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Abstract: 20(S)-Ginsenoside Rg2 (1) has recently become a hot research topic due to its potent
bioactivities and abundance in natural sources such as the roots, rhizomes and stems-leaves of
Panax ginseng. However, due to the lack of studies on systematic metabolic profiles, the prospects for
new drug development of 1 are still difficult to predict, which has become a huge obstacle for its safe
clinical use. To solve this problem, investigation of the metabolic profiles of 1 in rat liver microsomes
was first carried out. To identify metabolites, a strategy of combined analyses based on prepared
metabolites by column chromatography and ultra-performance liquid chromatography coupled with
quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF/MS) was performed. As a result,
four metabolites M1–M4, including a rare new compound named ginsenotransmetin A (M1), were
isolated and the structures were confirmed by spectroscopic analyses. A series of metabolites of 1,
MA–MG, were also tentatively identified by UPLC-Q-TOF/MS in rat liver microsomal incubate of 1.
Partial metabolic pathways were proposed. Among them, 1 and its metabolites M1, M3 and M4 were
discovered for the first time to be activators of SIRT1. The SIRT1 activating effects of the metabolite
M1 was comparable to those of 1, while the most interesting SIRT1 activatory effects of M3 and
M4 were higher than that of 1 and comparable with that of resveratrol, a positive SIRT1 activator.
These results indicate that microsome-dependent metabolism may represent a bioactivation pathway
for 1. This study is the first to report the metabolic profiles of 1 in vitro, and the results provide an
experimental foundation to better understand the in vivo metabolic fate of 1.
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1. Introduction

Currently worldwide public demand for ginseng, the roots and rhizomes of Panax ginseng C. A.
Meyer (family Araliaceae), is rapidly increasing. Ginseng is sold as a food additive in the U.S. and,
thus, it need not meet the specific safety and efficacy requirements required of drugs by the Food and
Drug Administration [1]. There are active chemical ingredients called ginseng saponins (ginsenosides)
in ginseng, which has been reported to be responsible for ginseng’s biological activities which include
immune enhancement, antioxidant and memory enhancement effects, the recovery of vital energy, the
alleviation of fatigue, blood flow improvement, and promoting longevity [2–4]. 20(S)-ginsenoside Rg2

(20(S)-G-Rg2; 1, Scheme 1) is a well-known bioactive saponin of the roots and rhizomes [5], and the
stems/leaves [6,7] of ginseng as well as red ginseng [8], and it is abundantly available from natural
sources like the stems/leaves of P. ginseng. Modern pharmacological studies have demonstrated that 1
exhibits excellent activity against cardio-cerebrovascular diseases [3,4,9–12]. Absorption, distribution,
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metabolism, excretion and toxicity (ADMET) studies have been introduced into the earlier stages
of drug discovery instead of a serial strategy, because ADMET and pharmacokinetic issues are
often responsible for new drug failures in clinical trials. It is therefore important to investigate the
metabolic characteristics of 1. It has been reported that 1 can be absorbed into the systemic circulation
after oral administration of total saponins from the stems/leaves of P. ginseng [13] and eliminated
after intravenous administration of individual 20(R)- and 20(S)-ginsenosides Rg2 [14,15] to rats. Up
to now, however, its metabolic fate remains unknown. Therefore, a study of the metabolism of 1
is indispensable.
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Scheme 1. Chemical structures of 20(S)-G-Rg2, M1–M4, MA–MG and proposed possible metabolic pathways. 

The main purpose of this study was to investigate the in vitro metabolic fate of 1 treated with rat 
liver microsomes to understand the molecular structural diversity of the metabolites. Owing to their 
low concentration, identification of some metabolites presents a great challenge. Ultra-high performance 
liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-
Q-TOF/MS) [16–18] has become a routine tool for the detection and identification of predictable and 
unpredictable metabolites, because of its high-resolution and the fact it can provide molecular 
formulas as well as exact molecular masses. In order to identify the predictable and unpredictable 
metabolites, extraction ion chromatographies (EIC) based on high-resolution LC-MS data was 
employed in this study. We successfully identified a prototype compound and four metabolites, 
including one new compound, by extensive spectroscopic data analyses as well as seven other ones 
by UPLC-Q-TOF/MS data analyses in rat liver microsomal incubate. 

The role of metabolic reactions, resulting in bioactive metabolites of 1, is not well defined as yet. 
The metabolism of 1 in the liver could reflect a bioactivation pathway resulting in the formation of 
bioactive metabolites. On the other hand, silent information regulator two homolog 1 (SIRT1) is a 
member of the sirtuin family that possesses NAD+-dependent deacetylase activity [19] and regulates 
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The main purpose of this study was to investigate the in vitro metabolic fate of 1 treated
with rat liver microsomes to understand the molecular structural diversity of the metabolites.
Owing to their low concentration, identification of some metabolites presents a great challenge.
Ultra-high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass
spectrometry (UPLC-Q-TOF/MS) [16–18] has become a routine tool for the detection and identification
of predictable and unpredictable metabolites, because of its high-resolution and the fact it can provide
molecular formulas as well as exact molecular masses. In order to identify the predictable and
unpredictable metabolites, extraction ion chromatographies (EIC) based on high-resolution LC-MS data
was employed in this study. We successfully identified a prototype compound and four metabolites,
including one new compound, by extensive spectroscopic data analyses as well as seven other ones by
UPLC-Q-TOF/MS data analyses in rat liver microsomal incubate.

