Supplementary Materials: Immobilization of Neutral Protease from *Bacillus subtilis* for Regioselective Hydrolysis of Acetylated Nucleosides: Application to Capecitabine Synthesis

Teodora Bavaro, Giulia Cattaneo, Immacolata Serra, Ilaria Benucci, Massimo Pregnolato and Marco Terreni

Figure S1. Stability of native protease N in experimental conditions of immobilization.

(a)

Sequence of B. subtilis neutral protease A

AAATGSGTTLKGATVPLNISYEGGKYVLRDLSKPTGTQIITYDLQNRQSRLPGTLVSSTTKTFTSSS QRAAVDAHYNLGKVYDYFYSNFKRNSYDNKGSKIVSSVHYGTQYNN AAWTGDQMIYGDGDGSFFSPLSGSLDVTAHEMTHGVTQETANLIYENQPGALNESFSDVFGYFN DTEDWDIGEDITVSQPALRSLSNPTKYNQPDNYANYRNLPNTDEGDYGGVHTNSGIPNKAAYN TITKLGVSKSQQIYYRALTTYLTPSSTFKDAKAALIQSARDLYGSTDAAKVEAAWNAVGL

Sequence of S. aureus metalloproteinase

AAATGTGKGVLGDTKDININSIDGGFSLEDLTHQGKLSAYNFNDQTGQATLITNEDENFVKDDQ RAGVDANYYAKQTYDYYKNTFGRESYDNHGSPIVSLTHVNHYGGQDNRNNAAWIGDKMIYGD GDGRTFTNLSGANDVVAHEITHGVTQQTANLEYKDQSGALNESFSDVFGYFVDDEDFLMGEDV YTPGKEGDALRSMSNPEQFGQPSHMKDYVYTEKDNGGVHTNSGIPNKAAYNVIQAIGKSKSEQI YYRALTEYLTSNSNFKDLKDALYQAAKDLYEQQTAEQVYEAWNEVGVE (b)

Query	1	AAATGSGTTLKGATVPLNISYEGGKYVLRDLSKPTGTQIITYDLQNRQSRLPGTLVSSTT 60	
Sbjct	1	AAATGTGKGVLGDTKDININSIDGGFSLEDLTHQGKLSAYNFNDQTGQATLITNED 56	
Query	61	KTFTSSSQRAAVDAHYNLGKVYDYFYSNFKRNSYDNKGSKIVSSVHYGTQYNNA 114	
Sbjct	57	ENFVKDDQRAGVDANYYAKQTYDYYKNTFGRESYDNHGSPIVSLTHVNHYGGQDNRNNAA 116	
Query	115	WTGDQMIYGDGDGSFFSPLSGSLDVTAHEMTHGVTQETANLIYENQPGALNESFSDVFGY 174	
Sbjct	117	WIGDKMIYGDGDGRTFTNLSGANDVVAHEITHGVTQTANLEYKDQSGALNESFSDVFGY 176	
Query	175	FNDTEDWDIGEDITVSQPALRSLSNPTKYNQPDNYANYRNLPNTDEGDYGGVHTNSG 231	
Sbjct	177	FVDDEDFLMGEDVYTPGKEGDALRSMSNPEQFGQPSHMKDYVYTEKDNGGVHTNSG 232	
Query	232	IPNKAAYNTITKLGVSKSQQIYYRALTTYLTPSSTFKDAKAALIQSARDLYGSTDAAKVE 291	
Sbjct	233	IPNKAAIN I TO SKSTQITIKALI TELTS FKD K AL QTATOLI A TV IPNKAAYNVIQAIGKSKSEQIYYRALTEYLTSNSNFKDLKDALYQAAKDLYEQQTAEQVY 292	
Query	292	AAWNAVGL 299	
Sbjct	293	EAWNEVGV 300	

Figure S2. (a) Sequences of *B. subtilis* neutral protease A (Protease N) and *S. aureus* metalloproteinase, (b) Blast alignment between *B. subtilis* neutral protease A and *S. aureus* metalloproteinase sequences.

Figure S3. Front (panel **A**) and back side (panel **B**) in the 3D structure of *S. aureus* metalloproteinase (pdb: 1qbq). Surface lysines are coloured in red.

Analytical Characterization of Compounds 1a and 5a

2,3-*Di*-O-Acetyluridine (**1a**): TLC (CH₂Cl₂/MeOH, 9:1): $R_f = 0.51$. ¹H-NMR (400 MHz, [D₆]DMSO, 25 °C): $\delta = 11.40$ (s, 1 H, 3-NH), 7.89 (d, 1 H, 5-H), 6.00 (d, 1 H, 1-H), 5.70 (d, 1 H, 6-H), 5.50 (s, 1 H, OH in 5), 5.30 (m, 2 H, 2-H, 3-H), 4.14 (m, 1 H, 4-H) 3.64 (m, 2 H, 5-H) 2.10–2.02 (s, 6 H, 2 OAc) ppm. MS: calcd. for [M + 1]⁺: 351.26; found 351.00.

2,3-Di-O-Acetylcytidine (**5a**): TLC (CH₂Cl₂/MeOH, 9:1): $R_f = 0.50$. ¹H-NMR (400 MHz, [D₆]DMSO, 25 °C): $\delta = 7.80$ (d, 1 H, 5-H), 7.30 (s, 2 H, NH₂), 6.00 (d, 1 H, 1-H), 5.70 (d, 1 H, 6-H), 5.40 (m, 1 H, 2-H, 3-H, OH in 5), 4.10 (m, 1 H, 4-H), 3.70 (m, 2 H, 5-H), 2.10–2.00 (s, 6 H, 2 OAc) ppm. MS: calcd. for [M + Na]⁺: 350.28; found 350.10.