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Abstract: An efficient synthesis of novel 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) and their
derivatives, using Brønsted acidic ionic liquid [C2O2BBTA][TFA] as a catalyst, from the condensation
of aryl aldehyde, β-ketoester and urea was described. Reactions proceeded smoothly for 40 min
under solvent-free conditions and gave the desirable products with good to excellent yields (up to
99%). The catalyst could be easily recycled and reused with similar efficacies for at least six cycles.
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1. Introduction

In recent years, 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) and their derivatives have received
much attention because they are important substructures in both biologically active compounds
and several marine alkaloids involving the DHPM core units [1]. A simple and direct approach
for their synthesis involves the conjugate addition of aryl aldehyde, β-ketoester and urea in the
presence of either protic or Lewis acids. In recent years, several improved methods have been
reported for the preparation of these compounds using various catalysts such as p-TsOH¨ H2O [2],
H3BO3 [3], [Al(H2O)6](BF4)3 [4], thiamine hydrochloride [5], L-(+)-tartaric acid-dimethylurea [6],
imidazole-1–yl-acetic acid [7], HClO4-SiO2 [8], polyvinylsulfonic acid [9], SnCl2¨ 2H2O [10],
NaCl [11], SrCl2¨ 6H2O [12], Al-planted MCM-41 [13], (NH4)2CO3 [14], CeCl3¨ 7H2O [15], CaCl2 [16],
Ce(NH4)2(NO3)6 [17] and Fe(OTs)3¨ 6H2O [18]. However, several of these reported procedures suffer
from some drawbacks such as strong acidic conditions, long reaction times, use of expensive or
hazardous reagents, complex handling and low yields of products. Moreover, most of these methods
employ organic solvents as the reaction medium. Hence, new, efficient and environmentally friendly
procedures are still strongly demanded in organic transformations such as condensation reactions.

Currently, ionic liquids (ILs) have been widely used as environmentally benign reaction media
and catalysts in organic synthesis owing to their unique properties of non-volatility, excellent solubility,
high thermal stability and recyclability [19,20]. In particular, the synthesis of task-specific ILs (TSIL)
with special functions according to the requirement of a specific reaction has become an attractive field.
Extensive effort has been focused on the elucidation of the mechanism of Lewis acid–catalyzed Biginelli
reactions in ionic liquids [21]. Sharma et al. [22] reported highly recyclable amino acid ionic liquids as
a catalyst, particularly glycine nitrate, for the one-pot, three-component Biginelli condensation under
microwave irradiation (MW). Recently, Kandasamy and co-workers realized the synthesis of 1-alkyl
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triazolium triflate room temperature ionic liquids and their catalytic studies in a multi-component
Biginelli reaction [23]. In continuation of our interest in the Biginelli reaction [24–26], herein we employ
Brønsted acid ionic liquid 1-butyl-3-carboxymethyl-benzotriazolium trifluoroacetate [C2O2BBTA][TFA]
as a catalyst to study the possibility of synthesizing DHPMs under solvent-free conditions (Scheme 1).
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Scheme 1. Condensation of aryl aldehyde, β-ketoester and urea in the presence of [C2O2BBTA][TFA].

2. Results and Discussion

The catalytic activity of [C2O2BBTA][TFA] was investigated in a one-pot Biginelli condensation
of aryl aldehyde, β-ketoester and urea. The results are presented in Table 1. The best result was
achieved by carrying out the reaction at 90 ˝C for 40 min in the presence of 10% catalytic amount of
[C2O2BBTA][TFA] without any solvent (Table 1, entry 8). Inspired by Clark’s work [27], we explored
the relationship between the catalyst and solvents (Table 1, entries 1–8). When molecular solvents, such
as H2O, MeOH, CH3CN or toluene, were employed, the reaction afforded a mixture of benzaldehyde,
ethyl acetoacetate and urea under similar conditions, and DHPMs were obtained only in a very low
yield (<19%). When no catalyst was used in this reaction system, the reaction did not give the desired
product. This showed that ionic liquid plays a very important role in the reaction system (Table 1,
entry 9). The influence of the reaction time on the yield was also investigated as shown in Table 1,
entries 8, 15–19. It turned out that although the reaction time was increased to 40 min, the yield did
not change significantly (Table 1, entry 8). For the purpose of saving energy, we chose 40 min as the
reaction time. Hence, the best conditions employed a 0.1:2:2:3 mole ratio of [C2O2BBTA][TFA], aryl
aldehyde, β-ketoester, and urea at 90 ˝C for 40 min under solvent-free conditions.