The role of metabolic reactions, resulting in bioactive metabolites of 1, is not well defined as yet.
The metabolism of 1 in the liver could reflect a bioactivation pathway resulting in the formation of
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bioactive metabolites. On the other hand, silent information regulator two homolog 1 (SIRT1) is a
member of the sirtuin family that possesses NAD+-dependent deacetylase activity [19] and regulates a
variety of cellular processes such as energy metabolism, cell-cycle progression [20], tumors [20–22]
and aging [23]. In addition, it has been reported that modulation of SIRT1 may offer novel therapeutic
options for targeting cardiovascular risk factors [24]. SIRT1 is becoming an important target for new
therapies in the treatment of some diseases. Ginseng has been used for a panacea or promoting
longevity. To further explore the anti-aging potential of ginseng [25,26], the SIRT1 promotion activity
of 1 was evaluated using a SIRT1 fluorescence activity assay kit. In this assay, resveratrol was used as a
positive activator [27–29] and nicotinamide was used as a positive inhibitor [30].

2. Results and Discussion

Even though the LC-MS technique has become a routine tool for the identification of the
metabolites in bio-samples [16–18], a more precise approach to obtain reliable chemical structure
information of a pure metabolite is NMR experiments, specifically several multidimensional NMR
spectra are combined for resonance assignment. Therefore, the strategy for characterizing the
metabolites of 1 in rat liver microsomal incubate was divided into three steps, including (1) the
metabolites were isolated and purified by open column chromatographic (CC) and reversed-phase
semipreparative high performance liquid chromatography (RP-SP-HPLC) methods; (2) the chemical
structures of the metabolites were identified by extensive spectroscopic data analyses and comparing
with the reference standards as well as matching their retention time (tR); (3) tentatively characterization
of the trace metabolites based on exact molecular weights (four decimal places) and MSn fragmentions.

In the optimization of ESI-MS for the analysis of metabolites, the four reference standard
ginsenosides, 20(S)-G-Rg2, 20(R)-G-Rg2, pseudoginsenoside F11 and 20(R)-pseudoginsenoside F11,
were detected in both positive and negative ion modes. Compared to the positive mode, the MS
spectrum of each ginsenoside showed lower baseline noise and better ionization effect in the negative
ion mode, which made it superior for identifying the metabolites of 20(S)-G-Rg2. According to
the tR, ESI-MS (molecular weight) and MS/MS (fragment ion) information, the chromatographic
behaviors and the MS spectra of the four reference standards were characterized, which were the
basis for identifying the metabolites in rat liver microsomal incubate. The negative MS/MS spectra
were obtained from the deprotonated molecular ion [M ´ H]´, and the mass spectra of product
ion of [M ´ H]´ exhibited a fragmentation pattern corresponding to the successive loss of the
glycosidic (rhamnopyranosyl, rha; glucopyranosyl, glc) units till the formation of m/z 391 fragmention
ion [M ´ partial C17-side-chain ´ H]´. The typical mass spectra and possible fragmentations of
20(S)-G-Rg2 (A) and pseudoginsenoside F11 (B) are shown in Figure S1. As a result, a total of
11 metabolites were confirmed and their EIC are shown in Figure 2A–I.
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Figure 2. The typical base peak intensity (BPI) chromatograms of 20(S)-G-Rg2 metabolites. (A) BPI
of all metabolites; (B) EIC of M1, M3, M4, MA and MD; (C) EIC of MB; (D) EIC of M2; (E) EIC of
MC; (F) EIC of ME and MF; (G) EIC of MG; (H) EIC of authentic 20(S)-G-Rg2; (I) EIC of authentic
20(R)-pseudoginsenoside F11.

2.1. Identification of Metabolites M1–M3

The metabolism of 20(S)-G-Rg2 (1) was studied by its in vitro incubation with liver microsomes
from sodium phenobarbital (PB) pre-treated male rats. Under the optimized system [31], butanol
(BuOH) extract of the metabolites of 1 was subjected to open silica gel CC and RP-SP-HPLC to
yield three metabolites M1–M3 and the parent compound 1. The structures of the metabolites were
determined to be as shown in Scheme 1 by spectroscopic methods. The chemical structures of prototype
1 [7], M2 and M3 were determined by extensive NMR and MS data analyses as well as comparison
with the reference standards. M2 and M3 were unambiguously identified as 20(R)-G-Rg2 [7] and
pseudoginsenoside F11 [32]. For the NMR data of 1 and M3 see Supplementary information Table S1.

