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Abstract: Nutrients transiently or chronically modulate functional and biochemical characteristics
of cells and tissues both in vivo and in vitro. The influence of tomato aqueous extract (TAE) on
the in vitro inflammatory response of activated human peripheral blood leukocytes (PBLs) and
macrophages was investigated. Its effect on endothelial dysfunction (ED) was analyzed in human
umbilical vein endothelial cells (HUVECs). Murine macrophages (RAW264.7 cells), PBLs and
HUVECs were incubated with TAE. They were activated with LPS or TNF-α in order to induce
inflammatory processes and ED, respectively. Inflammatory mediators and adhesion molecules were
measured by immune assay-based multiplex analysis. Gene expression was quantified by RT-PCR.
TAE altered the production of interleukins (IL-1β, IL-6, IL-10, IL-12) and chemokines (CCL2/MCP-1,
CCL3/MIP-1α, CCL5/RANTES, CXCL8/IL-8, CXCL10/IP-10) in PBLs. TAE reduced ED-associated
expression of adhesion molecules (ICAM-1, VCAM-1) in endothelial cell. In macrophages, the
production of nitric oxide, PGE2, cytokines and ILs (TNF-α, IL-1β, IL-6, IL-12), which reflects chronic
inflammatory processes, was reduced. Adenosine was identified as the main bioactive of TAE.
Thus, TAE had cell-specific and context-dependent effects. We infer from these in vitro data, that
during acute inflammation TAE enhances cellular alertness and therefore the sensing of disturbed
immune homeostasis in the vascular-endothelial compartment. Conversely, it blunts inflammatory
mediators in macrophages during chronic inflammation. A novel concept of immune regulation by
this extract is proposed.

Keywords: chronic inflammation; endothelial dysfunction; human umbilical endothelial vein cells;
inflammation; innate immune response; macrophages; nutrients; peripheral blood leukocytes

1. Introduction

Numerous epidemiological studies established the beneficial relationship between a diet rich
in fruit and vegetables and health conditions like cardiovascular diseases (CVD), diabetes, obesity,
neuro-degeneration and arthritis. Low-grade inflammation is a common feature of these chronic
diseases. This is reflected by an unbalanced production of inflammatory mediators including cytokines
and chemokines, a disturbed homeostasis of cellular oxidants and mediators of inflammation such as
prostaglandins, nitric oxide or the status of the extracellular matrix (ECM). The homeostatic changes
influence cell metabolism and alter tissue functions that might favor disease progression [1]. A hallmark
of acute inflammation is the increased production of cytokines and chemokines. These enable
and enhance inflammatory processes that are essential to recruit immune cells to the sites of
inflammation and eliminate pathogens. Some mediators are further required during the resolution
of inflammation [2] or for the differentiation of cells that orchestrate the resolution of inflammatory
processes such as alternatively activated macrophages [3]. Chronic inflammation maintains a status
of un-coordinated production of mediators and metabolites that cause tissue and organ damage.
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Inflammatory processes have thus an intrinsic dual nature during acute and chronic inflammation.
Therefore, substances that modulate the inflammatory status and maintain immune homeostasis in
a context-dependent way are expected to prevent the occurrence of health disorders and diseases [4].
In this study we investigated the in vitro effects of a tomato aqueous extract (TAE) on inflammatory
responses. Previous studies with TAE revealed that it improved the blood flow by reducing platelet
adhesion and aggregation [5–7]. Likewise, tomato extracts and their lipophilic constituents influenced
various mediators of the inflammatory response [8] (reviewed in [9]). In order to cover a potentially
wide range of actions in different systemic contexts, we analyzed the effects of TAE in various cellular
systems, i.e., human peripheral blood leukocytes (PBLs), human umbilical vein endothelial cells
(HUVECs) and macrophage cells (RAW264.7 cells). We found that TAE markedly altered the production
of metabolites related to the acute inflammatory response. TAE modulated the transcription factors of
the NF-κB signaling pathway and thus regulated expression of inflammatory genes and the production
of inflammatory mediators. We show that TAE orchestrates the response of cells to inflammatory
stimuli or altered homeostasis in a cell- and compartment-specific way.