Table 1. Effect of catalyst [C2O2BBTA][TFA] under different conditions for the reaction of aryl aldehyde,
β-ketoester and urea a.

Entry Solvent IL (mol %) Time (min) Yield (%) b

1 H2O 10 40 5
2 MeOH 10 40 3
3 EtOH 10 40 10
4 CH2Cl2 10 40 16
5 CH3CN 10 40 19
6 DMF 10 40 NR
7 Toluene 10 40 5

8 c solvent-free 10 40 96, 95, 95, 94, 93, 92
9 solvent-free None 40 NR

10 solvent-free 1 40 81
11 solvent-free 2.5 40 84
12 solvent-free 5 40 85
13 solvent-free 15 40 95
14 solvent-free 20 40 93
15 solvent-free 10 10 75
16 solvent-free 10 20 91
17 solvent-free 10 30 94
18 solvent-free 10 50 91
19 solvent-free 10 60 93

a Reaction conditions: benzaldehyde (2 mmol), ethyl acetoacetate (2 mmol), urea (3 mmol) and catalyst in
solvent (5 mL) or solvent-free, 90 ˝C; b Isolated yield; c catalyst was recycled six times.
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The recycling performance of TSIL [C2O2BBTA][TFA] was one of its most important benefits,
which was also investigated in the reaction of aryl aldehyde, β-ketoester and urea. After separation of
the product, the filtrate containing catalyst was vacuumed to remove water and the resulting catalyst
was reused directly for the next run. As shown in Table 1, Brønsted acidic ionic liquid [C2O2BBTA][TFA]
can be recycled at least six times without showing a significant decrease in catalytic activity, and the
yields ranged from 96% to 92% (Table 1, entry 8). This indicated that ionic liquid [C2O2BBTA][TFA] was
an efficient and recyclable catalyst for the preparation of 3,4-dihydropyrimidin-2(1H)-ones derivatives.

In order to explore the scope and limitations of this reaction, we extended the procedure to
various aryl-substituted aldehydes carrying either electron-donating or -withdrawing groups in the
ortho, meta, and para positions. In general, the reaction proceeded easily under the best conditions and
the adducts were isolated in excellent yields and high purity. In addition, compared to the reported
synthetic method of 6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxylate (Table 2,
entry 3a) by using HCl as a catalyst and ethonal as a solvent [28], our strategy has the advantages of
higher yield (96% vs. 78%) and shorter reaction time (40 min vs. 3 h). The obtained results indicated
that the electron-donating or -withdrawing groups at the aryl ring did not seem to affect the reaction
significantly in terms of yield (Table 2, entries 3a–3o). Thiourea has been used with similar success
to provide the corresponding S-dihydropyrimidinones analogues, which are also of interest due to
their biological activities (Table 2, entries 3p–3t). The use of different substituted β-ketoester as a
1,3-dicarbonyl moiety in place of ethyl acetoacetate also gave similar results, as shown in Table 2
(entries 3u–3ab).

Table 2. The [C2O2BBTA][TFA]-catalyzed synthesis of 3,4-dihydropyrimidin-2(1H)-ones a.

Entry R1 R2 X Yields b (%)
Mp (˝C) c

Found Reported (lit.)

