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Abstract: A new rare casbane-type diterpenoid 1 and two new cembrane diterpenoids 2, 3
were isolated from an Okinawan soft coral, Lobophytum sp., together with four known cembrane
diterpenoids 4-7. Their structures were elucidated by extensive analysis of spectroscopic data
(1D and 2D NMR, IR, and MS) and a molecular modeling study. The new isolates showed weak
anti-bacterial activity, mild cytotoxicity against HCT116 cells, and anti-inflammatory effect in
LPS/IFN-y-stimulated RAW 264.7 macrophage cells.
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1. Introduction

Marine organisms are the amazing source of secondary metabolites due to the biodiversity of the
oceans. The genus Lobophytum soft coral [1] is a good source for various kinds of secondary metabolites
that have unique structures, promising bioactivity and it is also well-known for producing macrocyclic
diterpenoids belonging to a large group of cembrane-type metabolites [2]. In our continuing
research focused on the isolation and structure elucidation of bioactive secondary metabolites from
Okinawan marine organisms [3-7], we examined a soft coral, Lobophytum sp., subsequently isolating
a novel casbane 1 and two new cembranes 2, 3, along with four known cembrane diterpenoids 4-7
(Figure 1) [8-11]. Casbane-type diterpenoids are rare in Nature, the first being isolated from an
enzymatic preparation of castor bean seedlings [12]; these compounds are also found in soft coral [10].
Most of the casbane-type diterpenoids are two ring-based macrocyclic structures where the junction
of the two rings is cis-fused [10,13,14] and few molecules showed trans junctions [15]. These types of
metabolites are of considerable pharmacological interest due to their unique structures and exhibit
potential bioactivities, including cytotoxicity [16-23], anti-viral [23], anti-inflammatory [24-26] and
antimicrobial activities [24]; casbane diterpenoids also display anti-proliferative activity [10]. Herein,
we report the isolation, structure elucidation, and cytotoxicity of these new metabolites.
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Figure 1. Chemical structures of compounds 1-7.

2. Results and Discussion

The Okinawan soft coral, Lobophytum sp. was collected from Irabu Island, Okinawa, and extracted
with acetone. The acetone extract was partitioned between ethyl acetate and water. The ethyl acetate
portion inhibited the growth of the Gram-positive bacterium Staphylococcus aureus and Gram-negative
bacterium Escherichia coli with inhibition zones at 18 and 15 mm at 50 ng/disc, respectively. Repeated
chromatographic and HPLC purification of the active crude extract resulted in the isolation of three
new metabolites 1 (0.0023%, wet weight), 2 (0.0014%) and 3 (0.0005%) and four known metabolites 4
(0.0039%), 5 (0.0102%) 6 (0.0072%) and 7, 0.0026%) identified by comparison of their NMR data with
reported values [8-11].

The molecular formula of 1 was determined to be Cy)HzO, by high-resolution
nanospray-ionization MS (HRNSIMS) (m/z 305.2470 [M + HJ*, caled. for CoH330,, 305.2475), with
five degrees of unsaturation. The IR spectrum showed hydroxyl and carbonyl groups (absorption
bands at 3279 and 1701 cm~!). 'H- and '3C-NMR data (Table 1, Supplementary Material) suggested it
was a diterpenoid and indicated the presence of a ketone (6¢ 210.6), two trisubstituted double bonds
(8¢ 126.0 (6 5.09 d, ] = 9.5 Hz); 137.1; 124.1 (6 4.90 t, | = 6.9 Hz); 131.3), one oxygenated carbon
atom (8¢ 79.2 (5y 4.09 dd, | = 4.4, 11.0 Hz)), three sp® methines (5¢c 31.4 (5y 0.65 ddd, ] = 3.1, 9.0,
11.2 Hz), 25.3 (6 1.22dd, ] =9.5,9.0 Hz), 31.6 (54 1.88 m)), five sp® methylenes (5¢ 33.0 (5 2.34 m,
2.44m); 519 (5;13.15d,] =147 Hzand 2.82 d, ] =14.7 Hz); 52.4 (6y 2.22 d, | = 7.0 Hz); 37.2 (65 1.15 m);
23.8 (dy 1.59 m, 0.75 m)) and five methyls (6¢c 15.7 (63 1.01 s); 29.1 (6y 1.05 s); 10.3 (6 1.64 s); 17.8
(6y 1.74 s) and 20.4 (5 0.91 d, ] = 6.6 Hz)). On the basis of 'H-'H COSY correlations, the two major
spin systems (a: —CHj(11) —CH(12) —CHj3(20) —CH;(13) —CHj(14) —CH(1) —CH(2) —CH(3) and b:
—CH(5) —CH,(6) —CH(7)) were established (Figure 2).

