the steric effect of the C2F5 groups for freezing the isomerization
is remarkable. By heating in an organic solvent the O-equatorial arylphosphoranes 69c–g were
quantitatively converted into the more stable O-apical isomers 70c–g. The effect of a solvent and
a para-substituent on the rate of the isomerization were also investigated in order to provide an insight
into the π → σ* P–O interaction in the O-equatorial arylphosphoranes. The kinetic study showed
a small para-substituent effect on the stereomutations. However, the multi-regression analysis for
the para substituents revealed the 1.3 times greater contribution of the resonance effect on the on
the isomerization rate in C6D6 than the inductive effect suggesting that the π→ σ* P–O stabilizing
interaction in the O-equatorial isomer plays some role in the isomerization.
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In this context it is interesting to note that the O-equatorial methylphosphorane 76a treated
with MeLi was converted to the more stable O-apical isomer 77a, but on the contrary, the O-apical
phosphorane did not react with MeLi at all (Scheme 35) [87].
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Scheme 35. Methyllithium induced epimerization of O-equatorial methylphosphorane 76a.

Deprotonation of methylphosphorane 76a at the methyl group using superbase (t-BuOK/n-BuLi)
led to the corresponding α-anion, which upon treatment with electrophilic agents gave new
phosphorane derivatives 78 and/or 79 (Scheme 36). The O-equatorial and O-apical phosphoranes
having a β-hydroxyethyl group were synthesized according to this procedure using paraformaldehyde
and applied as monodentate ligands [87].

Akiba et al. reported the preparation and characterization of an anti-apicophilic spirophosphorane
bearing an oxaphosphetane ring and the Martin ligand [88]. Although the substitution pattern on the
phosphorus atom slightly differs from that of oxaphosphetane in the typical Wittig reaction they can
be considered as a model for the possible reactive intermediate for the Wittig reaction.
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Scheme 36. Synthesis of phosphorane derivatives 78 and/or 79.

The synthesis of isomeric mixture of oxaphosphetane 80a and 80b in 1:1 ratio was achieved by the
oxidation procedure using n-BuLi followed by iodine in ether (Scheme 37). The sole anti-apicophilic 80a
isomer was isolated from the reaction mixture by crystallization upon addition of hexane. Under acidic
conditions 80a underwent complete stereomutation to 80b. A similar conversion took place within
minutes upon dissolution of 80a in anhydrous CDCl3 at room temperature. A 31P-NMR measurement
of the 80b sample heated to 120 ◦C in p-xylene did not show the presence of 80a in equilibrium,
indicating that 80a is thermodynamically much less favorable than its O-apical isomer. Moreover,
heating a solid sample of 80a at 120 ◦C for 5 min. gave only 80b as a result of pseudorotation.
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The synthesis of pentacoordinate phosphirenes 82a and 82b bearing a phenyl group on the
phosphorus atom was achieved by the reaction of tricoordinate phosphirenes 81a and 81b with
o-chloranil (Scheme 38) [89].
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Scheme 38. Reaction of phosphirenes 81a and 81b with o-chloranil.

The formation of 82c was evidenced by 31P-NMR spectrum that showed a suitable signal at
δP −92.7. It was converted rapidly to phosphorane 83 bearing two tetrachlorocatecholate ligands.
For relatively more thermally stable phosphirene 82a the crystal structure was determined by X-ray
analysis. It showed that phosphirene 82a has a highly distorted square pyramidal SP arrangement
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at the phosphorus atom as a core. The basal positions are occupied by two oxygen atoms from
the tetrachlorocatecholate ligand and two carbon atoms belonging to the three-membered ring of
phosphirene, when the phenyl group is located at the apical position. No decomposition was observed
for 82a after heating at 60 ◦C for 40 h. On the other hand, phosphirene 82b was thermally less
stable, and decomposed at room temperature to give the o-chloranil derived phenylphosphinite and
phenyl(trimethylsilyl)acetylene. These results indicate that an attachment of a trimethylsilyl group to
the endocyclic carbon lowers the thermal stability of the pentacoordinate phosphirenes.