2. Results

2.1. Tomato Aqueous Extract Changed the Inflammatory Profile of Murine RAW264.7 Cells

Initially, we investigated the influence of TAE on the inflammatory profile of murine
macrophages (i.e., RAW267.4 cells) stimulated with E. coli lipopolysaccharide (LPS), which triggered
numerous metabolic changes [10]. TAE reduced the LPS-induced production of nitric oxide
(NO) and it also significantly diminished the secretion of COX-2 dependent PGE2 (Figure 1).
Furthermore, we evaluated the effect of TAE on cytokine and chemokine (CK) production in murine
macrophages. TAE concentration-dependently blunted TNF-α and IL-12(p70), while the production
of anti-inflammatory IL-10 was augmented (Figure 1). Conversely, TAE had little impact on IL-1β
and IL-6. Secretion of chemokines, such as CCL2/MCP-1, CCL4/MIP-1β and CCL5/RANTES, was
increased by TAE (Figure 1, Table 1). We further investigated how the expression of inflammatory genes
was influenced by TAE. Gene microarray analysis revealed that LPS induced robust up-regulation of
hundreds of genes in RAW264.7 cells ([11] and our unpublished results). TAE diminished mRNA levels
of TNF-α, IL-6, CCL4/MIP-1β, CCL5/RANTES and CXCL10/IP-10 (Figure 2). The NF-κB transcription
pathway was impaired by TAE, as illustrated by reduced expression levels of NF-κB and Iκ-Ba mRNA.
This suggests that TAE regulated gene expression via the NF-κB pathway (Supplementary Materials
Table S1).

Table 1. Effects of constituents of TAE on the secretion of inflammatory metabolites by RAW264.7
macrophages. Cells were stimulated with LPS in the presence of the indicated substances and cultured
for 24 h. Metabolites were determined in the culture supernatants by multiplex ELISA and Griess
reaction (for nitric oxide). Representative data obtained in one of three different experimental series are
shown. Mean values ˘ SD (of triplicate cultures) are given.

Metabolite LPS
Stimulated

TAE
(500 µg/mL)

+LPS
p

Adenosine
(25 µM)
+LPS

p
Chlorogenic
Acid (25 µM)

+LPS
p

Rutin
(25 µM)
+LPS

p

PGE2 [pg/mL] 7034 ˘ 186 5234 ˘ 260 0.09 6373 ˘ 44 0.23 12,016 ˘ 574 0.05 12,940 ˘ 1882 0.07
Nitric oxide (µM) 18.1 ˘ 0.2 13.1 ˘ 0.8 0.05 19.6 ˘ 0.9 0.94 12.2 ˘ 0.1 0.02 14.4 ˘ 0.2 0.04

IL-6 [ng/mL] 33.6 ˘ 2.4 36.9 ˘ 1.8 0.26 24.1 ˘ 2.1 0.05 27.0 ˘ 1.7 0.08 25.7 ˘ 2.0 0.07
IL-1β [pg/mL] 702 ˘ 120 579 ˘ 105 0.39 625 ˘ 78 0.52 567 ˘ 32 0.26 498 ˘ 22 0.14
IL-12 [pg/mL] 1083 ˘ 165 1045 ˘ 49 0.79 1150 ˘ 127 0.69 1058 ˘ 127 0.69 921 ˘ 35 0.31

TNF-α [ng/mL] 293 ˘ 33 290 ˘ 12 0.93 202 ˘ 5 0.07 241 ˘ 21 0.23 292 ˘ 10 0.98
CCL2/MCP-1

[ng/mL] 9.8 ˘ 1.9 14.9 ˘ 3.7 0.22 6.4 ˘ 2.9 0.30 8.8 ˘ 0.4 0.53 6.7 ˘ 1.7 0.22

CCL4/MIP-1β
[pg/mL] 792 ˘ 50 1385 ˘ 63 0.01 753 ˘ 31 0.45 698 ˘ 36 0.16 793 ˘ 33 0.99

CCL5/RANTES
[ng/mL] 34.1 ˘ 0.4 58.7 ˘ 1.5 0.002 28.6 ˘ 3.1 0.13 27.7 ˘ 0.8 0.01 28.4 ˘ 2.1 0.06
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Figure 1. TAE inhibits the production of NO and PGE2 and modulates cytokine and chemokine 
secretion in LPS-activated RAW264.7 cells. Cells were incubated with tomato aqueous extract (TAE), 
stimulated with 1 μg/mL LPS and cultured for 24 h. “LPS only”: indicates the value obtained from 
LPS-stimulated cells (without substance) and is indicated on the y-axis. Representative results from 
one of three independent series are shown as mean (±SD) of duplicate. * p < 0.05, ** p > 0.01 (vs. 
LPS-stimulated cells). Unstimulated cells produced 0.01 ± 0.00 μM NO and 133 ± 18 pg/mL PGE2. 

