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Abstract: A series of novel chalcone-1,2,3-triazole-azole hybrids were designed, synthesized and
evaluated for their antiproliferative activity against three selected cancer cell lines (SK-N-SH, EC-109
and MGC-803). Most of the synthesized compounds exhibited moderate to good activity against all
the cancer cell lines selected. Particularly, compound I-21 showed the most excellent antiproliferative
activity with an IC50 value of 1.52 µM against SK-N-SH cancer cells. Further mechanism studies
revealed that compound I-21 induced morphological changes of SK-N-SH cancer cells possibly by
inducing apoptosis. Novel chalcone-1,2,3-triazole-azole derivatives in this work might be a series of
promising lead compounds to develop anticancer agents for treating neuroblastoma.
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1. Introduction

Cancer, being one of the leading causes of death globally, causes a great burden to both the society
and single human lives as a whole. Although there have been progresses in the development of
treatment and prevention of cancer, the success to treat cancer remains a challenge [1]. Therefore, there
is still an urgent need to search for novel anticancer agents that have broader spectrum of cytotoxicity
to tumor cells [2].

Chalcones are abundant in edible plants where they are considered to be the precursors
of flavonoids or isoflavonoids [3] and constitute an important group of natural and synthetic
products with wide range of pharmacological activities as antibacterial [4,5], anti-tumor [6,7],
anti-inflammatory [8,9], antifungal and antioxidant agents [10,11]. For example, a chalcone
without substituent groups (1) is cytotoxic to MCF-7 cell line with an IC50 of 6.88 µg/mL [12].
A combretastatin-like chalcone (2) as the inhibitor of microtubule polymerization, exhibited the
excellent cytotoxic activity against K562 cells with an IC50 of 1.1 µM [13] (Figure 1).

1,2,3-triazole is a considered privileged scaffold in drug discovery with a wide array
of biological activities as anti-fungal [14], anti-bacterial [15], anti-allergic [16], anti-HIV [17],
anti-tubercular [18] and anti-inflammatory agents [19]. Recent research of its pharmacological effects
became much more appealing and promising for the design of anticancer agents. Compound (3), a
1,2,3-triazol-naphthalimide hybrid, showed IC50 values of 0.348 and 0.258 µM against MCF-7 and
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SMMC-7721 cell lines, respectively [20]. N-((1-Benzyl-1H-1,2,3-triazol-4-yl)methyl) arylamide was
identified as a proprietary small molecule scaffold for potential antitumor agents by M.J. Miller group
and compound (4) exhibited an IC50 of 46 nM against MCF-7 cancer cell line [21] (Figure 1).
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On the other hand, the heterocyclic azoles, including 4,5-dihydrothiazole-2-thiol,
benzo[d]thiazole-2-thiol, 1,3,4-thiadiazole-2-thiol, and 1-methyl-1H-tetrazole-5-thiol (Figure 2),
represent one of the most useful cores of anticancer agents, with a wide range of activities against
various cancers [22]. These above interesting findings and our continuous quest to identify more
potent analogues, led to the molecular hybridization of chalcone, 1,2,3-trizole, and different azoles
to integrate them in one molecular platform to generate a new hybrid architecture with the aim of
exploring the impact of such modification on the anticancer agents [23,24].
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The designed scaffold (Figure 3) has four parts: 1,2,3-trizole as a central backbone, attachment of
chalcone or heterocycle chalcone to a trizole unit to enchance desired pharmacophoric behavior
with druglike properties, a long-chain alkoxyl group for lipophilicity, and azole units to the
other side of the triazole core. In this paper we report the synthesis and evaluation of novel
chalcone-1,2,3-triazole-azoles as new class of antiproliferative agents.
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Figure 3. Illustration of the design strategy for target compounds.

In totally, a series of novel chalcone-1,2,3-triazole-azole derivatives were successfully synthesized,
and their structures characterized by 1H-NMR, 13C-NMR, HRMS. Their in vitro antiproliferative
activities were then tested, using a MTT assay, against three selected cancer cell lines (SK-N-SH,
EC-109 and MGC-803) and compared with the well-known anticancer drug 5-fluorouracil. Most of the
synthesized compounds exhibited moderate to good activity against all the cancer cell lines selected.
Particularly, the promising compound I-21 showed the most excellent antiproliferative activity with
an IC50 value of 1.52 µM against SK-N-SH cancer cells.

2. Results and Discussion

2.1. Chemistry

Alkyne intermediates 5a–5d were synthesized as shown in Scheme 1. Commercially available
azoles were treated with propargyl bromide to provide 5a–5d. The general route for the
synthesis of the target chalcone-1,2,3-triazole-azole analogues (I-1–I-27) was depicted in Scheme 2.
Commercially available 1,3-dibromopropane was reacted with p-hydroxyacetophenone in the presence
of potassium carbonate and NaN3 to form compound 6, which was subjected to click reaction with
appropriately alkyne intermediates to afford 7a–7d with good yields. 7a–7d were converted to target
compounds I-13–I-27 with substituted aromatic aldehyde at room tempeture in a NaOH/EtOH
solution. Alkyne intermediates 5a–5d and trizole intermediates 7a–7d were easily obtained with the
mature reaction conditions developed by our group [22]. The structures of the targeted compounds
were characterized using spectral methods, and all spectral data corroborated the assumed structures.
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2.2. Antiproliferative Activity and Structure Activity Relationship Analysis

All synthesized compounds were evaluated for their anticancer activity against three cancer cell
lines, MGC-803 (human gastric cancer cell line), SK-N-SH (human neuroendocrine cancer cell line),
and HepG-2 (human esophageal cancer cell line) using MTT assay method and compared with the
well-known anticancer drug 5-fluorouracil. The results are summarized as Table 1. With the exception
of chalcone-1,2,3-triazole-azoles I-1–I-27, all the compounds exhibit moderate potency against all three
selected cancer lines. Among them, compounds I-14 and I-21 shows showed broad spectrum anticancer
activity with IC50 values ranging from 3.57 to 8.52 µM and 1.52 to 10.42 µM, respectively (Table 1).