10P-3C-1O-1Se; 10P-3C-1O-1S; 10P-3C-1O-1F; 10P-3C-1O-1H Phosphoranes

The synthesis of the first 1,2-σ5−selenaphosphirane and 1,2-σ5-thiaphosphirane involving
a pentacoordinate phosphorus atom was based on the reaction of the Martin ligand based phosphorus
ylide with elemental selenium [90], CpTiSe5 [91] or elemental sulfur [92]. Treatment of ylide 84 with 1.6
equiv. of elemental selenium in THF at room temperature or with Cp2TiSe5 under the same conditions
resulted in the formation of selenaphosphirane 85 as a solid in 96% and 85% yield, respectively (Scheme 37).
Although the selenaphosphirane 85 is highly moisture-sensitive, its isolation was successful under an
argon atmosphere and its structure was crystallographically characterized. Both, the solid-state 31P{1H}
NMR spectrum and the 31P{1H} NMR spectrum of the C6D6 solution showed a single peak with chemical
shifts at −26.1 and −26.6, respectively. This was considered as evidence for the pentacoordinate state
of the phosphorus atom of the selenaphosphirane. It is interesting to note that in the 77Se{1H}-NMR
spectrum (the resonance signal at δSe 147.5 in C6D6), the coupling constant between the phosphorus
and the selenium nuclei was not observed. This selenaphosphirane upon treatment with methyl triflate
in CDCl3 afforded the highly air-sensitive α-(methylseleno)-α-methylethyl phosphonium triflate 86
in 76% yield (Scheme 39). The formation of 86 was initiated by the electrophilic attack of methyl
triflate on the negatively charged selenium atom in 85 and proceeded with the subsequent cleavage
of the polarized P–Se bond. In a similar manner the thiaphosphirane 87 was prepared in 68% yield,
by the reaction of the ylide 84 with 0.96 equivalent of elemental sulfur in THF at −30 ◦C for 7 h
(Scheme 39). Thiaphosphirane 87 was found to be air-sensitive and its single crystal was obtained by
recrystallization from hexane under an argon atmosphere. Its X-ray crystallographic analysis showed
that the oxygen and sulfur atom are located at apical positions.
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Scheme 39. Reactions of monocyclic phosphorus ylide 84.

Thiaphosphirane 87 showed inertness toward triaryl- or trialkylphosphines. This is in a contrast
to tri- and tetracoordinate thiaphosphiranes which underwent desulfurization to form phosphaalkene
derivarives and phosphine sulfides [93]. When the thiaphosphirane 87 was treated with additional
portion of elemental sulfur the corresponding phosphinothionate 88 was isolated in 72% yield.
The independent experiment showed that the phosphorus ylide 84 treated with 2 equiv. of elemental
sulfur provided phosphinothionate 88 in 31% yield.
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10P-2C-2N-1O; 10P-2C-1N-2O Phosphoranes

The reactions of iminophosphorane bearing the Martin ligand and a bulky 2,4,6-triisopropyl-phenyl
group with a ketone, an isothiocyanate and an alkyne has been found to proceed with the
formation of the corresponding cycloadducts as novel heterocycles bearing pentacoordinated
phosphorus atom [94,95]. Cyclic iminophosphinate 89 reacted with carbonyl compounds, phenyl
isothiocyanate and phenylethynyl trifluoromethyl sulfone affording the appropriate cycloadducts:
1,3,2λ5-oxazaphosphetidines 90a–c, 1,3,2λ5-diazaphosphetidine-4-thione 91, 1,2λ5-azaphosphetine
92, respectively. The reaction with hexafluoroacetone proceeded at room temperature yielding
cyclic phosphorane which could be even purified by silica gel chromatography. With dimethyl
acetylenedicarboxylate (DMAD) and water the reaction provided 1,2λ5-oxaphosphol-5(2H)-one 93
instead of the expected 1,2-azaphosphetine (Scheme 40).
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Thermolysis of 90c at 140 ◦C in a sealed tube gave the corresponding imine 94 and
cyclic phosphinate 95 (Scheme 41), indicating that 1,3,2λ5-oxazaphosphetidine 90c is regarded as
an intermediate of the aza-Wittig reaction [95].
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Scheme 41. Thermolysis of spirophosphorane 90c.