While TAE contained no detectable quantities of vitamin C, E and lycopene, it had significant 
amounts of adenosine, chlorogenic acid (CA) and rutin (Table 2), which could contribute to the altered 
inflammatory response. Therefore, we analyzed the impact of adenosine and the two phenolic 
compounds on RAW264.7 cells. We observed that adenosine significantly modulated the secretion 
of IL-6 and TNF-α. CA and rutin blunted NO and IL-6, whereas they had no substantial effect on the 
secretion of other mediators (Table 2). We also noticed differences between adenosine, CA and rutin 
with regard to the regulation of gene expression: adenosine and TAE had similar effects on gene 
regulation (Figure 2, Supplementary Materials Figure S1). Rutin and CA had a common pattern on 
gene expression, which only partially overlapped with that of adenosine. 

Table 2. Constituents of tomato aqueous extracts (TAE). 

Constituent (In %) 1 (μM)
Adenosine 1.73 64.8 

Rutin 0.592 0.96 
Chlorogenic Acid 0.182 0.52 

Vitamin C <LOD 2  
Vitamin E <LOD  
Lycopene <LOD  

1 % of total TAE; 2 limits of detection. 
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Figure 1. TAE inhibits the production of NO and PGE2 and modulates cytokine and chemokine
secretion in LPS-activated RAW264.7 cells. Cells were incubated with tomato aqueous extract (TAE),
stimulated with 1 µg/mL LPS and cultured for 24 h. “LPS only”: indicates the value obtained
from LPS-stimulated cells (without substance) and is indicated on the y-axis. Representative results
from one of three independent series are shown as mean (˘SD) of duplicate. * p < 0.05, ** p > 0.01
(vs. LPS-stimulated cells). Unstimulated cells produced 0.01 ˘ 0.00 µM NO and 133 ˘ 18 pg/mL PGE2.

While TAE contained no detectable quantities of vitamin C, E and lycopene, it had significant
amounts of adenosine, chlorogenic acid (CA) and rutin (Table 2), which could contribute to the
altered inflammatory response. Therefore, we analyzed the impact of adenosine and the two phenolic
compounds on RAW264.7 cells. We observed that adenosine significantly modulated the secretion
of IL-6 and TNF-α. CA and rutin blunted NO and IL-6, whereas they had no substantial effect on
the secretion of other mediators (Table 2). We also noticed differences between adenosine, CA and
rutin with regard to the regulation of gene expression: adenosine and TAE had similar effects on gene
regulation (Figure 2, Supplementary Materials Figure S1). Rutin and CA had a common pattern on
gene expression, which only partially overlapped with that of adenosine.

Table 2. Constituents of tomato aqueous extracts (TAE).

Constituent (In %) 1 (µM)

Adenosine 1.73 64.8
Rutin 0.592 0.96

Chlorogenic Acid 0.182 0.52
Vitamin C <LOD 2

Vitamin E <LOD
Lycopene <LOD

1 % of total TAE; 2 limits of detection.
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Figure 2. TAE modifies gene expression in LPS-stimulated RAW264.7 cells. Cells were incubated with 
TAE, stimulated with 1 μg/mL LPS and cultured for 4 h. Gene expression was quantified by RT-PCR 
and the data expressed as fold change compared to levels observed in unstimulated cells. Mean ± 
standard errors of duplicates are given. “LPS only”: indicates the value obtained from LPS-stimulated 
cells (without substance) and is indicated on the y-axis. * p < 0.05, ** p < 0.01 (vs. LPS-stimulated cells). 

2.2. TAE Altered Inflammatory Response of Peripheral Blood Leukocytes Activated by LPS 

Since tomato constituents modified platelet function [6,12,13], we investigated whether TAE 
affected inflammatory parameters of human PBLs. To this aim, cells were stimulated with LPS in the 
presence of graded amounts of TAE and the inflammatory response was quantified by measuring 
secreted mediators and gene expression. The substances did not impair cell viability (Supplementary 
Materials Figure S2). In response to LPS, PBLs secreted a plethora of inflammatory mediators [10,11]. 
TAE increased the release of PGE2 by activated PBLs (Figure 3). This markedly contrasted with the 
strongly inhibitory effects of resveratrol, which completely suppressed PGE2 secretion [14]. TAE also 
induced significant PGE2 secretion in un-stimulated PBL (Supplementary Materials Figure S3). The 
production of IL-1β, IL-6 and IL-10 was stimulated by TAE, whereas IL-12(p70) was mitigated 
(Figure 3 and Supplementary Materials Table S2). With regard to CKs, TAE significantly reduced 
CCL4/MIP-1β secretion, but it strongly enhanced CXCL8/IL-8 production. TAE-dependent changes 
of cytokine and CK patterns could in part be attributed to its contents in adenosine, since adenosine 
modulated TNF-α and CCL4/MIP-1β in a similar way (Supplementary Materials Table S2). Neither 
adenosine, nor rutin or CA influenced the level of secreted PGE2 (Figure 3) and different ILs and 