During the structure activity relationship studies, we found that the substituent on the benzene
ring of chalcone has a remarkable effect on their antiproliferative activity. Regarding the activity
results of the tested compounds against SK-N-SH cell line, compounds (I-14, I-21, I-25) with the
3,4,5-trimethoxyphenyl group on the benzene ring of chalcone showed more potent inhibitory effects
(1.52–6.98 µM) than compounds (I-13, I-20, I-24) with a p-chlorine atom (Table 1).

To evaluate whether the 3,4,5-trimethoxyphenyl ring and heterocycles of chalcones have an effect
on the activity, compounds with 3-pyridine ring (I-15, I-18, I-22, and I-26), 2-thiofuran ring (I-16, I-19,
I-23 and I-27) were synthesized and their antiproliferative activity results were shown in Table 1.
Compounds bearing 3-pyridine ring (I-18, I-22, and I-26) showed more potent inhibitory effects than
compounds bearing 2-thiofuran ring (I-19, I-23 and I-27). Especially, compound I-22 exhibited the most
potent inhibitory activity with an IC50 value of 4.45 µM against MGC-803 cells. However, the opposite
trend was observed that compound I-16 bearing 2-thiofuran ring showed more potent antiproliferative
acitivity than compound I-15 bearing 3-pyridine ring against all tested cancer cell lines. The results
suggested that the heterocycle ring of chalcone affected the activity obviously. Furthermore, changing
the 3,4,5-trimethoxyphenyl ring (I-14, 3.57 µM) to 3-pyridine ring (I-15, 42.36 µM) and 2-thiofuran ring
(I-16, 19.28 µM) led to a loss of antiproliferative activity against EC-109 cells. These modifications and
structure activity relationship studies revealed that the 3,4,5-trimethoxyphenyl ring of chalcone played
a critical role for their inhibitory activity.
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To determine whether the azole rings might affect the activity, compound with
4,5-dihydrothiazole-2-thiol (I-13–I-16), benzo[d]thiazole-2-thiol (I-17–I-19), 1,3,4-thiadiazole-2-thiol
(I-20–I-23) and 1-methyl-1H-tetrazole-5-thiol (I-24–I-27) were synthesized and their anticancer
activity were shown in Table 1. Replacing the 1,3,4-thiadiazole-2-thiol scaffold of compound I-20
with 4,5-dihydrothiazole-2-thiol (I-13) led to a loss of activity against EC-109 cancer cells.
However, changing the benzo[d]thiazole-2-thiol (compound I-17) to 1-methyl-1H-tetrazole-5-thiol
(compound I-26) led to an improvement of activity against SK-N-SH, indicating the significance of the
azole rings in their antiproliferative activity.

Table 1. Inhibitory results of preliminary evaluation against three cancer cell lines for the
target compounds.

Comp. IC50 (µM) a

EC-109 SK-N-SH MGC-803

I-13 >100 19.34 ˘ 0.47 37.19 ˘ 0.85
I-14 3.57 ˘ 0.22 5.87 ˘ 1.05 8.52 ˘ 0.56
I-15 42.36 ˘ 0.18 47.31 ˘ 1.57 63.84 ˘ 1.17
I-16 19.28 ˘ 0.79 11.19 ˘ 0.26 8.69 ˘ 0.42
I-17 9.54 ˘ 0.05 >100 38.17 ˘ 0.58
I-18 24.61 ˘ 3.80 14.81 ˘ 0.72 6.24 ˘ 0.05
I-19 38.78 ˘ 1.05 37.83 ˘ 0.91 24.35 ˘ 0.71
I-20 5.81 ˘ 0.21 3.75 ˘ 1.21 46.28 ˘ 1.64
I-21 10.42 ˘ 0.24 1.52 ˘ 0.30 4.26 ˘ 0.32
I-22 14.62 ˘ 1.21 12.43 ˘ 0.44 4.45 ˘ 0.82
I-23 57.25 ˘ 1.63 20.96 ˘ 1.81 15.09 ˘ 0.85
I-24 24.94 ˘ 1.09 28.37 ˘ 1.59 50.12 ˘ 0.97
I-25 5.28 ˘ 0.56 6.98 ˘ 0.40 5.66 ˘ 0.55
I-26 11.85 ˘ 0.74 4.49 ˘ 0.45 5.56 ˘ 0.45
I-27 >100 29.30 ˘ 0.85 38.12 ˘ 0.91
5-FU 10.30 ˘ 0.32 9.85 ˘ 0.76 7.14 ˘ 0.28

a Inhibitory activity was assayed by exposure for 72 h to substances and expressed as concentration
required to inhibit tumor cell proliferation by 50% (IC50). Data are presented as the means ˘ SDs of three
independent experiments.