The detailed studies on the formation of 1,2λ5-oxaphosphol-5(2H)-one 93 were conducted on
the basis of 31P-NMR analysis [96]. In the course of the reaction a decrease of the resonance signal
at +25.6 ppm along with an increase of the new one at +47.3 ppm corresponding to 96 was observed.
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The latter was found to be unstable in the presence of moisture which resulted in the slow conversion
to the final product. The proven synthetic pathway was concluded in Scheme 42.
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10P-2C-2O-1Z (Z = N, O, etc.) Phosphoranes

It is already well known that the preparation of pentacoordinate phosphoranes can be accomplished
by the reaction of phosphorus (III) compounds with ylidene derivatives of β-carbonyl compounds.
This approach was exemplified by the reaction of 2-phenyl-1,3,2-benzodioxaphosphorin-4-one 97
with diethyl benzylidenemalonate 98 which occurred along two pathway, yielding pentacoordinate
phosphorane 99 and phosphinate derivative 100 containing tetracoordinate phosphorus atom [97].
When the reaction was allowed to heat for a short time the formation of the seven-membered
phosphonate derivative with relatively high stereoselectivity equal to 50% was observed (Scheme 43).
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The plausible mechanism involves the nucleophilic attack of the phosphorus atom at the β-carbon
atom in α,β-unsaturated carbonyl compounds to produce an intermediate with delocalized π-electrons
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along three atoms, as is presented by its two resonance structures. In case of synthetic pathway A
the attack of negatively charged oxygen on phosphorus atom occurs with reversible formation of
pentacoordinate phosphorane. The second synthetic pathway (B) assumes nucleophilic substitution
at the carbonyl carbon atom to yield the seven-membered ring, 1,2-benzoxaphosphepine. In further
investigations Akiba et al. [98] succeeded in preparing spirophosphoranes bearing Martin ligand units
and a monodentate primary amino substituent. These O-equatorial isomers were found to be surprisingly
stable, taking into account the fact that the equatorial substituents, which are more electronegative than
carbon, are expected to facilitate pseudorotation. The O-equatorial aminophosphoranes 102 along with
O-apical isomers 103 were obtained from the in-situ generated chlorophosphorane 101 which was allowed
to react with the corresponding amines (Scheme 44). However, when methylamine or aniline were used,
the corresponding O-equatorial isomer were not produced.
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The O-equatorial phosphoranes 102 were stable at room temperature and could still be converted 
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The O-equatorial phosphoranes 102 were stable at room temperature and could still be converted
to their more stable O-apical pseudorotamers 103 when they were heated in a solution, indicating
that the phosphoranes 102 are kinetic products, as in the case of O-equatorial alkylphosphoranes.
The structures of 102c and 102e were determined by single-crystal X-ray analyses to be in the
O-equatorial configuration. The unusual stability of the O-equatorial phosphorane 102 could be
attributed to the stabilizing nN → σ*P-O orbital interaction. More detailed studies on the experimental
determination of the nN → σ*P-O interaction energy of O-equatorial C-apical phosphorane supported
with DFT calculations have been also reported providing an additional proof for this assumption.

Juge et al. described the formation of chiral bicyclic phosphoranes in the Arbuzov-type reaction
of diastereomerically pure cyclic tricoordinated oxaphosphacycloalkanes and very reactive Koshland
reagent I 104 [99]. They found that both enantiomers of 2-phenyl-1.3.2-oxazaphospholidine [(−)-105
derived from (+)-ephedrine or (+)-105 from (−)-ephedrine], treated with 2-hydroxy-5-nitrobenzyl
bromide 104a afforded the stable pentacoordinated phosphoranes [(−)-106 from (−)-105 or
(+)-106 from (+)-105] which were isolated by simple chromatography. The minor isomeric
spirophosphoranes with the opposite configuration at the phosphorus atom were also formed
(Scheme 45). 2-Hydroxy-5-nitrobenzyl halides 104a,b reacted also with five- or six-membered cyclic
tricoordinated phosphorus compounds (−)-107 (derived from (+)-2-methyl-2,3-butanediol) or (−)-110
(derived from (−)-chloramphenicol), yielding spirophosphoranes, 108 and 109 or 110, respectively.
However, these spirophosphoranes were too unstable to be isolated. Their formation was confirmed
only by the 31P-NMR spectra of a crude reaction product.
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Scheme 45. Reactions of cyclic five or six-membered tricoordinated phosphorus compounds with  
2-hydroxy-5-nitrobenzyl halides. 

