Supplementary Materials: New Insights into the State Trapping of UV-Excited Thymine

Ljiljana Stojanović, Shuming Bai, Jayashree Nagesh, Artur F. Izmaylov, Rachel Crespo-Otero, Hans Lischka and Mario Barbatti

1. Kinetic Model for Occupation Fitting

Consider the set of reactions in the scheme below.

Part of S₂ population relaxes to S₁ with rate k_2 , while another part is trapped in S₂^T until it later relaxes to S₀ with $k_{\beta'}$. By construction, $k_{\beta'} \ll k_2$ and k_2' . The same is valid for S₁, with rates $k_1 \ll k_1'$ and $k_{\beta'}$. Rewriting $k_2' = (\alpha - 1)k_2$ and $k_1' = (\beta - 1)k_1$, the kinetic equations for this set of reactions have as solution the equations (S1).

$$S_{2}(t) = S_{20} \exp(-\alpha k_{2}t)$$

$$S_{2}^{T}(t) = \frac{(\alpha - 1)}{\alpha} S_{20} \left[1 - \exp(-\alpha k_{2}t) \right]$$

$$S_{1}(t) = \frac{k_{2}S_{20}}{\beta k_{1} - \alpha k_{2}} \left[\exp(-\alpha k_{2}t) - \exp(-\beta k_{1}t) \right]$$

$$S_{1}^{T}(t) = \frac{k_{1}(\beta - 1)k_{2}S_{20}}{\beta k_{1} - \alpha k_{2}} \left[\frac{1 - \exp(-\alpha k_{2}t)}{\alpha k_{2}} - \frac{1 - \exp(-\beta k_{1}t)}{\beta k_{1}} \right]$$

$$S_{0}(t) = \frac{k_{2}k_{1}}{\beta k_{1} - \alpha k_{2}} \left[\frac{1 - \exp(-\alpha k_{2}t)}{\alpha k_{2}} - \frac{1 - \exp(-\beta k_{1}t)}{\beta k_{1}} \right]$$
(S1)

Asymptotically, the population trapped in S₂ is $(1-1/\alpha)$ and in S₁ is $(\beta-1)/\alpha\beta$ (S₂₀ = 1). The time constant for the fast decay from S₂ to S₁ is $1/k_2$. The time constant for the fast decay from S₁ to S₀ is $1/k_1$.

Asymptotic populations and time constants were obtained by fitting the S₂ state occupation with the function $S_2(t) + S_2^T(t)$ and the S₁ state occupation with $S_1(t) + S_1^T(t)$.

2. Cartesian coordinates

Cartesian coordinates of minima and intersection points optimized with ADC(2)/(aug-)cc-pVDZ (in Å).

S0 min

Ν	-3.757921	0.391909	-0.457421
С	-2.955367	-0.721660	-0.672991
Ν	-1.599944	-0.434009	-0.563253
С	-0.990970	0.802030	-0.271308
С	-1.928450	1.912081	-0.061501
С	-3.265663	1.653150	-0.164921

Molecules 2016, 21, 1603; doi:10.3390/molecules21111603

	Ο	-3.401520	-1.837122	-0.932248
	0	0.237798	0.893292	-0.208360
	С	-1.365380	3.269833	0.255801
	Η	-4.756137	0.224830	-0.528884
	Η	-0.971100	-1.221558	-0.713817
	Н	-4.022615	2.429164	-0.021755
	Н	-2.172402	4.009748	0.370491
	H	-0.685924	3.602328	-0.544247
	н	-0.776189	3.236749	1.185509
S1 min				
	Ν	-3.749358	0.340197	-0.303378
	С	-2.950857	-0.721762	-0.667756
	Ν	-1.581449	-0.423846	-0.637897
	С	-1.112995	0.866668	-0.382220
	С	-1.901943	1.913089	-0.050927
	С	-3.312746	1.636664	0.006639
	0	-3.370156	-1.838220	-0.980590
	0	0.311020	0.871753	-0.502860
	С	-1.351272	3.284322	0.251723
	Н	-4.741649	0.122680	-0.306485
	Н	-0.963579	-1.140341	-1.010360
	Н	-4.074116	2.374324	0.263236
	Н	-1.749343	4.035453	-0.448920
	Н	-0.251840	3.291133	0.165842
	Н	-1.611502	3.598649	1.275047
62 min		1101100		
52 min				
	Ν	-3.746974	0.367199	-0.306531
	С	-2.952425	-0.732122	-0.655535
	Ν	-1.603630	-0.405055	-0.697130
	С	-1.111272	0.867492	-0.411555
	С	-1.850471	1.901685	-0.049262
	С	-3.335441	1.630815	0.037271
	0	-3.417754	-1.845691	-0.899421
	0	0.361895	0.829995	-0.548825
	С	-1.343547	3.275823	0.279002
	Н	-4.741293	0.139764	-0.297041
	Η	-0.931388	-1.125187	-0.954763
	Н	-4.092843	2.418849	0.083351
	Н	-1.788478	4.029300	-0.393251
	Н	-0.249054	3.306305	0.171019
	Н	-1.609102	3.551588	1.313768
X10 pp*/	S0			
	N	-6.472869	0.415164	-0.054546
	C	-7.676460	1.083781	0.424943
	N	-7.515171	2.450152	0.601444
	- •			

S2 of S3

	С	-6.660789	3.235047	-0.284851
	С	-5.535512	2.494450	-0.730766
	С	-5.342296	1.150553	-0.051520
	0	-8.663297	0.427524	0.721114
	0	-7.082789	4.331444	-0.690862
	С	-5.226347	2.504643	-2.212824
	Н	-6.477878	-0.580395	0.185573
	Н	-8.394352	2.921515	0.823404
	Н	-4.449496	0.803497	0.483144
	Н	-4.155421	2.696060	-2.406538
	Н	-5.818679	3.299262	-2.693194
	Η	-5.478564	1.530834	-2.677541
X10 np*/S0)			
	Ν	-3.734396	0.337524	-0.272188
	С	-2.934778	-0.716795	-0.640752
	Ν	-1.541435	-0.488071	-0.498846
	С	-1.176345	0.867257	-0.322312
	С	-1.865359	1.901915	0.006483
	С	-3.355496	1.598381	0.241963
	0	-3.358960	-1.803751	-1.044581
	0	0.324714	0.800016	-0.525806
	С	-1.342894	3.289332	0.250024
	Н	-4.722158	0.094920	-0.310527
	Н	-1.021322	-1.042711	-1.180291
	Н	-4.071546	2.405623	0.023747
	Н	-1.776499	4.001943	-0.470916
	Н	-0.243661	3.332008	0.146860
	Н	-1.591655	3.633161	1.268223
V01 */	×L.			

X21 pp*/np*

Ν	-3.696326	0.430982	0.030353
С	-2.857771	-0.686754	-0.309832
Ν	-1.660106	-0.300695	-0.893176
С	-1.051456	0.938355	-0.481788
С	-1.834791	1.955446	-0.132858
С	-3.355149	1.691555	-0.336062
0	-3.252097	-1.837558	-0.158375
0	0.290048	0.826474	-0.304954
С	-1.435356	3.082637	0.776127
Н	-4.670513	0.147567	0.168662
Н	-1.007186	-1.072701	-1.023189
Н	-4.056672	2.317383	-0.908713
Н	-1.601300	4.067821	0.307413
Η	-0.369466	2.982077	1.044713
Н	-2.038288	3.057581	1.703737