Compounds I-14 and I-21 were further examined for possible cytotoxicity against GES-1
(normal human gastric epithelial cell line). As can be seen in Table 2, we found that compounds
I-14 and I-21 exhibited no significant cytotoxicity against GES-1 (>64 and 43.67 µM, respectively).
However, compounds I-14 and I-21 exhibited potent cytotoxicity against selected MGC-803 cancer
cell lines (8.52 µM and 4.26 µM, respectively). The results indicated that compounds I-14 and I-21
had good selectivity between cancer and normal cells. The detailed illustration for structure activity
relationship of target derivatives was showed in Figure 4.

Table 2. Inhibitory results of chalcone-1,2,3-triazole-azoles against GES-1 cell lines.
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Due to the most potent cytotoxic activity against three selected cancer cell lines among all
synthesized derivatives [23], compound I-21 was chosen to be further investigated regarding its
mechanism of action. To explore cytotoxicity of I-21 in SK-N-SH cells, cell apoptosis was investigated
with Hoechst 33258 staining. After 24 h incubation with I-21 at indicated concentrations, characteristic
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2.4. Western Blots Analysis

Antiproliferative agents that induce apoptosis in cancer cells are always preferred in antitumor
drug discovery. Bcl-2 associated proteins have both anti-apoptotic and pro-apoptotic effects in vrious
cancer cell lines. For the high potent cytotoxic activity against SK-N-SH cell line, compound I-21 was
evaluated the level of Bcl-2 (apoptotic inhibitor) and Bax (apoptotic inducer) [24]. We can see from
the result that compound I-21 increased the level of Bax and reduced the level of Bcl-2, which could
promote apoptosis of SK-N-SH cells (Figure 6). Further mechanism investigations are under way and
will be reported in due course.
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3. Materials and Methods

3.1. General Experimental Procedures

All reagents and solvents used were of analytical grade purchased from commercial sources.
Thin-layer chromatography (TLC) was carried out on glass plates coated with silica gel and visualized
by UV light (254 nm) (Beijing synthware glass, Beijing, China). Melting points were determined on a
Beijing Keyi XT4A apparatus and are uncorrected (Beijing, China). All NMR spectra were recorded
with a Bruker DPX 400 MHz spectrometer (Agilent, Santa Clara, CA, USA), with TMS as internal
standard in CDCl3. Chemical shifts are given as dppm values relative to TMS. For some of novel
compounds, Mass spectra (MS) were recorded on Esquire 3000 mass spectrometer (Varian, Palo Alto,
CA, USA) by electrospray ionization (ESI).

3.1.1. General Procedure of Compounds 5a–5d

To a stirred solution of mercaptan (3 mmol) in acetone (15 mL), propargyl bromide (3 mmol) and
K2CO3 (3 mmol) were added carefully and the reaction mixture was refluxed for 5 h. Upon completion,
the reaction mixture was concentrated under vacuum, the residue was dissolved in EtOAc (30 mL) and
washed with water, brine, dried over anhydrous Na2SO4 and concentrated under vacuum to afford
compounds 5a–5d, which were used in the next reaction without further purification.

2-(Prop-2-yn-1-ylthio)-4,5-dihydrothiazole (5a): Colourless oil, yield: 67%. 1H-NMR (400 MHz, DMSO)
δ 4.16 (t, J = 8.0 Hz, 2H), 3.94 (d, J = 2.6 Hz, 2H), 3.48 (t, J = 8.0 Hz, 2H), 3.21 (t, J = 2.6 Hz, 1H).
13C-NMR (100 MHz, DMSO) δ 161.81, 79.50, 74.13, 63.92, 35.48, 20.09. HRMS (ESI) calcd for C6H8NS2

[M + H]+: 158.0098, found: 158.0098.

2-(Prop-2-yn-1-ylthio)benzo[d]thiazole (5b): Yellow solid, yield: 87%; m.p.: 50–52 ˝C. 1H-NMR (400 MHz,
DMSO) δ 7.75–7.62 (m, 2H), 7.41–7.30 (m, 2H), 4.23 (d, J = 2.6 Hz, 2H), 3.31 (t, J = 2.6 Hz, 1H).
13C-NMR (100 MHz, DMSO) δ 162.70, 151.38, 141.19, 124.70, 124.49, 118.46, 110.27, 79.19, 74.57, 20.33.
HRMS (ESI) calcd for C10H8NS2 [M + H]+: 206.0099, found: 206.0098.

2-(Prop-2-yn-1-ylthio)-1,3,4-thiadiazole (5c): Colourless oil, yield: 80%. 1H-NMR (400 MHz, DMSO)
δ 9.59 (dd, J = 3.5, 1.6 Hz, 1H), 4.23 (dd, J = 2.2, 1.6 Hz, 2H), 3.25 (ddd, J = 7.9, 4.9, 2.6 Hz, 1H).
13C-NMR (100 MHz, DMSO) δ 163.98, 154.52, 78.98, 74.77, 22.21. HRMS (ESI) calcd for C5H5N2S2

[M + H]+: 156.9897, found: 156.9894.