M1 was isolated as a white amorphous powder with an rαs20
D +12.8 (c 0.185, MeOH). Its molecular

formula was assigned to be C42H72O14 based on a quasi-molecular ion peak [M + HCOOH ´H]´ at
m/z 845.4896 in the negative HR-ESI-MS and NMR spectroscopic data, which was one oxygen atom
more than the prototype 1. Its IR spectrum showed maximum absorption bands for hydroxyl and
ether bond functions at 3417 and 1075 cm´1, respectively. Complete unambiguous assignments for the
1H- and 13C-NMR signals (Tables 1 and 2) of M1 were made by combination of 1H–1H COSY, HSQC,
HMBC, and NOESY spectra.

As found in 1 and M2, the 1H- and 13C-NMR spectra of M1 indicated a dammarane-type triterpene
with a glucopyranosyl and a rhamnopyranosyl moieties [7], and showed similarity except for the
signals for a hydroxymethyl group instead of a methyl group at C-17 side-chain. The Me-26 proton
signal at δH 1.63 (3H, s) in the M2 was shifted downfield to δH 1.96 (3H, s) in the M1, and H-24 at δH

5.24 (1H, t, J = 6.8 Hz) in the M2 was shifted downfield to δH 5.43 (1H, t, J = 7.5 Hz) in the M1. In the
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13C-NMR spectrum, the signal at δC 17.8 for C-27 in M2, was replaced by a signal at δC 61.0 in M1,
suggesting that the Me-27 of M2 was substituted by a hydroxymethyl group. The molecular formula,
C42H72O14, of M1 contains one more oxygen than those of 1 and M2, which further confirmed that M1
was a hydroxymethyl group-substituted product of 1 or M2. This conclusion was firmly supported by
the correlations between H-24 at δH 5.43 and C-26 at δC 22.0, C-27 at δC 61.0 in the HMBC experiment
(Figure 3A). The stereochemistry at C-20 was assigned as R, due to signals at δC 50.7 for C-17, δC 22.0
for C-21 and δC 42.9 for C-22 [7]. This conclusion was also supported by a cross peak between δH 1.29
(Me-21) and δH 1.92 (H-13β) in a 2D NOESY experiment of M1 (Figure 3B).

Table 1. 1H- and 13C-NMR data in pyridine-d5 (δppm) of aglycone parts of M1 and M2 a.

No.
M1 (Ginsenotransmetin A) M2 (20(R)-Ginsenoside Rg2)
1H (J in Hz) 13C 1H (J in Hz) 13C

1α 0.95 (1H, m)
39.8t

0.95 (1H, m)
39.8t1β 1.60 (1H, m) 1.60 (1H, m)

2α 1.85 (1H, m)
27.9t

1.85 (1H, m)
27.9t2β 1.77 (1H, m) 1.77 (1H, m)

3β 3.42 (1H, dd, 11.7, 4.1) 78.7d 3.44 (1H, dd, 11.5, 4.1) 78.8d
4 – 40.2s – 40.2s

5α 1.43 (1H, d, 10.7) 61.0d 1.44 (1H, d, 10.7) 61.0d
6β 4.64 (1H, br dd, 10.7, 3.3) 74.3d 4.65 (1H, br dd, 10.7, 3.1) 74.5d

7α 1.96 (1H, t, 10.7)
46.2t

1.97 (1H, t, 10.7)
46.2t7β 2.29 (1H, dd, 10.7, 3.1) 2.30 (1H, dd, 10.7, 3.1)

8 – 41.3s – 41.3s
9α 1.48 (1H, br d, 10.9) 49.9d 1.48 (1H, br d, 11.3) 50.7d
10 – 39.5s – 39.5s

11α 2.09 (1H, m)
32.4t

2.12 (1H, m)
32.4t11β 1.50 (1H, m) 1.54 (1H, m)

12α 3.93 (1H, m) 71.2d 3.93 (1H, m) 71.1d
13β 1.92 (1H, t, 10.1) 48.3d 2.01 (1H, t, 10.3) 49.0d
14 – 51.8s – 51.9s

15α 1.46 (1H, m)
31.4t

1.56 (1H, m)
31.6t15β 0.86 (1H, m) 0.93 (1H, m)

16α 1.40 (1H, m)
26.9t

1.83 (1H, m)
26.8t16β 1.21 (1H, m) 1.56 (1H, m)

17α 2.32 (1H, m) 50.7d 2.33 (1H, m) 49.9d
18β 1.19 (3H, s) 17.3q 1.19 (3H, s) 17.4q
19β 0.93 (3H, s) 17.8q 0.94 (3H, s) 17.8q
20 – 73.1s – 73.2s

21α 1.29 (3H, s) 22.0q 1.31 (3H, s) 22.9q

22a 1.74 (1H, m)
42.9t

1.78 (1H, m)
43.4t22b 1.60 (1H, m) 1.68 (1H, m)

23a 2.65 (1H, m)
22.8t

2.54 (1H, m)
22.8t23b 2.39 (1H, m) 2.46 (1H, m)

24 5.43 (1H, t, 7.5) 128.2d 5.24 (1H, t, 6.8) 126.2d
25 – 136.2s – 130.9s
26 1.96 (3H, s) 22.0q 1.63 (3H, s) 26.0q