10P-1C-1N-3O Phosphoranes 

The synthesis of a pentacoordinated phosphorane containing tricyclic system was reported by 
Sevenard et al. [100]. 2-Fluoroacetylcycloalkanones 111a,b reacted with diethyl isocyanatophosphite 
diastereospecifically leading to phosphoranes 112a,b via intermediate species formed by the addition 
of phosphorus to a trifluoromethyl substituted carbonyl atom which subsequently underwent two 
additional heterocyclizations (Scheme 46). 
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Scheme 45. Reactions of cyclic five or six-membered tricoordinated phosphorus compounds with
2-hydroxy-5-nitrobenzyl halides.

10P-1C-1N-3O Phosphoranes

The synthesis of a pentacoordinated phosphorane containing tricyclic system was reported by
Sevenard et al. [100]. 2-Fluoroacetylcycloalkanones 111a,b reacted with diethyl isocyanatophosphite
diastereospecifically leading to phosphoranes 112a,b via intermediate species formed by the addition
of phosphorus to a trifluoromethyl substituted carbonyl atom which subsequently underwent two
additional heterocyclizations (Scheme 46).
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The synthesis of a pentacoordinated phosphorane containing tricyclic system was reported by 
Sevenard et al. [100]. 2-Fluoroacetylcycloalkanones 111a,b reacted with diethyl isocyanatophosphite 
diastereospecifically leading to phosphoranes 112a,b via intermediate species formed by the addition 
of phosphorus to a trifluoromethyl substituted carbonyl atom which subsequently underwent two 
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The phosphorane derived from 2-trifluoroacetylcyclopentanone 112b was moisture-sensitive,
unlike the cyclohexane derivative 112a, probably due to the greater ring strains. The proposed
structure was strictly confirmed by means of NMR data on the basis of which it was found that
carbon atom occupies an axial position and two annulated five membered rings are arranged in the
equatorial-axial-equatorial order.

10P-1C-2N-2O Phosphoranes

Pudovik et al. reported the synthesis and crystal structure analysis of spirophosphoranes
derived from benzoxazaphospholidines and/or 2-aminophenol [101]. It has been found that the
condensation reaction of 2-aminophenol with chloromethylphosphonic dichloride proceeded with
the formation of the expected benzoxazaphospholidine-2-oxide 99 along with the unexpected one:
spirophosphorane 100 (Scheme 47).
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Scheme 47. Synthesis of bicyclic aminophosphorane 114.

As indicated by the authors, the crucial step in a plausible pathway for their synthesis is
an initial phosphorylation of a hydroxy group in 2-aminophenol with phosphonic dichloride leading
to chloromethylphosphonochloridate intermediate (I). Subsequent nucleophilic attack of the amino
group at the phosphorus atom leads to the cyclization product 99. Simultaneously, the second pathway
is realized when chloromethylphosphonochloridate intermediate reacts with the next molecule of the
starting aminophenol to give the OH condensation product, which undergoes cyclization to provide
unstable intermediate (II, III). It is then converted to the spirophosphorane as a result of intramolecular
nucleophilic attack of the amino group at electrophilic phosphorus atom with the elimination of water
(Scheme 48).
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The alkylation of 2-alkoxy-1,3,2-benzoxazaphospholidine with bis(dialkylamino)methanes
afforded N-alkylated product 115 which underwent tautomerization to phosphonimidate 116 and
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further transformation to polycyclic phosphoranes 117 in 30 days [102]. It is worth to mention that
both benzoxazaphospholidine 115 and polycyclic phosphorane 117 were used as phosphorylating
agent for 2-aminophenol yielding spirophosphorane 118 (Scheme 49). The crystal and molecular
structure of the synthesized spirophosphoranes 114 and 118 were determined by single-crystal X-ray
diffraction [101,103,104].
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Amino alcohol based monocyclic hydrophosphorane 119 was prepared in the reaction of
2-aminophenol with tetraalkylphenylphosphonous diamide and used for the preparation of bicyclic
spirophosphorane 120 [105] based on the oxidation procedure or on heating above its melting point
(Scheme 50).
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The alternative approach to synthesize bicyclic pentacoordinate spirophosphoranes proposed by
Gholivand et al. [106] is based on the condensation of simple hydrazides (i.e., benzhydrazide 123a and
4-pyridinecarboxylic acid hydrazide 123b) with phosphoryl reagents followed by a dehydration–cyclization
rearrangement of the resulting phosphorylated hydrazides. Such spiro-bicyclophosphorane with a trigonal
bipyramidal structure is formed if phosphoryl reagent contains at least two appropriate leaving groups
such as chlorine atoms (in PhPOCl2 or POCl3). Benzhydrazide reacted with POCl3 in refluxing
acetonitrile to give the P–Cl phosphorane intermediate 121 which treated with the appropriate amine
was converted to the P-N spirophosphorane 122a,b (Scheme 51). The mechanism proposed for the
formation of the intermediate involved β-amidic proton elimination in phosphorylated hydrazides A
upon which the cyclization product with new C=N imine bond B was formed. The intermediate was
finally converted into 121 by dehydration.
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Similarly, several pentacoordinate phosphoranes 122c–g were easily prepared in the reaction
of benzhydrazide 123a or 4-pyridinecarboxylic acid hydrazide 123b with PhPOCl2, PhNHPOCl2 or
POCl3 in the presence of triethylamine [106] (Scheme 52).
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10P-1C-4O Phosphoranes