Figure 2. TAE modifies gene expression in LPS-stimulated RAW264.7 cells. Cells were incubated
with TAE, stimulated with 1 µg/mL LPS and cultured for 4 h. Gene expression was quantified
by RT-PCR and the data expressed as fold change compared to levels observed in unstimulated
cells. Mean ˘ standard errors of duplicates are given. “LPS only”: indicates the value obtained from
LPS-stimulated cells (without substance) and is indicated on the y-axis. * p < 0.05, ** p < 0.01 (vs.
LPS-stimulated cells).

2.2. TAE Altered Inflammatory Response of Peripheral Blood Leukocytes Activated by LPS

Since tomato constituents modified platelet function [6,12,13], we investigated whether TAE
affected inflammatory parameters of human PBLs. To this aim, cells were stimulated with LPS in the
presence of graded amounts of TAE and the inflammatory response was quantified by measuring
secreted mediators and gene expression. The substances did not impair cell viability (Supplementary
Materials Figure S2). In response to LPS, PBLs secreted a plethora of inflammatory mediators [10,11].
TAE increased the release of PGE2 by activated PBLs (Figure 3). This markedly contrasted with
the strongly inhibitory effects of resveratrol, which completely suppressed PGE2 secretion [14].
TAE also induced significant PGE2 secretion in un-stimulated PBL (Supplementary Materials Figure S3).
The production of IL-1β, IL-6 and IL-10 was stimulated by TAE, whereas IL-12(p70) was mitigated
(Figure 3 and Supplementary Materials Table S2). With regard to CKs, TAE significantly reduced
CCL4/MIP-1β secretion, but it strongly enhanced CXCL8/IL-8 production. TAE-dependent changes
of cytokine and CK patterns could in part be attributed to its contents in adenosine, since adenosine
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modulated TNF-α and CCL4/MIP-1β in a similar way (Supplementary Materials Table S2). Neither
adenosine, nor rutin or CA influenced the level of secreted PGE2 (Figure 3) and different ILs
and CKs. When incubated with high concentrations of TAE (i.e., 1 mg/mL), un-stimulated PBLs
secreted significant amounts of IL-1β, IL-6, CCL2/MCP-1, CCL4/MIP-1β, CXCL8/IL-8 and PGE2

(Supplementary Materials Figure S3).
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Figure 3. Effects of TAE on activated human PBLs. Freshly isolated PBLs were incubated with TAE, 
stimulated with LPS and cultured for 24 h. Representative data (±SD) of duplicates from one of three 
independent experiments are given. * p < 0.05, ** p < 0.01 (vs. LPS-stimulated cells). RES, resveratrol. 

2.3. TAE Modifies Chemokine and Cytokine Gene Transcription in PBLs 

Next, we investigated expression levels of inflammatory genes in human PBLs and studied the 
impact of TAE. PBLs responded to LPS stimulation by the differential expression of thousands of genes 
([11] and our unpublished results). Many of these genes are controlled by transcription factors (TF) of the 
NF-κB pathway (see e.g., [15]). Accordingly, LPS up-regulated TFs like NF-κB2 and its respective 
inhibitor NF-κBIα. TAE significantly down-regulated NF-κB1 and NF-κB2 (Figure 4). The levels of 
transcription factors, STAT1 and CREB1, were also significantly reduced by TAE (Supplementary 
Materials Figure S4). In addition, TAE regulated the expression levels of CK and cytokine genes which 
are under the control of NF-κB elements: CCL2/MCP-1 mRNA levels were lower in TAE-treated 
LPS-activated PBLs; conversely, CXCL8/IL-8 mRNA levels were concentration-dependently increased 
by TAE (Figure 4). TAE-treated PBLs had higher levels of IL-6 and IL-10 mRNA. 
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Figure 3. Effects of TAE on activated human PBLs. Freshly isolated PBLs were incubated with TAE,
stimulated with LPS and cultured for 24 h. Representative data (˘SD) of duplicates from one of three
independent experiments are given. * p < 0.05, ** p < 0.01 (vs. LPS-stimulated cells). RES, resveratrol.