1-Methyl-5-(prop-2-yn-1-ylthio)-1H-tetrazole (5d): White solid, yield: 82%; m.p.: 61–62 ˝C. 1H-NMR
(400 MHz, DMSO) δ 4.12 (d, J = 2.6 Hz, 2H), 3.99 (s, 3H), 3.26 (t, J = 2.6 Hz, 1H). 13C-NMR (100 MHz,
DMSO) δ 152.29, 78.87, 74.93, 33.81, 21.58. HRMS (ESI) calcd for C5H7N4S [M + H]+: 155.0393,
found: 155.0391.
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3.1.2. General Procedure of Compounds 7a–7d

p-Aminoacetophenone (1 mmol), 1,3-dibromopropane (1 mmol) and K2CO3 (1 mmol) were
dissolved in acetone (10 mL). The mixture was refluxed for 3 h, then sodium azide were added and the
reaction mixture was refluxed for another 2 h. Upon completion, the reaction mixture was concentrated
under vacuum, the residue was dissolved in EtOAc (20 mL) and washed with water, brine, dried over
anhydrous MgSO4 and concentrated under vacuum to afford compound 6, which were used in the
next reaction without further purification. compound 6 (1.05 mmol), alkyne intermediates (1 mmol),
CuSO4¨ 5H2O (0.2 mmol) and sodium ascorbate (0.1 mmol) were dissolved in THF/H2O (5 mL/5 mL)
to stir for 7 h at room temperature. Upon completion, the precipitated product was filtered to afford
the crude product 7a–7d without further purification.

1-(4-(3-Azidopropoxy)phenyl)ethanone (6): Colourless oil, yield: 74%. 1H-NMR (400 MHz, DMSO) δ
8.08–7.77 (m, 2H), 7.14–6.92 (m, 2H), 4.13 (t, J = 6.2 Hz, 2H), 3.53 (t, J = 6.7 Hz, 2H), 2.52 (s, 3H), 2.02
(p, J = 6.4 Hz, 2H). 13C-NMR (100 MHz, DMSO) δ 195.99, 162.19, 130.35, 129.99, 114.13, 64.96, 47.63,
28.01, 26.12. HRMS (ESI) calcd for C11H14N3O2 [M + H]+: 220.1086, found: 220.1086.

1-(4-(3-(4-(((4,5-Dihydrothiazol-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)propoxy)phenyl)ethanone (7a): White
solid, yield: 69%; m.p.: 110–112 ˝C. 1H-NMR (400 MHz, DMSO) δ 8.04 (s, 1H), 7.92 (d, J = 8.9 Hz, 2H),
7.00 (d, J = 8.9 Hz, 2H), 4.52 (t, J = 6.9 Hz, 2H), 4.39 (s, 2H), 4.15 (t, J = 8.0 Hz, 2H), 4.06 (t, J = 6.0 Hz,
2H), 3.44 (t, J = 8.0 Hz, 2H), 2.51 (s, 3H), 2.29 (p, J = 6.5 Hz, 2H). 13C-NMR (100 MHz, DMSO) δ
196.23, 162.49, 162.14, 142.65, 130.42, 130.02, 123.71, 114.25, 64.91, 63.93, 46.49, 35.30, 29.25, 26.61, 26.36.
HRMS (ESI) calcd for C17H21N4O2S2 [M + H]+: 377.1107, found: 377.1106.

1-(4-(3-(4-((Benzo[d]thiazol-2-ylthio)methyl)-1H-1,2,3-triazol-1-yl)propoxy)phenyl)ethanone (7b): White
solid, yield: 73%; m.p.: 121–122 ˝C. 1H-NMR (400 MHz, DMSO) δ 8.19 (s, 1H), 7.89 (d, J = 8.7 Hz, 2H),
7.75–7.54 (m, 2H), 7.45–7.22 (m, 2H), 6.96 (d, J = 8.7 Hz, 2H), 4.68 (s, 2H), 4.52 (t, J = 6.9 Hz, 2H), 4.04
(t, J = 6.0 Hz, 2H), 2.51 (s, 3H), 2.39–2.17 (m, 2H). 13C-NMR (100 MHz, DMSO) δ 196.19, 163.55, 162.10,
151.33, 141.24, 130.38, 129.99, 124.59, 124.31, 123.93, 118.33, 114.19, 110.21, 64.91, 46.58, 29.22, 26.51,
26.34. HRMS (ESI) calcd for C21H21N4O2S2 [M + H]+: 425.1106, found: 425.1106.

1-(4-(3-(4-(((1,3,4-Thiadiazol-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)propoxy)phenyl)ethanone (7c): White
solid, yield: 82%; m.p.: 132–135 ˝C. 1H-NMR (400 MHz, DMSO) δ 9.52 (s, 1H), 8.13 (s, 1H), 7.91
(d, J = 8.8 Hz, 2H), 6.99 (d, J = 8.8 Hz, 2H), 4.63 (s, 2H), 4.52 (t, J = 6.9 Hz, 2H), 4.05 (t, J = 6.0 Hz, 2H),
2.51 (s, 3H), 2.38–2.17 (m, 2H). 13C-NMR (100 MHz, DMSO) δ 196.23, 164.68, 162.12, 154.24, 142.14,
130.42, 130.02, 123.95, 114.24, 64.89, 46.56, 29.25, 28.43, 26.37. HRMS (ESI) calcd for C16H18N5O2S2

[M + H]+: 376.0902, found: 376.0902.