The reaction of (E)-bis-(2,4,6-tri-t-butylphenyl)diphosphane 125 with a fourfold excess of
tetrachloro-o-benzoquinone 126 was found to give the chiral perchlorinated spirophosphorane 127.
It was suggested that the reaction, proceeding according to an electron transfer mechanism, occurred
via 128 with a cleavage of the P-P bond and indeed, 127 was isolated in low yield even with two
equivalents of 126 (Scheme 53) [107].
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Similarly, the reactions of tricoordinated organophosphorus precursors 129–131 with an appropriate
equivalent of ethylene glycol was found to give the spirophosphorane 132. All the three reactions
occurred via the bis-ester 133 formed in a nucleophilic exchange reaction at the tricoordinated
phosphorus center of precursors 129–131 [108] (Scheme 54).
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10P-1C-1N-2O-1H Phosphoranes

The reactions of tricoordinated phosphonous diamides 115a–d with an appropriate equivalent
of aminodiols 120 led to a series of chiral enantiomeric or diastereomeric bicyclic spirophosphoranes
121a–f (Scheme 55) [109].
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10P-2N-2O-1H and 10P-2N-3O Phosphoranes

Chiral hydrospirophosphoranes derived from L-amino acids were for the first time obtained
by Koenig et al. as early as 1979 [110]. More recently this approach based on the reaction of
phosphorus trichloride with amino acids was used by Zhao and coworkers for the preparation
of spirophosphoranes from enantiomerically pure valine 136a, isoleucine 136b and phenylalanine
136c. [111–114]. The spirophosphoranes formed as mixtures of diastereoisomers were separated to the
pure stereoisomers 137a–c and 138a–c by reverse-phase HPLC or recrystallization (Scheme 56).
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Similarly, the spirophosphoranes 137a–e and 138a–e were used as substrates for the synthesis of 
pentacoordinate pyrospirophosphoranes containing a P–O–P bond 141–143 under modified Atherton–
Todd conditions [116] (Scheme 59). It was found, upon optimization of the reaction conditions, that the 
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Scheme 56. Synthesis of hydrospirophosphoranes 137 and 138 derived from L-amino acids.

The pure stereoisomers 137 were used for the preparation of pentacoordinate spirophosphorane
carbamates 139 [115] via the two-steps Atherton–Todd-type reaction (Scheme 57). Initially, the
spirophosphoranes 137 reacted with CCl4 yielding chlorospirophosphoranes 140 (with retention
of configuration at the phosphorus atom). In a second step chlorophosphoranes, upon the reaction
with carbamate anions, (formed in situ from CO2 and secondary amines), afforded the carbamates 139
with inversion of configuration (Scheme 58).
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Scheme 58. The mechanism of formation spirophosphorane carbamates 139.