27
4.44 (1H, br d, 12.4)

61.0t 1.58 (3H, s) 17.8q
4.51 (1H, br d, 12.4)

28β 2.07 (3H, s) 32.4q 2.07 (3H, s) 32.4q
29α 1.30 (3H, s) 17.8q 1.32 (3H, s) 17.9q
30α 0.91 (3H, s) 17.1q 0.93 (3H, s) 17.4q

a 1H-NMR chemical shift values (δppm) followed by multiplicity. Assignments were based on 1H–1H COSY,
NOESY, HSQC, and HMBC experiments. s: C; d: CH; t: CH2, q: CH3.
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Table 2. 1H- and 13C-NMR data in pyridine-d5 (δppm) of glycosyl parts of M1 and M2 a.

No.
M1 (Ginsenotransmetin A) M2 (20(R)-Ginsenoside Rg2)
1H (J in Hz) 13C 1H (J in Hz) 13C

6-Glc

11 5.21 (1H, d, 6.4) 102.1d 5.23 (1H, d, 6.8) 102.1d
21 4.34 (1H, dd, 9.1, 6.4) 79.6d 4.38 (1H, dd, 9.0, 6.8) 79.6d
31 4.32 (1H, dd, 9.1, 8.3) 78.5d 4.36 (1H, dd, 9.0, 8.4) 78.6d
41 4.16 (1H, dd, 9.0, 8.2) 72.8d 4.21 (1H, dd, 9.2, 8.4) 72.8d
51 3.92 (1H, br dd, 8.2, 5.6) 78.6d 3.96 (1H, br dd, 8.4, 5.6) 78.5d

61a 4.35 (1H, dd, 11.5, 5.6)
63.3t

4.38 (1H, dd, 11.5, 5.6)
63.3t61b 4.48 (1H, dd, 11.5, 2.3) 4.54 (1H, dd, 11.5, 2.3)

2-1Rha

111 6.44 (1H, brs) 101.9d 6.45 (1H, brs) 101.9d
211 4.74 (1H, br d, 3.9) 72.4d 4.80 (1H, br d, 3.7) 72.3d
311 4.63 (1H, dd, 9.6, 3.9) 72.6d 4.67 (1H, dd, 9.5, 3.7) 72.6d
411 4.31 (1H, dd, 9.6, 2.2) 74.4d 4.33 (1H, dd, 9.5, 2.1) 74.4d
511 4.93 (1H, dd, 9.5, 6.2) 69.6d 4.96 (1H, dd, 9.5, 6.1) 69.6d
611 1.74 (1H, d, 6.2) 18.9q 1.75 (1H, d, 6.2) 18.9q

a 1H-NMR chemical shift values (δppm) followed by multiplicity. Assignments were based on 1H–1H COSY,
NOESY, HSQC, and HMBC experiments. s: C; d: CH; t: CH2, q: CH3.

Molecules 2016, 21, 757 6 of 15 

Table 2. 1H- and 13C-NMR data in pyridine-d5 (δppm) of glycosyl parts of M1 and M2 a. 

No. 
M1 (Ginsenotransmetin A) M2 (20(R)-Ginsenoside Rg2) 

1H (J in Hz) 13C 1H (J in Hz) 13C 
6-Glc 

1′ 5.21 (1H, d, 6.4) 102.1d 5.23 (1H, d, 6.8) 102.1d 
2′ 4.34 (1H, dd, 9.1, 6.4) 79.6d 4.38 (1H, dd, 9.0, 6.8) 79.6d 
3′ 4.32 (1H, dd, 9.1, 8.3) 78.5d 4.36 (1H, dd, 9.0, 8.4) 78.6d 
4′ 4.16 (1H, dd, 9.0, 8.2) 72.8d 4.21 (1H, dd, 9.2, 8.4) 72.8d 
5′ 3.92 (1H, br dd, 8.2, 5.6) 78.6d 3.96 (1H, br dd, 8.4, 5.6) 78.5d 

6′a 4.35 (1H, dd, 11.5, 5.6) 
63.3t 

4.38 (1H, dd, 11.5, 5.6) 
63.3t 

6′b 4.48 (1H, dd, 11.5, 2.3) 4.54 (1H, dd, 11.5, 2.3) 
2-′Rha 

1′′ 6.44 (1H, brs) 101.9d 6.45 (1H, brs) 101.9d 
2′′ 4.74 (1H, br d, 3.9) 72.4d 4.80 (1H, br d, 3.7) 72.3d 
3′′ 4.63 (1H, dd, 9.6, 3.9) 72.6d 4.67 (1H, dd, 9.5, 3.7) 72.6d 
4′′ 4.31 (1H, dd, 9.6, 2.2) 74.4d 4.33 (1H, dd, 9.5, 2.1) 74.4d 
5′′ 4.93 (1H, dd, 9.5, 6.2) 69.6d 4.96 (1H, dd, 9.5, 6.1) 69.6d 
6′′ 1.74 (1H, d, 6.2) 18.9q 1.75 (1H, d, 6.2) 18.9q 

a 1H-NMR chemical shift values (δppm) followed by multiplicity. Assignments were based on 1H–1H 
COSY, NOESY, HSQC, and HMBC experiments. s: C; d: CH; t: CH2, q: CH3. 