COSY === HMBC /X
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K

Figure 2. Partial structures of 1-3 based on COSY (bold line) and key HMBC correlations (arrow).
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Table 1. 'H- (500 MHz) and 13C-(125 MHz) NMR data for 1-3 in CDClj.

1 2 3
C No.
Sy (mult., J/Hz) d¢ oy (mult., J/Hz) d¢ oy (mult., J/Hz) d¢

1 0.65 (ddd, 3.1, 9.0, 11.2) 31.4 (CH) 68.2 (C) 68.0 (C)
2 122 (dd, 9.5, 9.0) 253 (CH) 3.75(d, 4.2) 57.5 (CH) 3.80 (d, 5.8) 57.9 (CH)
3 5.09 (brd, 9.5) 126.0 (CH) 5.08 (brd, 4.2) 118.8 (CH) 4.79 (brd, 5.8) 121.0 (CH)
4 137.1(C) 141.9 (C) 140.0 (C)
5 4.09 (dd, 4.4, 11.0) 79.2 (CH) 2.27 (m) 38.9 (CHy) 2.11 (m) 38.9 (CHy)

2.44 (m) 33.0 (CHy) 2.24 (m) 24.5 (CH,) 231 (m) 24.8 (CH,)
6 2.34 (m)
7 4.90 (dd, 6.9, 6.9) 124.1 (CH) 5.15 (t, 6.1) 126.2 (CH) 5.10 (t, 5.2) 125.8 (CH)
8 131.3 (C) 133.7 (C) 134.0 (C)
9 3.15(d, 14.7) 51.9 (CH,) 2.23 (m) 36.8 (CHy) 2.18 (m) 36.8 (CHy)

2.82(d, 14.7) 2.04 (m)
10 2106 (C) 2.25 (m) 24.3 (CHy) 2.29 (m) 23.7 (CHy)
1.96 (m) 2.02 (m)

11 2.22(d, 7.0) 52.4 (CHy) 2.71(dd, 3.4,9.1) 61.6 (CH) 2.59 (dd, 3.3, 10.6) 61.9 (CH)
12 1.88 (m) 31.6 (CH) 61.2 (C) 614 (C)

1.15 (m) 37.2 (CHy) 1.99 (m) 35.2 (CHy) 2.27 (m) 35.1 (CHy)
13 1.96 (m)
14 1.59 (m) 23.8 (CHy) 1.86 (m) 25.4 (CHy) 2.09 (m) 24.3 (CHy)

0.75 (m) 1.34 (m)
15 21.0 (C) 70.1 (C) 70.8 (C)
16 1.01 (s) 15.7 (CHs) 1.25 (s) 26.2 (CHs) 1.29(s) 25.4 (CHs)
17 1.05 (s) 29.1 (CHj) 1.31(s) 26.7 (CHj) 1.28 (s) 26.5 (CHj)
18 1.64 (s) 10.3 (CHz) 1.70 (s) 17.7 (CHz) 1.70 (s) 17.0 (CH3)
19 1.74 (s) 17.8 (CHs) 1.64 (s) 15.3 (CHs) 1.64 (s) 14.9 (CHj)
20 091 (d, 6.6) 20.4 (CHz) 1.24 (s) 17.0 (CHz) 1.25 (s) 16.0 (CHz)