2.3. TAE Modifies Chemokine and Cytokine Gene Transcription in PBLs

Next, we investigated expression levels of inflammatory genes in human PBLs and studied
the impact of TAE. PBLs responded to LPS stimulation by the differential expression of thousands
of genes ([11] and our unpublished results). Many of these genes are controlled by transcription
factors (TF) of the NF-κB pathway (see e.g., [15]). Accordingly, LPS up-regulated TFs like NF-κB2
and its respective inhibitor NF-κBIα. TAE significantly down-regulated NF-κB1 and NF-κB2
(Figure 4). The levels of transcription factors, STAT1 and CREB1, were also significantly reduced
by TAE (Supplementary Materials Figure S4). In addition, TAE regulated the expression levels
of CK and cytokine genes which are under the control of NF-κB elements: CCL2/MCP-1 mRNA
levels were lower in TAE-treated LPS-activated PBLs; conversely, CXCL8/IL-8 mRNA levels were
concentration-dependently increased by TAE (Figure 4). TAE-treated PBLs had higher levels of IL-6
and IL-10 mRNA.
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Figure 4. Gene expression in human PBLs and TAE-induced expression changes. Freshly isolated PBLs 
were incubated with TAE, stimulated with LPS and cultured for 12 h. Gene expression was quantified 
by RT-PCR and the data expressed as fold change compared to levels observed in unstimulated cells. 
Mean ± SD of duplicates are given. Representative data of one of three tested donors are shown.  
* p < 0.05, ** p < 0.01, *** p < 0.001 (vs. LPS-stimulated cells). 

2.4. Modulation of Inflammatory Parameters Associated with Endothelial Dysfunction 

Previous studies had shown that TAE reduced platelet aggregation and platelet adhesion to 
activated endothelial cells [5,6,16,17]. In order to determine the putative involvement of TAE on 
endothelial functions, we investigate the effect of TAE on endothelial homeostasis. To this aim, we 
induced endothelial dysfunction (ED) by activating HUVECs with TNF-α [18,19] and measured the 
impact of TAE on parameters of ED. TAE increased PGE2 and IL-6 production, whereas it mitigated 
the production of ICAM-1 and VCAM-1 (Figure 5). Similar observations were made in un-stimulated 
HUVECs; yet, these cells secreted only small amounts of mediators in the absence of TNF-α activation 
(Supplementary Materials Table S3). 

TNF-α activation of HUVECs induced drastic gene expression of IL-6, ICAM-1, VCAM-1, 
CCL2/MCP-1 and CXCL8/IL-8 (Figure 6). TAE decreased expression levels of VCAM-1, but it increased 
mRNA levels for IL-6 and CXCL8/IL-8, much like the observations made with PBLs. Collectively,  
the effects of TAE on gene expression in TNF-α activated HUVECs matched those observed at the 
protein level. 
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Figure 4. Gene expression in human PBLs and TAE-induced expression changes. Freshly isolated PBLs
were incubated with TAE, stimulated with LPS and cultured for 12 h. Gene expression was quantified
by RT-PCR and the data expressed as fold change compared to levels observed in unstimulated cells.
Mean ˘ SD of duplicates are given. Representative data of one of three tested donors are shown.
* p < 0.05, ** p < 0.01, *** p < 0.001 (vs. LPS-stimulated cells).

2.4. Modulation of Inflammatory Parameters Associated with Endothelial Dysfunction

Previous studies had shown that TAE reduced platelet aggregation and platelet adhesion to
activated endothelial cells [5,6,16,17]. In order to determine the putative involvement of TAE on
endothelial functions, we investigate the effect of TAE on endothelial homeostasis. To this aim, we
induced endothelial dysfunction (ED) by activating HUVECs with TNF-α [18,19] and measured the
impact of TAE on parameters of ED. TAE increased PGE2 and IL-6 production, whereas it mitigated
the production of ICAM-1 and VCAM-1 (Figure 5). Similar observations were made in un-stimulated
HUVECs; yet, these cells secreted only small amounts of mediators in the absence of TNF-α activation
(Supplementary Materials Table S3).