OH

O

HO

O
H

HO

HO

HO

O

O

OH
H

HO

HO

OH

A

OH

CH3

H3C CH3

H
OH

O

HO

CH3 CH3

CH3H3C

O
H

HO

HO

HO

O

O

OH
H

HO

HO

OH

B

OH

H

H

H

H

H

 
Figure 2. Key HMBC (from H to C, A) and NOESY (B) correlations of M1. 

In addition, the signals of Me-26 proton at δH 1.96 and H-24 at δH 5.43 showed an NOE correlation, 
whereas the signals of the H-27 at δH 4.44, 4.51 and H-24 at δH 5.43 showed no NOE correlation in the 
2D NOESY spectrum of M1, indicating that the double bond in M1 has a Z-configuration. Considering 
of all the above data, M1 was elucidated as 6-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranosyl- 
dammar-24Z-ene-3β,6α,12β,20(R),27-pentol and given the trivial name ginsenotransmetin A. As far as 
we know, this is the first report on the identification of M1. 

Aside from the above-mentioned three metabolites M1–M3, the additional metabolite M4 in the 
rat liver microsomal incubate of 1 was identified as 20(R)-pseudoginsenoside F11 [32] by matching tR, 
the empirical molecular formula and diagnostic fragment ions with those of an authentic sample. 

2.2. Identification of Metabolites MA–MG 

The BuOH extract of the microsomal incubate of 1 was dissolved in MeOH and then injected 
into the UPLC–Q-TOF/MS system. The typical base peak intensity (BPI) are shown in Figure 1A. A 
total of 11 metabolites profile were displayed. 

MA was detected at 2.15 min. Its molecular formula was assigned to be C42H72O14 based on a 
quasi-molecular ion peak [M − H]− at m/z 799.4861 in HR-ESI-MS, which indicates one oxygen atom 
more than prototype compound 1 and the same molecular formula as M1. The MS2 spectrum (Figure 3) 
showed fragment ions at m/z 799.4861 (C42H71O14) [M − H]−, 653.4339 (C36H61O10) [M − rha − H]−, 491.3761 
(C30H51O5) [M − glc − rha − H]−, 473.3609 (C30H49O4) [M − glc − rha − H2O − H]−, and 391.2895 (C24H39O4) 

Figure 3. Key HMBC (from H to C, A) and NOESY (B) correlations of M1.

In addition, the signals of Me-26 proton at δH 1.96 and H-24 at δH 5.43 showed an NOE correlation,
whereas the signals of the H-27 at δH 4.44, 4.51 and H-24 at δH 5.43 showed no NOE correlation in the
2D NOESY spectrum of M1, indicating that the double bond in M1 has a Z-configuration. Considering
of all the above data, M1 was elucidated as 6-O-α-L-rhamnopyranosyl-(1Ñ2)-β-D-glucopyranosyl-
dammar-24Z-ene-3β,6α,12β,20(R),27-pentol and given the trivial name ginsenotransmetin A. As far as
we know, this is the first report on the identification of M1.

Aside from the above-mentioned three metabolites M1–M3, the additional metabolite M4 in the
rat liver microsomal incubate of 1 was identified as 20(R)-pseudoginsenoside F11 [32] by matching tR,
the empirical molecular formula and diagnostic fragment ions with those of an authentic sample.

2.2. Identification of Metabolites MA–MG

The BuOH extract of the microsomal incubate of 1 was dissolved in MeOH and then injected into
the UPLC–Q-TOF/MS system. The typical base peak intensity (BPI) are shown in Figure 2A. A total of
11 metabolites profile were displayed.
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MA was detected at 2.15 min. Its molecular formula was assigned to be C42H72O14 based on
a quasi-molecular ion peak [M ´ H]´ at m/z 799.4861 in HR-ESI-MS, which indicates one oxygen
atom more than prototype compound 1 and the same molecular formula as M1. The MS2 spectrum
(Figure 4) showed fragment ions at m/z 799.4861 (C42H71O14) [M ´ H]´, 653.4339 (C36H61O10)
[M ´ rha ´ H]´, 491.3761 (C30H51O5) [M ´ glc ´ rha ´ H]´, 473.3609 (C30H49O4) [M ´ glc ´ rha
´ H2O ´ H]´, and 391.2895 (C24H39O4) [M ´ glc ´ rha ´ H2O ´ C6H10 ´ H]´, suggesting that
the mono-oxygenation reaction had occurred at the end of the C17-side-chain, a reaction that may
be catalyzed by CYP450-dependent terminal hydroxylases in the liver [33]. It has been reported that
20(S)-type ginsenosides always elute before 20(R)-type ginsenosides during analysis by reversed-phase
HPLC on a C18 column [34]. Thus, MA was tentatively identified as a 20(S)-epimer of M1, namely
quinquenoside L11 [35].
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Figure 4. The MS2 spectra of 20(S)-G-Rg2, M1–M4 and MA–MG.