Similarly, the spirophosphoranes 137a–e and 138a–e were used as substrates for the synthesis of
pentacoordinate pyrospirophosphoranes containing a P–O–P bond 141–143 under modified Atherton–Todd
conditions [116] (Scheme 59). It was found, upon optimization of the reaction conditions, that the
spirophosphoranes 137a,b gave the pure diasteroisomer of pyrospirophosphoranes 142a,b whereas
a mixture of diastereoisomers 141c–e and 143c–e were isolated if hydrospirophosphoranes 137c–e
were used as substrates.
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Scheme 60. Synthesis of alkoxy spirophosphoranes 144,145.

Bicyclic hydrophosphoranes 147 and 148 were synthesized as a 3:2 mixture of two epimers by the
reaction of tris-(N,N-diethyl)phosphorus amide with isoleucinol 146. On the other hand, the tricyclic
phosphorane 149 was isolated as a single stereoisomer in a similar reaction with the diaminodiole
151 (Scheme 61) [118]. The isolated spirophosphoranes 147–149 were used as chiral ligands in the
Pd-catalyzed alkylation of 1,3-diphenyl allyl acetate with acceptable stereoselectivity (up to 74% ee)
(Scheme 61) [119]. Moreover, these hydrophosphorane derivatives were used to obtain complexes with
[Pt(COD)Cl2], [Rh(CO)2Cl]2 [Rh(THF)2(COD)]+BF4

−.
Chiral triquinphosphoranes 152–154 were easily synthesized from chiral enantiopure

diaminodiols with a C2 symmetry axis. It was shown that their structure is best represented by two
trigonal bipyramid structures (TBP) with opposite absolute configurations at the phosphorus atom, RP

and SP, being in a fast equilibrium by a Berry pseudorotation process (Scheme 62) [120]. They reacted
with various activated carbonyl compounds: trifluoroacetophenone, ketopantolactone and aromatic
aldehydes to afford two diastereomeric hydroxyphosphoranes with a de up to 90% depending on the
nature of the electrophile (Scheme 62). Diastereomeric mixture of hydroxyphosphoranes formed by
the addition of ketopantolactone 155–156d–f were quantitatively converted into alkoxyphosphoranes
157 with diastereomeric excesses decreasing from 86% to 8% for R = Me, from 90% to 50% for R = iPr
and from 84% to 2% for R = Bn.
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Scheme 62. Chiral triquinphosphoranes 152–154 and their reactions with various activated
carbonyl compounds.

Similarly, the parent triquinphosphorane 158 was found to react with methyl, n-butyl,
or t-butyl disulfide to produce the corresponding alkylthiophosphoranes 159a–c, although
t-butylthio-phosphorane 159c was only a minor product and the major one was identified as the
thiophosphoramide 160 (Scheme 63). Under irradiation at −50 ◦C t-butylthiophosphorane 159c was
produced in high yield, however, by increasing the reaction temperature its slow conversion to 160
was observed. The reactivity of the triquinphosphorane 158 with alkyl disulfides was compared
both under irradiation and in the dark at room temperature. The reactivity increased significantly
in the case of n-butyl disulfide and t-butyl disulfide when the reactions were conducted under
irradiation. This observation led to the conclusion that this type of the reaction does involve free
radical species [121].
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10P-1N-3O-1H and 10P-2N-2O-1H Phosphoranes

Three synthetic protocols were applied to the preparation of this type of hydrophosphoranes with
the use of amidooxime derivatives as substrates [122]. The first procedure started with the reaction of
amidooxime 161a–e with PCl3 leading to 5-chloro-1,2,4,5-oxadiazaphospholines 162a–e. Their reactions
with ethylene glycol or ortho-hydroxyphenol afforded the unsymmetrical spirophosphoranes 163 or
164 whereas the treatment with another dose of the amidooxime 161 led to symmetrically substituted
spirophosphoranes 165a–e (Scheme 64).
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In the second approach, amidooxime 161a,c,d upon reaction with 2-dimethylamino-
1,3,2-dioxaphospholane 166 provided unsymmetrical spirophosphoranes 163a,c,d and in the reaction
with 2-dimethylamino-(4,5)benzo-1,3,2-dioxaphospholane 167 in acetonitrile yielded unexpected
symmetrically substituted spirophosphoranes 165a–e instead of unsymmetrically substituted
phosphorane 164a–e (Scheme 65).
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The third synthetic pathway involved the treatment of amidooximes 161b,d,e with 2-chloro-
(4,5)benzo-1,3,2-dioxaphospholane 168 leading, as it was expected, to the corresponding unsymmetrical
spirophosphoranes 164. The latter were converted into the corresponding unsymmetrical
spirophosphorane 170 by transesterification with pinacol 169 taking place in the presence of
triethylamine (Scheme 66).
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10P-2N-3O and 10P-1N-4O Phosphoranes