TNF-α activation of HUVECs induced drastic gene expression of IL-6, ICAM-1, VCAM-1,
CCL2/MCP-1 and CXCL8/IL-8 (Figure 6). TAE decreased expression levels of VCAM-1, but it
increased mRNA levels for IL-6 and CXCL8/IL-8, much like the observations made with PBLs.
Collectively, the effects of TAE on gene expression in TNF-α activated HUVECs matched those
observed at the protein level.
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Figure 5. TAE influences HUVEC metabolites during endothelial dysfunction. HUVECs were
incubated with TAE, activated with 10 ng/mL TNF-α and cultured for 24 h. Secreted cytokines,
chemokines, ICAM-1 and VCAM-1 were quantified by Luminex technology (see Materials and
Methods). Mean ˘ SD of duplicates are given. Unstimulated cells produced <10% of the mediators
secreted by TNF-α stimulated cells. * p < 0.05, ** p < 0.01 (vs. TNF-α-stimulated cells).
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Figure 6. HUVECs were incubated with TAE, activated with 10 ng/mL TNF-α and cultured for 4 h.
Gene expression was quantified by RT-PCR and the data expressed as fold change compared to levels
observed in unstimulated cells. Mean ˘ standard errors of duplicates are given. * p < 0.05, ** p < 0.01,
*** p < 0.001 (vs. TNF-α-stimulated cells).

3. Discussion

This study significantly extends our knowledge about the effects of TAE and its main constituents
on the modulation of the inflammatory response in cells of the innate immune system (i.e.,
macrophages) and the vascular-endothelial compartment (i.e., PBLs and HUVECs, respectively).
Previously, lipophilic constituents of tomato including carotenoids, as well as vitamins and phenolic
compounds contained in tomato [8,20,21] were shown to alter biochemical and cellular features related
to inflammation and oxidative status (reviewed in e.g., [9]). Consistent with the results of the present
study, Bessler et al. reported that in the presence of lycopene in vitro stimulated PBLs increased
the secretion of IL-1β and TNF-α, while IL-10 and IFN-γ was impaired [8]. More specifically, CA
and rutin impeded the production of pro-inflammatory cytokines in macrophages via the NF-κB
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signalling pathway [22–25]. Presumably, they marginally contributed to the biological profile of
TAE described in this study, because their concentration in TAE was <1 µM. On the other hand,
TAE contained significant amounts of adenosine, which reduced the production of TNF-α, IL-6 and
different CKs, and it down-regulated NF-κB1 gene expression. The results of this study suggest that
adenosine was the major, but not unique bio-active compound of TAE. As shown by others [26–28],
adenosine modulated the inflammatory response in immune and endothelial cells and it regulated
interleukin expression both transcriptionally and post-transcriptionally. However, adenosine differed
from TAE in some inflammatory parameters: it did not alter PGE2 production in PBLs, while TAE
enhanced it (Supplementary Materials Table S2). Other notable exceptions were observed in the
expression and secretion of IL-1β, CCL2/MCP-1, CXCL8/IL-8, where adenosine opposed the effects
to TAE. Adenosine impaired CCL2/MCP-1 and CCL4/MIP-1β and thus trafficking of monocytes and
neutrophils and influenced the M1/M2 polarization and function of macrophages [29,30].

Inflammatory processes are tightly regulated by CKs and cytokines. CKs orchestrate the
migration and trafficking of cells into different compartments of the immune system. Monocytes,
which play key roles in the innate immune response, are recruited by CCL2/MCP-1, CCL3/MIP-1α
and CCL4/MIP-1β. Activated T cells are involved in the adaptive immune response and are
chemo-attracted by CCL5/RANTES and CXCL10/IP-10. Neutrophils are recruited by CXCL8/IL-8 [31],
which is produced during sterile inflammation [32]. In the blood compartment (i.e., PBLs), TAE
dampened the production of CCL4/MIP-1β, but enhanced CXCL8/IL-8. It should be emphasized
that a given metabolite can be regulated in a context-dependent way. This has been compellingly
shown for IL-6, which controls survival and differentiation of B and T lymphocytes, whereas it favors
inflammatory processes in, and thus impairs survival of malignant cells [33]. PBLs comprise distinct
cell populations including lymphocytes, monocytes/macrophages and neutrophils, which are key
cellular actors in the inflammatory response and each of which produces different levels of IL-6 upon
activation. It remains to be investigated whether these cell populations have idiosyncratic responses
to TAE.

Upon TNF-α stimulation HUVECs expressed a pattern of cytokines and chemokines, which had
many common features with that of LPS-activated PBLs. In endothelial cells TAE modulated cytokine
expression in a similar way as in PBLs. Remarkably, TAE reversed the expression of ICAM-1 and
VCAM-1 towards pre-ED homeostasis (Figure 5 and [6]). Thus, reduced endothelial diapedesis might
be one biological consequence of the presence of the substances in the blood. Adenosine had similar
effects on HUVECs and might therefore largely account for its biological efficacy in the endothelial
layer [34,35].