MB was detected at 2.58 min. Its molecular formula was assigned to be C42H72O15 based on a
quasi-molecular ion peak [M ´ H]´ at m/z 815.4829 in HR–ESI-MS, which has two oxygen atoms more
than the prototype compound 1 and one oxygen atom more than MA. The MS2 spectrum (Figure 4)
showed fragment ions at m/z 815.4829 (C42H71O15) [M ´ H]´, 669.4014 (C36H61O11) [M ´ rha ´ H]´,
507.3840 (C30H51O6) [M – glc ´ rha ´H]´, 489.3142 (C30H49O5) [M ´ glc ´ rha ´H2O ´H]´, and
391.2902 [M ´ glc ´ rha ´ H2O ´ C6H10O ´ H]´, suggesting that the dioxygenation reaction had
occurred on the C17-side-chain. It has been discovered that hydroxylation reaction of C-23 was very
easier than that of C-22 [36], therefore, MB was tentatively identified as 23-hydroxyquinquenoside L11.

MC was detected at 2.79 min, with a molecular formula of C42H70O14 determined by HR-ESI-MS
from a quasi-molecular ion peak [M ´ H]´ at m/z 797.4703, which was 14Da more than prototype
compound 1. The MS2 spectrum (Figure 4) showed fragment ions at m/z 797.4703 (C42H69O14)
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[M ´ H]´, 651.4145 (C36H59O10) [M´ rha´H]´, 489.3840 (C30H49O5) [M´ glc´ rha´H]´, 391.2903
(C24H39O4) [M ´ glc ´ rha ´ C6H10O ´ H]´, suggesting that the monooxygenation reaction had
occurred at the end of the C17-side-chain as found in MA and dehydration at C-22, C-23. Consequently,
the structure of MC was tentatively concluded to be 6-O-α-L-rhamnopyranosyl-(1Ñ2)-β-D-
glucopyranosyl-dammar- 22,24-diene-3β,6α,12β,20(S),27-pentol.

MD was detected at 4.29 min and had the molecular formula C42H72O14 by HR-ESI-MS from
a quasi-molecular ion peak [M ´ H]´ at m/z 799.4900, which was one oxygen atom more than
prototype 1. The MS2 spectrum (Figure 4) showed fragment ions at m/z 799.4900 (C42H71O14)
[M ´ H]´, 653.4318 (C36H61O10) [M ´ rha ´ H]´, 491.3787 (C30H51O5) [M ´ glc ´ rha ´ H]´,
391.2875 (C24H39O4) [M ´ glc ´ rha ´ C6H12O ´ H]´, suggesting that the monooxygenation
reaction had occurred at the C17-side-chain and a hydroxyl group could be added at C-23 [36]. This
conclusion was also supported by the identification of ME. Finally, MD was tentatively identified as
6-O-α-L-rhamnopyranosyl-(1Ñ2)-β-D-glucopyranosyl-dammar-24-ene-3β,6α,12β,20(S or R),23-pentol.

ME was detected at 5.36 min. The molecular formula of ME was deduced as C42H70O13

from its a quasi-molecular ion peak [M ´ H]´ at m/z 781.4763 in HR-ESI-MS. The mass was
found to be 2Da less than prototype 1. The MS2 spectrum (Figure 4) showed fragment ions at
m/z 781.4763 (C42H69O13) [M ´ H]´, 635.4201 (C36H59O9) [M ´ rha ´ H]´, 473.3637 (C30H49O4)
[M ´ glc ´ rha ´ H]´, 391.2887 (C24H39O4) [M ´ glc ´ rha ´ C6H10 ´ H]´, suggesting ME was a
dehydrogenated derivatives of prototype 1 in the C17-side-chain. Accordingly, the structure of ME was
established as 22,23-dehydro-20(S)-ginsenoside Rg2. It is a dehydration product of MD.

MF was eluted at 5.65 min. The molecular formula of MF was established as C42H70O13 by
HR-ESI-MS showing a quasi-molecular ion [M´H]´ peak at m/z 781.4760, which is the same molecular
formula as ME. The MS2 spectrum (Figure 4) showed fragment ions at m/z 781.4760 (C42H69O13)
[M ´ H]´, 635.4269 (C36H59O9) [M ´ rha ´H]´, 473.3679 (C30H49O4) [M ´ glc ´ rha ´H]´, 391.2853
(C24H39O4) [M ´ glc ´ rha ´ C6H10 ´ H]´, and had the same fragment ions as ME. Because the
tR of MF was longer than that of ME as in MA behavior, the structure of MF was concluded to be a
20(R)-epimer of ME, namely 22,23-dehydro-20(R)-ginsenoside Rg2.

