Supplementary Materials: Nanocellulose Derivative/Silica Hybrid Core-Shell Chiral Stationary Phase: Preparation and Enantioseparation Performance

Xiaoli Zhang, Litao Wang, Shuqing Dong, Xia Zhang, Qi Wu, Liang Zhao and Yanping Shi

Figure S1. (a) N2 adsorption-desorption isotherms of CPM2; (b) pore size distribution of CPM2.

Figure S2. Thermogravimetric weight loss curves for (a) CPM1; (b) CPM2.

Figure S3. Chiral separation chromatograms of diclofop on columns packed with CPM1 and CPM2.

 Table S1. Comparison of specific surface area, pore volume and average pore diameter of core-shell

 CPMs and original silica core.

	Surface Area (m²/g)	Pore Volume(cm ³ /g)	Pore Size (nm)
Silica core	340	0.89	10.1
CPM1	330	0.69	8.3
CPM2	327	0.58	7.1

Table S2. Effect of IPA concentration on resolution of 1-(1-naphthyl) ethanol.

IPA (v%)	\mathbf{k}_1	\mathbf{k}_2	α	Rs
0.5	3.79	4.65	1.23	1.40
1	2.48	3.05	1.23	1.25
3	1.13	1.39	1.23	1.04
10	0.35	0.41	1.17	0.53

Table S3. Effect of alcohol types on resolution of 1-(1-naphthyl) ethanol.

Alcohol (1%, v%)	\mathbf{k}_1	\mathbf{k}_2	α	Rs
<i>n</i> -Propanol	2.44	2.72	1.12	0.84
Butanol	2.74	3.07	1.12	0.90
Ethanol	1.75	2.14	1.22	1.20
IPA	2.48	3.05	1.23	1.25

Table S4. Effect of CHCl3 on resolution of ranolazine.

CHCl ₃ (v%)	\mathbf{k}_1	\mathbf{k}_2	α	Rs
0	8.35	8.35	1.00	
10	2.39	3.53	1.47	1.04
15	1.79	3.17	1.76	1.28