1-(4-(3-(4-(((1-Methyl-1H-tetrazol-5-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)propoxy)phenyl)ethanone (7d):
Colourless oil, yield: 63%. 1H-NMR (400 MHz, DMSO) δ 8.11 (s, 1H), 7.92 (d, J = 8.8 Hz, 2H),
7.00 (d, J = 8.8 Hz, 2H), 4.59 (s, 2H), 4.54 (s, 2H), 4.15–4.01 (m, 2H), 3.91 (s, 3H), 2.52 (s, 3H), 2.30
(p, J = 6.5 Hz, 2H). 13C-NMR (100 MHz, DMSO) δ 208.28, 196.16, 162.10, 152.92, 142.06, 130.38, 123.87,
114.20, 68.47, 64.84, 55.76, 46.53, 31.99, 29.53. HRMS (ESI) calcd for C16H20N7O2S [M + H]+: 374.1395,
found: 374.1399.

3.1.3. General Procedure of Compounds I-13–I-27

Compound 7a–7d (1 mmol), substituted aromatic aldehyde (1 mmol) and NaOH (1 mmol) were
dissolved in ethanol (10 mL) to stir at room temperature. The reaction was monitored by TLC till
the reaction was finished. Upon completion, the reaction mixture was concentrated under vacuum,
the residue was dissolved in EtOAc and washed with water, brine, dried over anhydrous Na2SO4

and concentrated under vacuum to afford compounds I-13–I-27 which were purified with column
chromatography on silica gel (hexane/EtOAc = 6/1).
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(E)-3-(4-Chlorophenyl)-1-(4-(3-(4-(((4,5-dihydrothiazol-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)propoxy)phenyl)
prop-2-en-1-one (I-13): White solid, yield: 67%; m.p. 151–153 ˝C. 1H-NMR (400 MHz, CDCl3) δ 8.03
(d, J = 8.7 Hz, 2H), 7.75 (d, J = 15.6 Hz, 1H), 7.58 (d, J = 8.4 Hz, 2H), 7.54 (s, 1H), 7.51 (d, J = 15.7 Hz, 1H),
7.39 (d, J = 8.3 Hz, 2H), 6.96 (d, J = 8.7 Hz, 2H), 4.57 (t, J = 6.7 Hz, 2H), 4.41 (s, 2H), 4.14 (t, J = 8.0 Hz,
2H), 4.04 (t, J = 5.6 Hz, 2H), 3.36 (t, J = 8.0 Hz, 2H), 2.48–2.39 (m, 2H). 13C-NMR (100 MHz, CDCl3)
δ 188.31, 164.79, 162.31, 144.36, 142.63, 136.25, 133.50, 131.29, 130.90, 129.56, 129.22, 123.21, 122.17,
114.33, 64.35, 64.10, 35.81, 29.71, 27.09. HRMS (ESI) calcd for C24H23ClN4O2S2 [M + H]+: 498.0953,
found: 498.0951.

(E)-1-(4-(3-(4-(((4,5-Dihydrothiazol-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)propoxy)phenyl)-3-(3,4,5-
trimethoxyphenyl)prop-2-en-1-one (I-14): White solid, yield: 51%; m.p. 169–171 ˝C. 1H-NMR (400 MHz,
CDCl3) δ 7.95 (d, J = 8.5 Hz, 2H), 7.64 (d, J = 15.5 Hz, 1H), 7.48 (s, 1H), 7.34 (d, J = 15.5 Hz, 1H),
6.88 (d, J = 8.5 Hz, 2H), 6.79 (s, 2H), 4.50 (t, J = 6.6 Hz, 2H), 4.33 (s, 2H), 4.06 (t, J = 7.9 Hz, 2H), 3.96
(t, J = 5.5 Hz, 2H), 3.85 (s, 6H), 3.82 (s, 3H), 3.28 (t, J = 7.9 Hz, 2H), 2.35 (dt, J = 11.8, 5.9 Hz, 2H).
13C-NMR (100 MHz, CDCl3) δ 188.64, 164.84, 162.17, 153.47, 144.36, 140.32, 131.42, 130.87, 130.50,
123.21, 121.11, 114.27, 105.62, 64.33, 64.08, 61.01, 56.25), 46.97, 35.79, 29.70, 27.06. HRMS (ESI) calcd for
C27H30N4O5S2 [M + H]+: 554.1659, found: 554.1658.

(E)-1-(4-(3-(4-(((4,5-Dihydrothiazol-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)propoxy)phenyl)-3-(pyridin-3-
yl)prop-2-en-1-one (I-15): White solid, yield: 56%; m.p. 149–151 ˝C. 1H-NMR (400 MHz, CDCl3) δ 8.86
(d, J = 1.8 Hz, 1H), 8.62 (m, 1H), 8.04 (d, J = 8.8 Hz, 2H), 7.96 (d, J = 7.9 Hz, 1H), 7.78 (d, J = 15.8 Hz,
1H), 7.62 (d, J = 15.7 Hz, 1H), 7.56 (s, 1H), 7.37 (dd, J = 7.9, 4.8 Hz, 1H), 6.97 (d, J = 8.8 Hz, 2H), 4.58
(t, J = 6.7 Hz, 2H), 4.41 (s, 2H), 4.15 (t, J = 8.0 Hz, 2H), 4.05 (t, J = 5.7 Hz, 2H), 3.36 (t, J = 8.0 Hz, 2H),
2.48–2.40 (m, 2H). 13C-NMR (100 MHz, CDCl3) δ 187.93, 164.74, 162.45, 150.97, 149.90, 144.34, 140.24,
134.59, 130.92, 123.70, 123.19, 114.39, 64.40, 64.09, 46.95, 35.80, 29.69, 27.07. HRMS (ESI) calcd for
C23H23N5O2S2 [M + H]+: 465.1293, found: 465.1293.