Since compound 1 has three 7-bonds, 1 must be bicyclic to satisfy the five degrees of unsaturation
requirement. For the four singlet methyls, two were assigned to each of vinyl methyls in the two
trisubstituted double bonds, based on heteronuclear multiple bond connectivity (HMBC) correlations
(H3-18/C-3, -4, -5; H3-19/C-7, -8, -9) and the NMR chemical shifts; the remaining two were part
of a gem-dimethyl group as indicated by HMBC correlations of H3-16/C-1, -15 and H3-17/C-2, -15
and COSY correlation between two cyclopropyl protons (dyg 0.65 (ddd, J = 3.1, 9.0, 11.2 Hz), éy
1.22 (dd, | = 9.5, 9.0 Hz)), that indicated a tetrasubstituted cyclopropane ring in molecule 1. An
isolated methylene was associated with the ketonic carbonyl and a vinyl methyl (HMBC correlations
of Hy-9/C-10, -19), situated between C-8 and C-10. In addition, the tetrasubstituted cyclopropane ring
associated with partial structure a was shown by HMBC correlations of Hz-16/C-1, -15; H3-17/C-1, -2,
-15 and H-2/C-4, -15 (Figure 2).

At this point in the structure determination, the partial structures (a with a cyclopropane ring,
b, C-4-C-18, C-8—C-19-C-9-C-10 and C-15-C-16-C-17) were identified, but not assembled (Figure 2).
HMBC correlations (H3-18/C-3, -4, -5; H3-19/C-7, -8, -9; Hy-9, -11/C-10) finally connected these partial
structures to give the 14-membered macrocyclic planar structure as a rare casbane-type diterpenoid
(Figure 2). The two double bonds at C-3 and C-7, were assigned as E geometry due to the 5¢ values of
CHj3-18 and CH3-19 (<20 ppm) [27]. The junction of the two rings at carbons C-1/C-2 was suggested
to be cis orientation by comparison of the '3C chemical shifts of the geminal methyls [5¢ 15.7 (C-16)
and 29.1 (C-17)] in 1 with those of the known cis-fused casbane diterpenes [10,13,14]. The coupling
constant (] = 9.0 Hz) between H-1 (6 0.65 (ddd, 3.1, 9.0, 11.2 Hz)) and H-2 ((6y5 1.22 (dd, ] =9.5, 9.0
Hz)) and an NOE of H-1/H-2 also supported cis configuration of the cyclopropane protons.

The relative stereo structure of 1 was tentatively assigned by 1D Nuclear Overhauser Effect (NOE)
experiments (Figure 3) and by comparison of the NMR data for 1 with those reported for congeners
of 1[10,13,14]. In the NOE experiments of 1, irradiation of the H-1 signal revealed NOEs with H-2,
and irradiation of the H-2 signal showed NOEs with H-1, H3-17, suggesting these protons were on
the same face (Figure 3). The NOEs between H-1 and H-13 and H-12/H-11, -13, suggested that H3-20
was on the side opposite these protons in the molecule. Irradiation of the H-5 signal revealed NOEs
with H-3, -7 but not with H-2 and irradiation of the H-3 signal, showed an NOE with H-5 but not H-2.
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So, H-5 and H-2 could be opposite sides of the molecule. Unfortunately, attempts to prepare MTPA
esters for determination of the absolute stereochemistry failed because of its instability and the small
quantity of compound 1 available.

‘“\ ‘Lr

Figure 3. Computer-generated model of 1-3 using MM2 force calculations and key NOE correlations.