MG was eluted at 6.04 min with a deprotonated molecular ion [M ´ H]´ peak at m/z 825.5034,
corresponding to a molecular formula of C44H74O14. The MS2 spectrum (Figure 4) showed fragment
ions at m/z 825.5034 (C44H73O14) [M´H]´, 783.4946 (C42H71O13) [M´Ac´H]´, 637.4378 (C36H61O9)
[M ´ Ac ´ rha ´ H]´, 475.3834 (C30H51O4) [M ´ Ac ´ glc ´ rha ´ H]´, 391.2824 (C24H39O4)
[M ´ Ac ´ glc ´ rha ´ C6H12 ´ H]´. Because its mass was found to be 42Da higher than prototype 1,
the structure of MG was concluded to be an acetylated derivatives of prototype 1, but the location of
the acetyl group remained ambiguous (C-20 of aglycone or C-61 of glucosyl group).

2.3. Analysis of Metabolic Pathways

The prototype and related metabolites identified in this research provide a global view of
metabolite profiles of 1 in rat liver microsomes. From the results of metabolite characterization, we
discovered that majority of 1 metabolites correspond to oxidative metabolites and they are phase I liver
metabolites. The partial metabolic pathways shown in Scheme 1 are proposed according to the chemical
diversity of the metabolites and the properties of drug metabolism in liver microsomes [37–40].

A total of seven oxidative metabolites (M1, M3, M4, and MA–MD) were detected and
characterized by their MS fragmentation patterns using LC-ESI MSn. Among them, the chemical
structures of M1 and M3 were unambiguously determined by extensive 1D and 2D NMR data
analyses, and M4 was unambiguously determined by comparison with an authentic sample. The
specific forms of CYP450 involved in different monooxygenation reactions have been previously
characterized [37–40], especially, cleavage of the C17-side chain may be catalyzed by a specific CYP450
enzyme, CYP11A1 [37]. Interestingly, all oxidative modifications occurred at the C17-side-chain of
the dammarane aglycone moiety and all metabolites had the same intact sugar chain. Because the
relative yield of M2 was higher in all metabolites, it might seem that epimerization of C20-OH was
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the initial steps in 1 metabolism to produce M2, followed by a monooxygenation reaction to generate
metabolite M1, so we propose that the metabolism pathway was that 20(S)-ginsenoside Rg2 was firstly
converted to any intermediates and further converted to 20(R)-ginsenoside Rg2. The details needs
further study. Simultaneously, a monooxygenation reaction also occurred at the vinyl methyl group in
the C17-side-chain of prototype 1 to generate MA, indicating that hydroxylation of the vinyl methyl
group in the C17-side-chain was easier. A monooxygenation reaction of 1 involving C-23 produced the
metabolite MD, followed through a dehydration to generate a metabolite ME. M2 was consecutively
mono-oxygenated and dehydrated to form MF similar to the steps of ME.

The liver microsomal enzymes can also produce dioxygenation reactions [41]. A dioxygenation
reaction of 1 involving C-23 and C-27, respectively, generates the metabolite MB, followed by a
dehydration reaction to produce another metabolite, MC.

The chemical structure of M3 was unambiguously determined as pseudoginsenoside F11 [32] by
extensive 1D and 2D NMR data analyses (see Supplementary Materials Table S1) and a comparison
with a reference standard. It was a well-known ocotillone-type ginsenoside. The C17-side-chain
double bond of prototype 1 was epoxidized to produce a 24,25-epoxide derivative followed by a
subsequent catalytic hydrolysis to form a 24,25-dihydroxyl compound (undetectable because of the
quick rearrangement) and cyclization to form M3. M2 possibly undergoes a similar metabolism to
generate M4.

From all the results above, it could be found that the abundance of identified mono-oxygenated
metabolites reflected the quantity of dioxygenated metabolites and 27-hydroxylation occurred to the
greatest extent and hydroxylation occurred preferably at C-25 than at C-23 and in addition a small
amount of metabolites MC, ME and MF with a conjugated double bond system were formed.

2.4. Bioactivation of 20(S)-G-Rg2 to Its Metabolites by Microsomal Metabolism

Ginseng has been used for more than 3000 years in the belief that it is a panacea and promotes
longevity. How to control aging and longevity has long been a topic of considerable interest. SIRT1
activator is believed to extend lifespan [42,43]. It has been reported that ginsenosides Rb1 [44], Rc [45],
Rh3 [46], 20(S)-ginsenoside Rg3 [47,48], 6α,20(S)-dihydroxydammar-3,12-dione-24-ene, 6α,20(S),24(S)-
trihydroxydammar-3,12-dione-25-ene, 6α,20(S),25-trihydroxydammar-3,12-dione-23-ene, dammar-
20(22),24-diene-3β,6α,12β-triol [48], and red ginseng extract [49] showed potential as SIRT1 activators.
However, it is unknown whether 1 is involved as a SIRT1 activator. To investigate the bioactivation of 1
to its metabolites by microsomal metabolism, the SIRT1 promotion activity of 1 and its selected
metabolites was evaluated using a SIRT1 fluorescence activity assay kit [47,50–53], which is a
well-known model for anti-aging evaluation. The results are shown in Figure 5. Based on the protocols
provided with the kit instructions, the assay compounds were used at concentrations of 10 and
20 µM. The prototype 1 and its metabolites M1, M3 and M4 could stimulate SIRT1 activity in a
concentration-dependent manner at 10 and 20 µM, indicating they are potential SIRT1 activators. The
metabolite M1 stimulated SIRT1 activity at a concentration of 20 µM comparably to 1. The metabolites
M3 and M4 showed the most potent stimulatory effect, higher than that of 1, and comparable with
that of resveratrol used as a positive control SIRT1 activator [27–29]. These results indicated that liver
microsome enzyme-dependent metabolism may represent a bioactivation pathway that alters the
bioactivity of 1. The metabolic conversion may be essential for the therapeutic actions of 1, and the
effect of 1 for extending lifespan may be due to its activation of the SIRT1 pathway.