3a C6H5 EtO O 96 201–202 200–202 [29]
3b 2-F-C6H4 EtO O 96 236–237 235–237 [30]
3c 3-F-C6H4 EtO O 97 209–211 209–211 [31]
3d 4-F-C6H4 EtO O 98 175–176 175–177 [32]
3e 2-Cl-C6H4 EtO O 93 211–213 211–213 [33]
3f 2-Br-C6H4 EtO O 93 204–205 205–207 [30]
3g 3-Br-C6H4 EtO O 94 190–191 190–192 [26]
3h 3-Me-C6H4 EtO O 92 228–230 228–230 [34]
3i 4-Me-C6H4 EtO O 97 209–211 209–212 [35]
3j 3,4-(MeO)2-C6H3 EtO O 98 171–172 172–174 [36]
3k 3-MeO-C6H4 EtO O 93 219–221 219–220 [37]
3l 2-Cl-4-F-C6H3 EtO O 88 195–197

3m 3-Br-4-F-C6H3 EtO O 85 193–195
3n 3,4-(HO)2-C6H3 EtO O 89 232–234 233–235 [37]
3o 4-N(CH3)2-C6H4 EtO O 89 249–251 249–250 [38]
3p C6H5 EtO S 83 202–204 202–204 [39]
3q 4-F-C6H4 EtO S 86 192–193 191–192 [40]
3r 3-Me-C6H4 EtO S 86 193–195 194–195 [41]
3s 4-Me-C6H4 EtO S 90 184–186 185–186 [42]
3t 3-MeO-C6H4 EtO S 93 140–142 141–143 [37]
3u 4-F-C6H4 MeO O 98 188–189 188–190 [43]
3v 4-Me-C6H4 MeO O 96 202–203 202–204 [44]
3w 3-MeO-C6H4 MeO O 92 206–208 204–206 [29]
3x 4-OH-C6H4 MeO O 99 231–233 231–233 [45]
3y 3-MeO-C6H4 i-PrO O 94 196–198
3z 4-OH-C6H4 i-PrO O 98 192–194
3aa 4-F-C6H4 t-BuO O 99 147–149
3ab 3-MeO-C6H4 t-BuO O 95 212–214

a Reaction conditions: benzaldehyde (2 mmol), ethyl acetoacetate (2 mmol), urea (3 mmol) and catalyst in
solvent-free, 90 ˝C; b Isolated yield; c Melting points are uncorrected.

3. Experimental Section

All melting points were determined using a Büchi B-540 instrument. All melting points are
uncorrected. All new compounds were characterized by IR, 1H- and 13C-NMR spectra. The IR spectra
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were obtained as potassium bromide pellets with a FTS-40 spectrometer (BIO-RAD, Hercules, CA,
USA). The 1H-NMR spectra were measured on a Varian Inova-400 spectrometer (at 400 and 100 MHz,
respectively) using TMS as an internal standard in CDCl3 or DMSO-d6.

3.1. General Procedure for the Synthesis of 1-Butyl-3-carboxymethyl-benzotriazolium Trifluoroacetate

[C2O2BBTA][TFA]: benzotriazole (0.2 mol) and chlorobutane (0.24 mol) were dissolved in 30%
aqueous solution of sodium hydroxide (100 mL). Tetrabutylammonium bromide (1 g) was added and
the solution was stirred 24 h at 80 ˝C until two phases formed. The top organic phase and bottom water
phase were separated with separating funnel. Any remaining water in the organic phase was removed
by decompressing Ratovapor at 70 ˝C [46]. The 1-butylbenzotriazole (0.1 mol) and chloroacetic acid
(0.1 mol) were added to a 50 mL round bottom flask fitted with a reflux condenser. The solution
was stirred for 36 h at 90 ˝C. Then the mixture was washed at least three times with diethyl ether
and acetone. The product ([C2O2BBTA][Cl]) precipitated as a white solid and then was collected by
filtration and dried in vacuo for 24 h. The [C2O2BBTA][Cl] (0.05 mol) was transferred to a 25 mL round
bottom flask and trifluoroacetic acid (TFA, 0.06 mol) was added dropwise, then stirred 24 h at 80 ˝C.
Finally, any remaining TFA was removed by decompressing Ratovapor at 90 ˝C for 1 h and dried
in vacuo for 24 h (Scheme 2).
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3.2. General Procedure for the Synthesis of 3,4-Dihydropyrimidin-2(1H)-(thio)ones

A mixture of aryl aldehyde (2 mmol), β-ketoester (2 mmol), urea (2 mmol) and [C2O2BBTA][TFA]
(0.2 mmol) were heated at 90 ˝C under solvent-free conditions for 40 min with stirring (Scheme 1).
After cooling, the reaction mixture was poured onto crushed ice (30 g) and stirred for 10 min.
The separated solid was filtered under suction, washed with cold water (30 mL) and then recrystallized
from ethanol to afford the pure product. The resulting precipitate was filtered under suction.
The results are summarized in Table 2. All products (except 3l–3m, 3y–3ab) are known compounds,
which were characterized by IR, 1H and 13C-NMR spectra.