The HRNSIMS (m/z 321.2418 [M + HJ*, caled. for CyyH3303, 321.2424) of 2 suggested the
molecular formula CygH3,O3, which accounted for five degrees of unsaturation. The IR spectrum
showed hydroxyl and epoxide functionalities (absorption bands at 3481, 1295 and 1252 cm ™). 'H- and
13C-NMR data (Table 1), coupled with the molecular formula CoH3,03, suggested it was a diterpenoid
derivative and indicated the presence of one oxygenated carbon atom (5¢ 70.1), two epoxides (5¢ 57.5
(0 3.75d, ] = 4.2 Hz); d¢c 68.2 and 5¢c 61.6 (dy 2.71 dd, | = 3.4, 9.1 Hz); ¢ 61.2), two trisubstituted
double bonds (8¢ 118.8 (6 5.08 brd, ] = 4.2 Hz); 5c 141.9 and 6¢ 126.2 (6y 5.15t, ] = 6.1 Hz); 6¢ 133.7),
six sp3 methylenes (5c 38.9 (0y 2.27 m); 24.5 (dy 2.24 m); 36.8 (0y 2.23 m, 2.04 m); 24.3 (6y3 2.25 m,
1.96 m); 35.2 (5 1.99 m); 25.4 (6y 1.86 m, 1.34 m)) and five methyls (¢ 26.2 (6y 1.25 s); 26.7 (0y 1.31 s);
17.7 (b 1.70 s); 15.3 (dyy 1.64 s) and 17.0 (dyy 1.24 s)). Since compound 2 has two m-bonds and two
epoxides, 2 must be monocarbocyclic to fulfill the five degrees of unsaturation requirement. Three
major spin system (a: —CH;(13)—CH(14), b: —CH(5)—CH(7), and c¢: —CH(2) —CH(3)), were identified
from the 'H-'H COSY correlations (Figure 2). The two epoxides were trisubstituted, based on HMBC
correlations (H-2/C-1, Hy-14/C-1, -2). For the five methyls, two were assigned to each of vinyl methyls
in the two trisubstituted double bonds, based on HMBC correlations (H3-18/C-3, -4, -5 and H3-19/C-7,
-8, -9) and the NMR chemical shifts; one was associated with an epoxide at C-12 (HMBC correlations of
H3-20/C-11, -12, -13), and the remaining two were part of a gem-dimethyl group, and were associated
with another epoxide at C-1 as indicated by HMBC correlations of H3-16/C-1, -15, -17 and H3-17/C-15,
-16. On the basis of HMBC correlations (Figure 2), three partial structures (a, b and c) and other
fragments could be connected to give the planar structure 2 as a cembrane-type diterpenoid (Figure 2).

The relative configuration of 2 was assigned by detailed analysis of 1D NOE experiments. NOE
correlations between H-2/H-11, H-2/H-13, H-2/Hj3-16, H-2/H3-17, H-2/H3-18, H-11/H-9, H-11/H-13
and H-11/ H3-20 implied that these protons were on the same face (Figure 3). The NOE correlations
between H-2/H3-18 and H-6/H3-19, and 6¢ values of CH3-18 and CHj3-19 (<20 ppm) [27] suggested
that the two double bonds at C-3 and C-7 should be assigned as E geometry.

The molecular formula of 3 (CyH3,03) was the same as 2, as inferred by HRNSIMS (1m/z 321.2419
[M + HJ, caled. for CooHz303, 321.2424). The 'H- and '3C-NMR spectra (Table 1) of 3 were very
similar to those of 2. Extensive analysis of 1D and 2D NMR data, and comparison of the NMR data
with those of 2 led to the same planar structure as that of 2. Since the NOEs observed for the portions
at C1, C2, C3, C4, C7 and C8 in 3 resembled those described above for 2, both compounds possess
identical stereochemistry in these portions. An NOE between H-11/H3-20 in 3, along with no NOE
effect on H-2 and H-11 upon irradiation of H-11, suggested that the protons H-11 and H3-20 in 3 were
on the same face (the opposite of that found in 2) (Figure 3). Therefore, compounds 3 and 2 were
epoxide moiety stereoisomers at C-12.

The isolates were evaluated for antibacterial activity using the paper disc method [28] against
S. aureus, S. enterica and E. coli and new isolates also evaluated for cytotoxicity and anti-inflammatory
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effect in cells (Table 2). The isolates showed weak anti-bacterial activity and new compounds exhibited
cytotoxicity against HCT 116 cells (Figure 4) but this was weaker than those of previously reported
compounds, for example alcyonolide and its congeners isolated from soft coral Cespitularia sp. were in
the IC50 5.85-91.4 uM range [4]. The anti-inflammatory activity of compounds 1-3 was also evaluated
in LPS/IFN-y-stimulated RAW 264.7 macrophage cells under non-cytotoxic concentration ranges
(Figures 5 and 6). The compounds suppressed NO production in a dose dependent manner, indicating
the compounds have the anti-inflammatory effect. The inhibition was similar to that of flavonoids, but
they were low levels (ICsp (1M), 41.2-74.8) by comparison with alcyonolide congeners (2-8 uM) [29]
and marine carotenoids (6.25-25 uM), such as fucoxanthin and fucoxanthinol [30].

Table 2. Antibacterial activity, cytotoxicity and anti-inflammatory effect of compounds 1-5.