Macrophages, which develop from monocytes, are pivotal during initiation and resolution of
inflammation and they differentiate into tissue-specific subsets [16,36]. TAE regulated cytokine
and interleukin production by macrophages, suggesting that it dampened the classical activation
by LPS (IL-1β, IL-6, IL-12) and favored alternative activation via IL-10 (Figures 7 and 8).
With regard to CKs, the tested substance had a lesser impact on macrophages as compared to
PBLs: TAE increased CCL4/MIP-1β and CCL5/RANTES and therefore recruitment of monocyte and
activated T lymphocytes. Although the data rely on experiments obtained with a murine macrophage
cell line, we infer that the observations are not species-restricted. Indeed, similar observations were
made with macrophages that were differentiated from human peripheral blood mononuclear cells (our
unpublished results).

The molecular regulation of inflammatory processes is dependent on numerous transcription
factors (TF). Notably, LPS-activation of monocytes and macrophages induced the NF-κB dependent
transcription of chemokines, such as CXCL8, CXCL10, and CCL2 (reviewed in [37]), whereas IL-4
and IL-10 inhibited IFN-γ dependent CXCL10 and CCL5 transcription [38,39]. Here, we show that
the transcription levels of NF-κB elements, as well as STAT1 and CREB1, were influenced by TAE.
Further investigations should focus on the putative specific effects of TAE on TF in different cells
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and tissues. Additionally, it needs to be shown that TAE impairs the NF-κB pathway also at the
post-transcriptional level.
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Figure 7. Heat map depicting regulation of inflammatory parameters by TAE across immune and
endothelial cells. Values were calculated relative to the metabolite expression or secretion observed in
stimulated cells. Intensity of blue and red color grades indicate reduced and increased expression of
metabolites, respectively. Empty fields: no data available or values below limit of detection).

The clinical relevance of the present in vitro data need to be addressed in a nutritional intervention
trial. As shown in a seminal study by Bakker et al. [4], supplementation of overweight subjects for
five weeks with dietary products including resveratrol, green tea extract, tomato extract, vitamin C,
α-tocopherol and PUFAs modified some plasma metabolites. Subtle changes in expression levels
of IL-12, ICAM-1 and VCAM-1 were also observed and were consistent with the data of this study.
In contrast, Bakker et al. did not notice in vivo changes of CKs similar to those described here for
CCL2/MCP-1, CCL3/MIP-1α, CCL5/RANTES, CXCL8/IL-8 or PGE2. Presumably, at conditions of
prolonged supplementation, systemic changes induced by nutrients did no longer induce quantifiable
metabolic changes. Hence the impact of substances remained undetected. This contrasts with the data
described in this work, where the experimental set-up represents acute inflammation and short term
supplementation and it precludes metabolic transformation and transport of nutrients. We hypothesize
that measurable effects of nutrients on plasma metabolites or leukocyte gene expression will only be
detected in vivo at conditions of immediately perturbed homeostasis subsequent to food intake [40].
Interestingly, TAE had measurable in vivo effects on platelet aggregation and adhesion in individuals
who were supplemented with a single dose of the tomato extracts [6,13]. This prompts us to anticipate
that TAE will also have effects in clinical studies where inflammatory parameters will be measured.
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A synopsis of the different features is shown in Figures 7 and 8. TAE had idiosyncratic effects
on PBLs, HUVECs and macrophages. TAE modified ILs and TNF-α along a cell-specific boundary.
The nutrient favored production of IL-1β, IL-6 and IL-12 in activated PBL and HUVEC, but inhibited
them in RAW264.7 cells. Increased IL-1β, IL-6 or IL-12 is commonly associated with a pro-inflammatory
status. Th lymphocyte differentiation, however, depends on these ILs in the adaptive immune response
(AIR) [41–43]. Consequently, immune cells transiently exposed to TAE would produce low levels of
cytokines and, thus, be primed for AIR. Moreover, IL-6 regulates Th lymphocyte differentiation since it
promotes Th2 and inhibits Th1 differentiation by two independent molecular mechanisms [43]. It is also
required for alternative activation of macrophages [44,45] and antibody class switching. Presumably,
the constituents of TAE have a short plasma half-life comparable to other nutrients [46] and, thus,
prime immune cells only briefly in the blood. Therefore, the TAE-induced increase of alertness is high
in the periphery, but low at the boundaries of the vascular compartment and reverted in macrophages,
which participate in chronic inflammation. TAE might therefore contribute to improve the systemic
response to “danger” [3,47,48] and concomitantly reduce the low-grade inflammatory status related
to chronic diseases. This set of data further strengthens the concept that multi-parametric metabolic
analyses leads to a context-dependent profiling of TAE. It further indicates that the effect of TAE ought
to be characterized and interpreted through contextualization and analysis of variables in different
biological conditions.
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tomato cultivars (Heinz, Jet, Falcorosso, Early Fire, Premium 2000) as described by [6]. Briefly, ripe 
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Figure 8. Modulation of inflammatory processes in blood and tissue by TAE. Circulating monocytes
respond to activation signals (like pathogen associated molecular patterns, Toll-like receptor
ligands, lipopolysaccharides) by increased production of cytokines and chemokines, migrate through
endothelial layers and differentiate into tissue-resident macrophages. These can be stimulated by
the classical or alternative activation pathway. TAE enhances (green arrows) or diminishes (red
arrows) cytokines, chemokines and adhesion molecules which orchestrate cell trafficking, activation
and differentiation in different compartments of the immune system.