1-Butyl-3-carboxymethyl-benzotriazolium Trifluoroacetate [C2O2BBTA][TFA]: brown liquid; 1H-NMR
(DMSO-d6, 400 MHz, TMS): δ 0.93 (t, 3H, CH3), 1.31–1.41 (m, 2H, CH2), 2.00–2.07 (m, 2H, CH2),
5.11 (t, 2H, CH2), 6.13 (s, 2H, CH2), 8.00–8.53 (m, 4H, Ar-H); 13C-NMR (DMSO-d6, 100 MHz, ppm):
δ 166.4, 158.3 (q, COCF3), 135.0, 134.3, 131.4, 130.9, 115.6 (q, CF3), 114.1, 114.0, 51.9, 51.2, 30.2, 18.7,
13.0 ppm; IR (KBr, ν/cm´1): 3106, 2967, 2940, 2879, 2511, 1738, 1505, 1471, 1364, 1190, 1141, 1029, 754,
718, 643, 599; ESI-MS: m/z (%) = 234.1 (100) [M]+, 113.0 (100) [M]´.

5-Ethoxycarbonyl-6-methyl-4-(2-chloro-4-fluorophenyl)-3,4-dihydropyrimidin-2(1H)-thione (3l): white solid;
1H-NMR (400 MHz, DMSO-d6), δ: 1.00 (t, 3H, OCH2CH3), 2.29 (s, 3H, CH3 ), 3.89 (q, 2H, OCH2), 5.59
(s, 1H, CH), 7.20 (t, 1H, Ar-H), 7.32–7.39 (dd, 2H, Ar-H), 7.73 (s, 1H, NH), 9.30 (s, 1H, NH); 13C-NMR
(100 MHz, DMSO-d6), δ: 13.80, 17.56, 39.07, 39.59, 50.90, 58.98, 97.61, 115.53, 131,26, 138.24, 138.27,
149.28, 151.08, 159,52, 162.98, 164.74; IR (KBr, ν/cm´1): 3346, 3225, 3112, 2976, 1697, 1644, 1223, 1093,
903, 805.

5-Ethoxycarbonyl-6-methyl-4-(3-bromo-4-fluorophenyl)-3,4-dihydropyrimidin-2(1H)-thione (3y): white solid;
1H-NMR (400 MHz, DMSO-d6), δ: 1.09 (t, 3H, OCH2CH3), 2.25 (s, 3H, CH3 ), 3.99 (q, 2H, OCH2), 5.15
(s, 1H, CH), 7.24–7.27 (m, 1H, Ar-H), 7.33–7.37 (t, 1H, Ar-H), 7.48–7.50 (dd, 1H, Ar-H), 7.79 (s, 1H, NH),
9.29 (s, 1H, NH); 13C-NMR (100 MHz, DMSO-d6), δ: 13.92, 17.72, 52.97, 59.20, 98.41, 112.13, 127.44,
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131.19,142.88, 148.95, 151.66, 156.05, 158.49, 164.99; IR (KBr, ν/cm´1): 3342, 3203, 3100, 2984, 1702, 1658,
1232, 1099, 895, 804.

5-Isopropoxycarbonyl-6-methyl-4-(3-methoxyphenyl)-3,4-dihydropyrimidin-2(1H)-thione (3z): white solid;
1H-NMR (400 MHz, DMSO-d6), δ: 1.01 (d, 3H, CH3), 1.16 (d, 3H, CH3CH), 2.23 (s, 3H, CH3C), 3.72 (s,
3H, MeO), 4.82 (m, 1H, CHCH3), 5.10 (s, 1H, CH), 6.76–6.83 (m, 3H, Ar-H), 7.24 (t, H, Ar-H), 7.70 (s,
1H, NH), 9.15 (s, 1H, NH); 13C-NMR (100 MHz, DMSO-d6), δ: 17.60, 21.54, 53.73, 54.86, 66.24, 99.34,
112.16, 118.19, 129.37, 146.34, 148.05, 152.07, 159.07, 164.73; IR (KBr, ν/cm´1): 3234, 3106, 2981, 2948,
1721, 1652, 1599, 1463, 1431, 1374, 1282, 1232, 1092, 1073, 788.