Amidooximes 161d,e were used also as substrates for the preparation of the spirophosphoranes
containing the P–OMe grouping 173, 175. They were isolated upon application of the oxidation
procedure carried out under basic conditions with iodine as an oxidant [122] (Scheme 67).
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O-Trimethylsilyl derivatives of spirophosphoranes 177 containing an amino acid residue were
formed by the cyclisation of the corresponding cyclic amides 176 [123] (Scheme 68). The resulting
spirophosphoranes 177 were used for the formation of peptides from amino acids such as histidine,
serine, threonine and α-alanine but not β-alanine.
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Later on, spirophosphoranes 177 were also used as substrates in a new method for the solid phase
synthesis of oligopeptides. This approach was based on their rapid reaction with hydroxymethyl
polystyrene resin leading to unstable hydroxyphosphoranes 178 which after mild hydrolysis gave the
phosphate 180 and a solid phase bound amino-acids 179. Coupling of 179 with further phosphorane
177, followed by hydrolysis afforded a solid phase bound dipeptide. The process was repeated to
give oligopeptides. The final oligopeptide was liberated from the resin by treatment with TFA [124]
(Scheme 69).
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10P-4O-1H Phosphoranes

The synthesis and reactivity of the hydrophosphorane 181 derived from perfluoropinacol was
described as early as 1983 [125]. It was found that it could be rapidly oxidized by dimethyl sulfoxide
to form the hydroxyphosphorane 182, and then silylated to the derivative 183. Chlorine and bromine
reacted with 181 to give the corresponding halospirophosphoranes 184a,b. In this context it is
interesting to note that the corresponding fluorospirophosphorane 184c was obtained from the
dichlorofluoro-perfluoropinacolophosphorane FCl2P(CH2Ph)[OC(CF3)C(CF3)O] 185 and dilithium
perfluoropinacolate LiOC(CF3)C(CF3)OLi 186. In the presence of triethylamine the hydrophosphorane
181 reacted with benzyl bromide or acetyl chloride to form the phosphoranes 187 or 188. Moreover,
the treatment of the hydrophosphorane 181 with trimethylphosphine gave a thermally unstable
phosphonium salts 189. Hydrophosphorane 181 undergoes fast hydrolysis affording phosphorous
acid and perfluoropinacol [125] (Scheme 70).
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10P-4O-1Metal and 10P-3N-1O-1Metal Phosphoranes

Another group of chiral pentacoordinate organophosphorus compounds are metallophosphoranes
192a–e. Nakazawa et al. [126] developed a synthetic method for the preparation of metallophosphoranes
192, which was based on the nucleophilic attack of the, in situ generated, anion 191a–e on the
complexed trivalent phosphorus atom 190a,b (Scheme 71). For example, ferrocenyl complex 190a
reacted with in situ generated anions 191a–e to form chiral metallophosphoranes 192a–e. The valency
of the phosphorus atom increased from III to V without breaking the Fe-P bond and the nature of Fe-P
bond changed from coordinative to covalent.

Molecules 2016, 21, 1573 35 of 43 

 