Compound Antibacterial Activity ? Cytotoxicity Anti-Inflammatory

(IC50, }J.M) Effect (IC5(), uM)
S. aureus S. enterica E. coli HCT116 cells RAW 256.7 cells
1 10 N.AD 10 135.57 41.21
2 9 12 10 177.11 64.96
3 9 10 10 153.11 74.76
4 10 N.AD 12 N.T€ N.T €
5 10 N.AP 15 N.T ¢ N.T ¢
Streptomycin sulfate 15 N.T¢ 13 N.T¢ N.T¢

2 Inhibition zone in mm at 25 pg/disc, b Not active, and ¢ Not tested [31].
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Figure 4. Cytotoxicity of 1-3 against HCI116 colon cancer cells. Significance * p < 0.01 was considered
statistically significant for control.
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Figure 5. Cytotoxicity of 1-3 for NO production in LPS/IFN-y stimulated RAW 264.7 macrophage cells.
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Figure 6. Anti-inflammatory effect of 1-3 against NO production in LPS-stimulated RAW 264.7
macrophage cells. Significance * p < 0.01 was considered statistically significant for positive control.
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3. Experimental Section

3.1. General Procedures

Optical rotation was measured using a JASCO P-1010 polarimeter (JASCO International Co.
Ltd., Tokyo, Japan). Nuclear magnetic resonance (NMR) spectra were recorded on an Avance III
500 spectrometer (Bruker, Rheinstetten, Germany) in CDCl3. Chemical shifts and coupling constants
were given as & and Hz, respectively and 'H- and 3C- chemical shifts were referenced to the solvent
peaks (6 = 7.26 and 6c = 77.24). Infrared (IR) spectra were recorded on a JASCO FT/IR-6100 Fourier
Transform Infrared Spectrometer (JASCO International Co. Ltd.). High-resolution mass spectra
(HRMS) were obtained on an LTQ Orbitrap hybrid mass spectrometer (Thermo Scientific, Bemen,
Germany) equipped with a nanospray ionization (NSI) source. Open column chromatography was
performed on Kieselgel 60 (70-230 mesh, Merck, Darmstadt, Germany). High performance liquid
chromatography (HPLC) was performed using a COSMOSIL Si60 HPLC column (5 SL, @ 10 x 250 mm,
Nacalai tesque Inc, Osaka, Japan). Analytical thin layer chromatography (TLC) was performed using
Kieselgel 60 F,54 DC-fertigplatten (Merck). All solvents were reagent grade.

3.2. Animal Materials

The soft coral Lobophytum sp. (220.0 g, wet weight) was collected by hand during low tide from
the coast of Irabu Island, Okinawa, Japan, in March 2013, and identified as a Lobophytum sp. A voucher
specimen was deposited at University of the Ryukyus (Specimen No. 13033102).

3.3. Extraction and Isolation

The soft coral was transported to the lab and extracted with acetone (2 L x 3). After filtration,
extracts were concentrated under reduced pressure to form an acetone extract. The acetone extract
was partitioned between H,O (200 mL) and EtOAc (200 mL x 2). The EtOAc part was evaporated
in vacuo to give a crude extract (2.41 g) that inhibited the growth of the Gram-positive bacterium
Staphylococcus aureus and Gram-negative bacterium Escherichia coli with inhibition zones of 18 and
15 mm, respectively, at 50 ug/disc. The active crude extract was first chromatographed over silica
gel to give 19 fractions (hexane/EtOAc/MeOH gradient). On the basis of its 'H-NMR spectrum,
fraction 8 was subjected to further purification by HPLC. An aliquot (102.3 mg) of fraction 8 (213.4 mg)
was purified by HPLC (a COSMOSIL Si-60 column SiO;) using hexane/EtOAc (7:3) to afford new
diterpenoids 1 (2.5 mg), 2 (1.5 mg), 3 (0.6 mg) and known diterpenoids 4 (4.2 mg) and 5 (10.8 mg). An
aliquot (44.2 mg) of fraction 5 (130.4 mg) was purified by HPLC using hexane/EtOAc (4:1) to afford
known diterpenoids 6 (5.4 mg) and 7 (2.0 mg).
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Compound 1: Colorless oil; [oc]3D1‘4 —111.4 (¢ 0.07 CH30H); FT/IR vmax (film) 3279, 2921 and 1701
cm~!; TH-NMR and 3C-NMR data are listed in Table 1; HRNSIMS m/z 305.2470 [M + H]* (calcd. for
CaoH330,, 305.2475).