5-Isopropoxycarbonyl-6-methyl-4-(4-hydroxyphenyl)-3,4-dihydropyrimidin-2(1H)-thione (3z): orange solid;
1H-NMR (400 MHz, DMSO-d6), δ: 1.00 (d, 3H, CH3), 1.15 (d, 3H, CH3CH), 2.22 (s, 3H, CH3C), 4.80 (m,
1H, CHCH3), 5.02 (s, 1H, CH), 6.68 (d, 2H, Ar-H), 7.02 (d, 2H, Ar-H), 9.07 (s, 1H, NH), 9.31 (s, 1H, OH);
13C-NMR (100 MHz, DMSO-d6), δ: 17.56, 21.39, 21.69, 53.44, 66.09, 99.91, 114.79, 114.79, 127.35, 127.35,
135.46, 147.35, 152.02, 156.39, 164.79; IR (KBr, ν/cm´1): 3289, 3227, 3109, 2979, 2808, 1706, 1686, 1651,
1511, 1448, 1371, 1282, 1226, 1173, 1086, 783, 680.

5-Tert-Butoxycarbonyl-6-methyl-4-(4-fluorophenyl)-3,4-dihydropyrimidin-2(1H)-thione (3aa): faint yellow
solid; 1H-NMR (400 MHz, DMSO-d6), δ: 1.28 (s, 9H, (CH3)3C), 2.21 (s, 3H, CH3C), 5.07 (s, 1H, CH),
7.13–7.18 (m, 2H, Ar-H), 7.22–7.26 (m, 2H, Ar-H), 7.66 (s, 1H, NH), 9.09 (s, 1H, NH); 13C-NMR (100 MHz,
DMSO-d6), δ: 17.56, 27.72, 27.72, 53.60, 79.09, 100.25, 114.92, 128.12, 128.20, 141.12, 141.15, 147.43, 151.81,
159.96, 162.38, 164.61; IR (KBr, ν/cm´1): 3230, 3107, 2975, 2930, 1697, 1644, 1507, 1452, 1366, 1292, 1230,
1164, 1090, 1035, 837, 798, 759, 658.

5-Tert-Butoxycarbonyl-6-methyl-4-(3-methoxyphenyl)-3,4-dihydropyrimidin-2(1H)-thione (3ab): faint yellow
solid; 1H-NMR (400 MHz, DMSO-d6), δ: 1.29 (s, 9H, (CH3)3C), 2.21 (s, 3H, CH3C), 2.27 (s, 3H, CH3C),
5.07 (s, 1H, CH), 7.01–7.06 (m, 3H, Ar-H), 7.18–7.22 (t, 1H, Ar-H), 7.63 (s, 1H, NH), 9.05 (s, 1H, NH);
13C-NMR (100 MHz, DMSO-d6), δ: 17.56, 21.01, 27.72, 27.72, 27.72, 54.20, 78.99, 100.50, 123.22, 126.79,
127.67, 128.12, 137.07, 144.89, 147.04, 152.05, 164.73; IR (KBr, ν/cm´1): 3226, 3099, 2977, 2935, 1699,
1647, 1489, 1438, 1366, 1294, 1232, 1165, 1087, 859, 813, 774, 745, 697, 670, 599.

4. Conclusions

In summary, we have reported an efficient and convenient method for the synthesis of a series
of novel dihydropyrimidin-2(1H)-ones using aryl aldehyde, β-ketoester and urea as substrates and
employing Brønsted acidic ionic liquid [C2O2BBTA][TFA] as a catalyst. This method offers several
advantages including high yields, short reaction times, and a simple work-up procedure. It also has
the ability to tolerate a wide variety of substituted groups in all three components, which is lacking in
existing procedures.
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