O
O

P
O

O

H

F3C CF3CF3
CF3

CF3

CF3

F3C CF3

181

O
O

P
O

O

HO

F3C CF3CF3
CF3

CF3

CF3

F3C CF3

182

DMSO TMSCl/HMDS

O
O

P
O

O

TMSO

F3C CF3CF3
CF3

CF3

CF3

F3C CF3

183

X2

O
O

P
O

O

X

F3C CF3CF3
CF3

CF3

CF3

F3C CF3

184a; X=Cl
184b; X=Br

184c; X=F
O

O

P
Cl

Cl

PhH2C

CF3

CF3

F3C CF3

LiOC(CF3)C(CF3)OLi
186

O
O

P
O

O

R

F3C CF3CF3
CF3

CF3

CF3

F3C CF3

187; R=Bn
188; R-Ac

Et3N

BnBr
or AcCl

O
O

P
O

O

F3C CF3CF3
CF3

CF3

CF3

F3C CF3

189

PMe3

PHMe3

H2O

H3PO3 OHH2O

F3C CF3

CF3
F3C

-Me2S

185  
Scheme 70. Interconversions of spirophosphoranes 181 and 182. 

10P-4O-1Metal and 10P-3N-1O-1Metal Phosphoranes 

Another group of chiral pentacoordinate organophosphorus compounds are metallophosphoranes 
192a–e. Nakazawa et al. [126] developed a synthetic method for the preparation of metallophosphoranes 
192, which was based on the nucleophilic attack of the, in situ generated, anion 191a–e on the 
complexed trivalent phosphorus atom 190a,b (Scheme 71). For example, ferrocenyl complex 190a 
reacted with in situ generated anions 191a–e to form chiral metallophosphoranes 192a–e. The valency 
of the phosphorus atom increased from III to V without breaking the Fe-P bond and the nature of Fe-
P bond changed from coordinative to covalent. 

 
Scheme 71. Preparation of chiral metallophosphoranes 192. 

It is worthy to note that treatment of HP(C6H4NH)2-193 with nBuLi led to unexpected deprotonation 
on nitrogen atom (giving 194b) instead on phosphorus (to afford 194a). Moreover, an amide anion 
194b is in an equilibrium with phosphoranide 194a. The reaction of the in situ generated anion 194a 

Scheme 71. Preparation of chiral metallophosphoranes 192.

It is worthy to note that treatment of HP(C6H4NH)2-193 with nBuLi led to unexpected
deprotonation on nitrogen atom (giving 194b) instead on phosphorus (to afford 194a). Moreover,
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an amide anion 194b is in an equilibrium with phosphoranide 194a. The reaction of the in situ
generated anion 194a with [Cp(CO)LFeCl] (195a or 195b) gave a P-metallated phosphorane 196a or
196b. On the contrary, the reaction the equilibrated mixture of 194 with [Cp(CO)CoI2]-197 led to
N-metallated compound 198. Interestingly, in the reaction of the phosphoranide 194a with MeI the
P-methylated product 199 was formed. On the other hand, electrophiles such as Me3SiCl, Me3GeCl or
Me3SnCl, provided N-substituted products (200a–c) [127,128] (Scheme 72).
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Moreover, it was found that in the presence of a base a migration of pentacoordinate phosphorane
fragment occured from the transition metal in 196 to the carbon atom in the Cp ring in 201 [129]
(Scheme 73).
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10P-5O Phosphoranes

The hydroxyphosphorane 203 was prepared by N2O4 oxidation of the parent hydrophosphorane
202 (Scheme 74). Its single crystal analysis showed an almost perfect trigonal bipyramidal structure
with the unit cell containing two molecules of the same helicity connected by H-bonds between the
P–OH and carbonyl groups [130].
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The triethylammonium salt of the hydroxyspirophosphorane 205 derived from n-butyl tartrate
was prepared on treatment of the very acidic [pKa = 4.4(DMSO)] monocyclic phosphorus ester 204
with triethylamine (Scheme 75) [131].
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Scheme 75. Formation of salt 205.

The radical reaction of the bicyclic hydrophosphorane 206 derived from glycol with ethyl vinyl
ether provided the corresponding P–C spirophosphorane 207 along with the monocyclic phosphite
208. The reaction of the hydrospirophosphorane 206 with ethylene glycol and enamine 209 afforded
the pentaoxyspirophosphorane 210 with the simultaneous reduction of the enamine 209 to amine
211 [132] (Scheme 76).
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3. Conclusions

Enantiomerically enriched pentavalent phosphoranes constitute an interesting group of
heterocyclic chiral auxiliaries. Their still limited applications in asymmetric synthesis are however
hampered mainly by a limited access to diastereomerically pure and especially enantiomerically pure
(or at least enantiomerically enriched) samples. It is our hope that this review, which describes briefly
the basic procedures used for the preparation of these derivatives, their stereoisomerization mechanisms
and their selected interconversions, will encourage wider interest in the synthesis, structural
determinations and applications of these groups of chiral, hypervalent organophosphorus derivatives.
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