Compound 2: Colorless oil; [oc]3D1'5 +12.0 (c 0.05 CH30OH); FT/IR vmax (film) 3481, 2932, 1295 and 1252
cm™1; 'H and 13C-NMR (CDCl3) data are listed in Table 1; HRNSIMS m/z 321.2418 [M + H]* (calcd.
for C20H3303, 3212424)

Compound 3: Colorless oil; [oc]3D1'7 —16.6 (¢ 0.06 CH30H); FT/IR vmax (film) 3465, 2930, 1254 and 1166
cm™!; 'H and 13C-NMR (CDCl3) data are listed in Table 1; HRNSIMS 1/ 321.2419 [M + H]* (calcd.
for C20H3303, 3212424)

3.4. Molecular Mechanics Calculations

Implementation of the MM2 force field [32] in ChemBioOffice Ultra 12.0 software (Cambridge
Soft Corporation, Cambridge, MA, USA) was used to calculate molecular models.

3.5. Anti-Bacterial Assay

The paper disk diffusion method [28] was used to evaluate the anti-bacterial activity of compounds
1-5, using the bacterial strains Staphylococcus aureus, Salmonella enterica and Escherichia coli. The strains
were received from the Biological Resource Center (NBRC, Tokyo, Japan), Japan and cultured in an
agar medium containing polypeptone (10 g/L distilled water), yeast (2 g/L distilled), MgSO,- 7H,O
(1 g/L distilled) and agar (15 g/L distilled). The medium was autoclaved and transferred into petri
dishes. The bacterial inoculum was evenly spread on the above agar medium. Each methanolic solution
of the test compounds was perfused (25 ng/25 L) to a sterilized disc (& 8 mm, Toyo Roshi Kaisha,
Ltd., Tokyo, Japan). After the removal of the solvent, the disks containing test compounds were placed
on seeded bacterial lawn on the agar surface. The plate was incubated for 2 days at 30 °C and then the
inhibition zone sizes were measured.

3.6. Cell Culture

HCT116 human colon cancer cells (ATCC, Manassas, VA, USA) and RAW 264.7 cells (mouse
macrophages, American Type Culture Collection) were cultured in DMEM (Gibco-BRL, Life
Technologies, South San Francisco, CA, USA) medium (including 10% FBS, 100 U/mL penicillin
and 100 pug/mL streptomycin) at 37 °C in a 5% CO, atmosphere.

3.7. Cell Viability

The MTT assay was used to examine the cytotoxity of compounds 1-3. Briefly, HCT116 cells were
seeded at a density of 5.0 x 10° cells/mL in 96-well plate and cultured for 24 h with or without the test
compound. After the culture, MTT (0.05%) was added to each well and incubated for 2 h, and then
suspension was removed. Extraction with DMSO (50 uL) was measured at 540 nm with the reference
at 655 nm using a microplate reader (BIORAD model 550, BIO-RAD, Hercules, CA, USA).

3.8. Anti-Inflammatory Effect on Nitrite Production on RAW 264.7 Macrophages

The RAW 264.7 cells (2.5 x 10° cells /mL) were treated with the compounds 1-3 in the presence
of LPS (100 ng/mL), L-arginine (2 mM), and IFN-y (100 U/mL) in 96-well microplate. Cells with or
without LPS, IFN-y and L-arginine were used as the positive control and the control, respectively.
After culturing for 17 h, the nitrite concentrations in the medium were determined by previously
reported method [31].

3.9. Statistical Analysis

Data were expressed as mean + SD. Statistical significance (p < 0.01) was analyzed by Student’s t-tests.
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4. Conclusions

Seven diterpenoids 1-7, including three new compounds 1-3, were isolated from the Okinawan
soft coral, Lobophytum sp. Their relative stereostructures were established by spectroscopic analysis
(NMR, IR, and MS) and comparisons with similar reported metabolites. The new isolates showed weak
antibacterial activity, mild cytotoxicity against human colon cancer cells and showed anti-inflammatory
effect in LPS/IFN-y-stimulated RAW 264.7 macrophage cells.

Supplementary Materials: Supplementary materials can be assessed at: http:/ /www.mdpi.com/1420-3049/21/
5/679/s1.
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