(E)-1-(4-(3-(4-(((4,5-Dihydrothiazol-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)propoxy)phenyl)-3-(thiophen-2-
yl)prop-2-en-1-one (I-16): White solid, yield: 61%; m.p. 104–106 ˝C. 1H-NMR (400 MHz, CDCl3) δ 8.01
(d, J = 8.8 Hz, 2H), 7.93 (d, J = 15.2 Hz, 1H), 7.55 (s, 1H), 7.41 (d, J = 5.0 Hz, 1H), 7.33 (d, J = 15.5 Hz,
2H), 7.12–7.06 (m, 1H), 6.95 (d, J = 8.8 Hz, 2H), 4.57 (t, J = 6.7 Hz, 2H), 4.41 (s, 2H), 4.13 (t, J = 8.0 Hz,
2H), 4.03 (t, J = 5.7 Hz, 2H), 3.35 (t, J = 8.0 Hz, 2H), 2.48–2.38 (m, 2H). 13C-NMR (100 MHz, CDCl3)
δ 188.01, 164.79, 162.19, 144.38, 140.49, 136.61, 131.90, 131.39, 130.78, 128.62, 128.36, 123.23, 120.50,
114.28, 64.31, 64.09, 46.97, 35.81, 29.66, 27.09. HRMS (ESI) calcd for C22H22N4O2S3 [M + H]+: 470.0906,
found: 470.0905.

(E)-1-(4-(3-(4-((Benzo[d]thiazol-2-ylthio)methyl)-1H-1,2,3-triazol-1-yl)propoxy)phenyl)-3-(4-phenyl)prop-2-
en-1-one (I-17): White solid, yield: 59%; m.p. 172–174 ˝C. 1H-NMR (400 MHz, CDCl3) δ 7.99
(d, J = 8.7 Hz, 2H), 7.84 (d, J = 8.1 Hz, 1H), 7.80–7.72 (m, 2H), 7.66 (s, 1H), 7.59 (d, J = 8.4 Hz, 2H), 7.51
(d, J = 15.6 Hz, 1H), 7.42 (m, 3H), 7.32 (d, J = 7.5 Hz, 1H), 6.90 (d, J = 8.8 Hz, 2H), 4.70 (s, 2H), 4.57
(t, J = 6.7 Hz, 2H), 4.01 (t, J = 5.7 Hz, 2H), 2.47–2.38 (m, 2H). 13C-NMR (100 MHz, CDCl3) δ 188.30,
165.84, 162.24, 152.96, 142.60, 136.26, 133.53, 131.33, 130.78, 129.55, 129.24, 128.48, 126.13, 124.44, 122.20,
121.43, 121.16, 114.23, 64.27, 47.00, 29.67, 27.71. HRMS (ESI) calcd for C28H23ClN4O2S2 [M + H]+:
546.0951, found: 546.0951.

(E)-1-(4-(3-(4-((Benzo[d]thiazol-2-ylthio)methyl)-1H-1,2,3-triazol-1-yl)propoxy)phenyl)-3-(pyridin-3-yl)prop-
2-en-1-one (I-18): White solid, yield: 69%; m.p. 144–146 ˝C. 1H-NMR (400 MHz, CDCl3) δ 8.86 (s,
1H), 8.62 (d, J = 2.5 Hz, 1H), 7.96 (m, 3H), 7.82 (d, J = 8.1 Hz, 1H), 7.77 (d, J = 15.8 Hz, 1H), 7.72
(d, J = 7.9 Hz, 1H), 7.66 (s, 1H), 7.59 (d, J = 15.7 Hz, 1H), 7.38 (m, 2H), 7.29 (d, J = 7.3 Hz, 1H), 6.89
(d, J = 8.6 Hz, 2H), 4.67 (s, 2H), 4.55 (t, J = 6.6 Hz, 2H), 4.00 (t, J = 5.6 Hz, 2H), 2.46–2.35 (m, 2H).
13C-NMR (100 MHz, CDCl3) δ 187.86, 165.79, 162.38, 152.93, 150.93, 149.87, 144.02, 140.14, 135.41,
134.56, 130.91, 126.11, 124.43, 123.72, 123.42, 121.4, 121.15, 114.30, 64.35, 46.99, 29.65, 27.73. HRMS (ESI)
calcd for C27H23N5O2S2 [M + H]+: 513.1293, found: 513.1293.
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(E)-1-(4-(3-(4-((Benzo[d]thiazol-2-ylthio)methyl)-1H-1,2,3-triazol-1-yl)propoxy)phenyl)-3-(thiophen-2-yl)prop-
2-en-1-one (I-19): White solid, yield: 55%; m.p. 144–147 ˝C. 1H-NMR (400 MHz, CDCl3) δ 7.99–7.90
(m, 3H), 7.82 (d, J = 8.1 Hz, 1H), 7.72 (d, J = 7.9 Hz, 1H), 7.64 (s, 1H), 7.45–7.28 (m, 5H), 7.12–7.06 (m,
1H), 6.87 (d, J = 8.8 Hz, 2H), 4.67 (s, 2H), 4.55 (t, J = 6.7 Hz, 2H), 3.98 (t, J = 5.7 Hz, 2H), 2.45–2.35 (m,
2H). 13C-NMR (100 MHz, CDCl3) δ 187.95, 165.83, 162.12, 152.96, 144.11, 140.53, 136.52, 135.46, 131.86,
131.34, 130.72, 128.94, 128.47, 126.13, 124.44, 123.45, 121.44, 121.16, 120.56, 114.18, 64.26, 47.00, 29.67,
27.74. HRMS (ESI) calcd for C26H22N4O2S3 [M + H]+: 518.0905, found: 518.0905.

