Supplementary Materials: Synthesis of 5,10-bis(Trifluoromethyl) Substituted β-Octamethylporphyrins and Central-Metal-Dependent Solvolysis of their *meso*-trifluoromethyl Groups

Masaaki Suzuki 1,2,*, Saburo Neya² and Yutaka Nishigaichi¹

Figure S1. ¹H NMR spectrum of 9 inCDCl₃. *: solvent and impurity.

Figure S2. ¹H NMR spectrum of 7Zn inCDCl₃. *: solvent and impurity.

Figure S3. ¹H NMR spectrum of 9Zn inCDCl₃. *: solvent and impurity.

Figure S5. ¹H NMR spectrum of **12Zn** inCDCl₃. *: solvent and impurity.

Figure S7. ¹⁹F NMR spectrum of 7Zn inCDCl₃.

Figure S13. Preliminary crystal structure of **9Zn**. Left: top view; right: side view. The β -methyl substituents are omitted for clarity in the side view. Thermal ellipsoids are set at the 50% probability level.

Figure S14. Comparison between UV-vis spectrum of 5 and that of 9 in CH2Cl2.

Scheme S1. A proposed mechanism of solvolysis.