4. Materials and Methods

4.1. Reagents

TAE was prepared from a proprietary blend of Lycopersicon esculentum containing five tomato
cultivars (Heinz, Jet, Falcorosso, Early Fire, Premium 2000) as described by [6]. Briefly, ripe tomato
fruits of Lycopersicon esculentum were homogenized, cleared by centrifugation and ultra-filtered
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(MW cutoff 1000 Da). Biologically inactive material, which mainly consisted of soluble sugars, was
removed by solid-phase extraction; non-sugar components (4% of aqueous extract dry matter) were
eluted in ethanol. The dried eluate was dissolved in DMSO. Its main constituents are indicated in
Table 1. Adenosine, rutin, chlorogenic acid (CA), E. coli lipopolysaccharide (LPS, serotype 055:B5)
and fetal bovine serum (FBS) were from Sigma/Aldrich (Saint-Louis, MO, USA). RPMI 1640, DMEM,
2-mercaptoethanol and non-essential amino acids (NEAA) were from Invitrogen (Carlsbad, CA, USA).
TNF-α was from PeproTech EC (London, UK).

4.2. Cell Culture

RAW264.7 cells and human PBLs have been cultured and treated with inflammatory stimuli as
described [12–14]. Briefly, PBLs were obtained from healthy donors and cultured (at 8 ˆ 106 viable
cells/mL) in phenol-red free RPMI 1640 (containing 0.25% FBS, 0.1 mM NEAA, 50 U/mL penicillin,
50 µg/mL streptomycin, 50 µM 2-mercaptoethanol). Cells were stimulated with LPS (100 ng/mL) in
the presence of graded amounts of test substances. Cells were lysed in RLT buffer (Qiagen, Hilden,
Germany) after 12 h of culture and total RNA was extracted. For the analysis of secreted mediators and
proteins, cells were cultured for 24 h; supernatants were then collected and stored at ´80 ˝C until use.

HUVECs were from Lonza, (Walkersville, MD, USA) and cultured in EGM (Endothelial Growth
Medium, Lonza). They were used for experiments between passages 3 to 7. Cells ( at 2 ˆ 105 per
well) were seeded into BioCoat™ Collagen I 6-well plates (Becton Dickinson, San Jose, CA, USA),
activated with 10 ng/mL TNF-α and cultured for 4–24 h. All treatments were done in duplicate and
all experimental series were done at least twice.

4.3. RNA Isolation, cDNA Synthesis and RT-PCR

The isolation of total RNA, synthesis of cDNA and quantitative RT-PCR has been performed as
detailed before [14].

4.4. Multiparametricanalysis of Cytokines, Chemokines and Interleukins

The kits for the quantification of chemokines, cytokines and interleukins were purchased from
BIO-RAD Laboratories (Hercules, CA, USA) and used in the LiquiChip Workstation IS 200 (Qiagen,
Hilden, Germany). Data evaluation was made with the LiquiChip Analyser software (Qiagen) [49].
Nitric oxide (NO) and prostaglandin E2 (PGE2) were measured as described previously [14,49].

4.5. Statistical Analysis

Data were evaluated by statistical tools described previously [49]. A p value < 0.05 (calculated by
using Student’s t test or one-way ANOVA) was considered to reflect statistically significant differences.

5. Conclusions

TAE interacts with immune cells and endothelial cells. It distinctly modulates the production
of inflammatory modulators in a context-specific way and in extenso presumably in different body
compartments. Consequently, TAE may beneficially enhance and attenuate inflammatory processes
during acute and chronic inflammation, respectively.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/21/
2/168/s1.
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