(E)-1-(4-(3-(4-(((1,3,4-Thiadiazol-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)propoxy)phenyl)-3-(4-chlorophenyl)
prop-2-en-1-one (I-20): White solid, yield: 68%; m.p. 143–145 ˝C. 1H-NMR (400 MHz, CDCl3) δ 9.00
(s, 1H), 8.01 (d, J = 8.7 Hz, 2H), 7.74 (t, J = 7.8 Hz, 2H), 7.57 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 15.6 Hz, 1H),
7.38 (d, J = 8.4 Hz, 2H), 6.93 (d, J = 8.7 Hz, 2H), 4.67 (s, 2H), 4.56 (t, J = 6.8 Hz, 2H), 4.02 (t, J = 5.7 Hz,
2H), 2.47–2.37 (m, 2H). HRMS (ESI) calcd for C23H20ClN5O2S2 [M + H]+: 497.0747, found: 497.0747.

(E)-1-(4-(3-(4-(((1,3,4-Thiadiazol-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)propoxy)phenyl)-3-(3,4,5-
trimethoxyphenyl)prop-2-en-1-one (I-21): White solid, yield: 56%; m.p. 124–127 ˝C. 1H-NMR
(400 MHz, CDCl3) δ 9.00 (s, 1H), 8.02 (d, J = 8.7 Hz, 2H), 7.72 (d, J = 15.8 Hz, 2H), 7.43 (d, J = 15.6 Hz,
1H), 6.93 (d, J = 8.6 Hz, 2H), 6.88 (s, 2H), 4.67 (s, 2H), 4.56 (t, J = 6.7 Hz, 2H), 4.02 (t, J = 5.7 Hz, 2H), 3.93
(s, 6H), 3.90 (s, 3H), 2.47–2.37 (m, 2H). 13C-NMR (100 MHz, CDCl3) δ 188.67, 165.02, 162.13, 153.47,
151.88, 144.33, 143.35, 140.31, 131.49, 130.85, 130.51, 123.81, 121.17, 114.26, 105.63, 64.35. HRMS (ESI)
calcd for C26H27N5O5S2 [M + H]+: 553.1454, found: 553.1454.

(E)-1-(4-(3-(4-(((1,3,4-Thiadiazol-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)propoxy)phenyl)-3-(pyridin-3-yl)
prop-2-en-1-one (I-22): White solid, yield: 58%; m.p. 146–149 ˝C. 1H-NMR (400 MHz, CDCl3) δ

9.00 (s, 1H), 8.86 (s, 1H), 8.63 (d, J = 3.9 Hz, 1H), 8.03 (d, J = 8.8 Hz, 2H), 7.96 (d, J = 7.9 Hz, 1H),
7.78 (d, J = 15.7 Hz, 1H), 7.74 (s, 1H), 7.61 (d, J = 15.8 Hz, 1H), 7.37 (dd, J = 7.8, 4.8 Hz, 1H), 6.95
(d, J = 8.8 Hz, 2H), 4.67 (s, 2H), 4.57 (t, J = 6.8 Hz, 2H), 4.04 (t, J = 5.7 Hz, 2H), 2.47–2.38 (m, 2H).
13C-NMR (100 MHz, CDCl3) δ 188.01, 165.02, 162.42, 151.85, 150.95, 149.89, 143.36, 140.25, 134.61,
131.39, 131.00, 123.74, 114.39, 64.37, 47.05, 29.68, 28.16. HRMS (ESI) calcd for C22H20N6O2S2 [M + H]+:
464.1089, found: 464.1089.

(E)-1-(4-(3-(4-(((1,3,4-Thiadiazol-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)propoxy)phenyl)-3-(thiophen-2-yl)
prop-2-en-1-one (I-23): White solid, yield: 72%; m.p. 124–126 ˝C.1H-NMR (400 MHz, CDCl3) δ 8.99
(s, 1H), 7.99 (d, J = 8.8 Hz, 2H), 7.93 (d, J = 15.3 Hz, 1H), 7.72 (s, 1H), 7.41 (d, J = 5.0 Hz, 1H), 7.33
(d, J = 15.1 Hz, 2H), 7.11–7.07 (m, 1H), 6.92 (d, J = 8.8 Hz, 2H), 4.67 (s, 2H), 4.56 (t, J = 6.8 Hz, 2H), 4.01
(t, J = 5.7 Hz, 2H), 2.46–2.37 (m, 2H).13C-NMR (100 MHz, CDCl3) δ 188.06, 162.16, 151.86, 143.33,
140.51, 136.60, 131.87, 131.38, 130.76, 128.59, 128.35, 123.83, 120.56 114.27, 64.30, 47.06, 29.69, 28.18.
HRMS (ESI) calcd for C21H19N5O2S3 [M + H]+: 469.0703, found: 469.0701.

(E)-3-(4-Chlorophenyl)-1-(4-(3-(4-(((1-methyl-1H-tetrazol-5-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)propoxy)
phenyl)prop-2-en-1-one (I-24): White solid, yield: 81%; m.p. 149–150 ˝C. 1H-NMR (400 MHz, CDCl3) δ
8.02 (d, J = 8.8 Hz, 2H), 7.78 (s, 1H), 7.74 (d, J = 15.7 Hz, 1H), 7.58 (d, J = 8.5 Hz, 2H), 7.52 (d, J = 15.6 Hz,
1H), 7.39 (d, J = 8.4 Hz, 2H), 6.94 (d, J = 8.8 Hz, 2H), 4.61 (s, 2H), 4.56 (t, J = 6.8 Hz, 2H), 4.03
(t, J = 5.7 Hz, 2H), 3.86 (s, 3H), 2.41 (p, J = 6.4 Hz, 2H). 13C-NMR (101 MHz, CDCl3) δ 188.37, 162.25,
153.71, 142.69, 136.23, 133.52, 131.29, 130.88, 129.57), 129.21, 124.00, 122.22, 114.31, 64.30, 47.09, 33.45,
29.69, 27.42. HRMS (ESI) calcd for C23H22ClN7O2S [M + H]+: 495.1245, found: 495.1244.

(E)-1-(4-(3-(4-(((1-Methyl-1H-tetrazol-5-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)propoxy)phenyl)-3-(3,4,5-
trimethoxyphenyl)prop-2-en-1-one (I-25): White solid, yield: 45%; m.p. 105–107 ˝C. 1H-NMR (400 MHz,
CDCl3) δ 8.02 (d, J = 8.8 Hz, 2H), 7.78 (s, 1H), 7.72 (d, J = 15.6 Hz, 1H), 7.43 (d, J = 15.6 Hz, 1H), 6.94
(d, J = 8.8 Hz, 2H), 6.88 (s, 2H), 4.61 (s, 2H), 4.56 (t, J = 6.8 Hz, 2H), 4.03 (t, J = 5.7 Hz, 2H), 3.93 (s, 6H),
3.90 (s, 3H), 3.86 (s, 3H), 2.46–2.36 (m, 2H). 13C-NMR (100 MHz, CDCl3) δ 188.66, 162.12, 153.70, 153.45,
144.31, 142.75, 140.25, 131.47, 130.84, 130.52, 123.99, 121.16, 114.26, 105.60, 64.28, 61.00, 56.24, 47.09,
33.44, 29.67, 27.41. HRMS (ESI) calcd for C26H29N7O5S [M + H]+: 551.1953, found: 551.1951.
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(E)-1-(4-(3-(4-(((1-Methyl-1H-tetrazol-5-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)propoxy)phenyl)-3-(pyridin-
3-yl)prop-2-en-1-one (I-26): White solid, yield: 75%; m.p. 151–153 ˝C. 1H-NMR (400 MHz, CDCl3) δ 8.88
(s, 1H), 8.64 (s, 1H), 8.03 (d, J = 8.8 Hz, 2H), 7.97 (d, J = 7.9 Hz, 1H), 7.78 (t, J = 7.9 Hz, 2H), 7.62 (d,
J = 15.7 Hz, 1H), 7.38 (dd, J = 7.1, 4.8 Hz, 1H), 6.96 (d, J = 8.8 Hz, 2H), 4.62 (s, 2H), 4.56 (t, J = 6.8 Hz,
2H), 4.04 (t, J = 5.7 Hz, 2H), 3.86 (s, 3H), 2.47–2.37 (m, 2H). 13C-NMR (100MHz, CDCl3) δ 188.01, 162.39,
153.71, 150.96, 149.93, 142.77, 140.25, 134.58, 131.00, 123.99, 123.67, 114.39, 64.32, 47.08, 33.45, 29.68,
27.41. HRMS (ESI) calcd for C22H22N8O2S [M + H]+: 462.1587, found: 462.1586.

(E)-1-(4-(3-(4-(((1-Methyl-1H-tetrazol-5-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)propoxy)phenyl)-3-(thiophen-
2-yl)prop-2-en-1-one (I-27): White solid, yield: 65%; m.p. 129–130 ˝C. 1H-NMR (400 MHz, CDCl3) δ 8.00
(d, J = 8.8 Hz, 2H), 7.93 (d, J = 15.3 Hz, 1H), 7.78 (s, 1H), 7.41 (d, J = 5.0 Hz, 1H), 7.34 (d, J = 15.4 Hz,
2H), 7.09 (dd, J = 5.0, 3.7 Hz, 1H), 6.93 (d, J = 8.8 Hz, 2H), 4.61 (s, 2H), 4.55 (t, J = 6.9 Hz, 2H), 4.03
(t, J = 5.7 Hz, 2H), 3.85 (s, 3H), 2.45–2.36 (m, 2H). 13C-NMR (100 MHz, CDCl3) δ 188.02, 162.14, 153.70,
142.71, 140.49, 136.56, 131.89, 131.34, 130.74, 128.61, 128.35, 123.97, 120.53, 114.27, 64.30, 47.12, 33.45,
29.69, 27.46. HRMS (ESI) calcd for C21H21N7O2S2 [M + H]+: 467.1198, found: 467.1198.

4. Conclusions

In summary, a series of novel chalcone-1,2,3-triazole-azole hybrids were designed, synthesized
and evaluated for their anticancer activity against three selected cancer cell lines (SK-N-SH, EC-109
and MGC-803). Most of the synthesized compounds exhibited moderate to good activity against
all the cancer cell lines selected. Particularly, compound I-21 showed the most excellent anticancer
activity with an IC50 value of 1.52 µM against SK-N-SH cancer cells. Efforts to optimize the structure
of compound I-21 to further improve its potency are ongoing.
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