Whether these superior benefits will actually translate to humans requires further study. Because
of the limited amounts of the individual compounds available from this investigation, the metabolites
MA–MD could not be assayed for SIRT1 activity.
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Figure 4. Effects of 20(S)-G-Rg2 (S-Rg2) and its metabolites M1, M2, M3, M4 on SIRT1 activity. RES 
(resveratrol, 10 µM) was used as a positive activator and NTA (nicotiamide, 10 µM) was used as a 
positive inhibitor. For all assays, the tested compounds were dissolved in dimethyl sulfoxide (DMSO) 
and the final DMSO concentration was 0.1% (v/v). * p < 0.05, ** p < 0.01, *** p < 0.001 compared with 
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Figure 5. Effects of 20(S)-G-Rg2 (S-Rg2) and its metabolites M1, M2, M3, M4 on SIRT1 activity. RES
(resveratrol, 10 µM) was used as a positive activator and NTA (nicotiamide, 10 µM) was used as a
positive inhibitor. For all assays, the tested compounds were dissolved in dimethyl sulfoxide (DMSO)
and the final DMSO concentration was 0.1% (v/v). * p < 0.05, ** p < 0.01, *** p < 0.001 compared with
DMSO (control) group in three separate experiments. # p < 0.05, ## p < 0.01 compared with S-Rg2 group
in three separate experiments.

3. Experimental Section

3.1. Materials

β-Nicotinamide adenine dinucleotide phosphate (NADP), reduced nicotinamide adenine
dinucleotide (NADH), glucose-6-phosphate (G-6-P) and glucose-6-phosphate dehydrogenase
(G-6-PDH) were purchased from Sigma Chemical Co. (St. Louis, MO, USA). Sodium phenobarbital
(PB) was purchased from Peking University Third Hospital (Beijing, China). LC-MS grade acetonitrile
(MeCN) and methanol (MeOH) were purchased from J. T. Baker (Phillipsburg, NJ, USA), and LC-MS
grade formic acid was obtained from Fisher-Scientific (Fair Lawn, NJ, USA). Ultrapure water (H2O)
was prepared by a Milli-Q system (Millipore, Billerica, MA, USA) in our laboratory. Other reagents
were of analytical grade.

20(S)-G-Rg2 (1) and 20(R)-G-Rg2 were isolated and purified from P. ginseng as described in
previous papers [6,7]. Reference standard of pseudoginsenoside F11 was purchased from Chengdu
Must Bio-Technology Co., Ltd. (Chengdu, China) and 20(R)-pseudoginsenoside F11 which was isolated
and purified from red American ginseng and published in a reference [31] was a gift from Professor
Ping-Ya Li of the Institute of Frontier Medical Science, Jilin University (Changchun, China).

Optical rotations were measured on an Autopol III polarimeter (Rudolph Research Analytical,
Flanders, NJ, USA) using MeOH as solvent. Infrared (IR) spectrum was recorded on a Nexus-470 FT-IR
spectrometer (Thermo Nicolet, Inc., Madison, WI, USA) with KBr disks. Mass spectra were recorded
on an API QSTAR (Applied Biosystems/MDS Sciex., Foster City, CA, USA) for ESI-TOF-MS and a
Waters Xevo G2 Q-TOF mass spectrometer (Waters, Milford, MA, USA) for HR-ESI-MS. One- and
two-dimensional (1D and 2D) NMR spectra were performed on a Bruker AVANCE III 400 spectrometer
(400 MHz for 1H and 100 MHz for 13C; Bruker BioSpin AG Facilities, Fällanden, Switzerland) with
tetramethylsilane as an internal standard and pyridine-d5 (py-d5) as the solvent. RP-SP-HPLC was
conducted on a Beijing CXTH 3000 system (Beijing Chuang Xin Tong Heng Sci. Technol. Co. Ltd.,
Beijing, China) with two P3050 pumps, UV3000 ultraviolet-visible detector, A1359 liquid handler,
Daisogel C18 column (205 mm ˆ 30 mm, 10 µm), and all UV detection was set at 203 nm with a flow
rate of 15 mL/min. CC separation was carried out using silica gel (200–300 mesh; Qingdao Marine
Chemical Co., Qingdao, China) as the stationary phase, and thin layer chromatography (TLC) was
conducted on silica gel GF254 plates (Merck, Darmstadt, Germany).



Molecules 2016, 21, 757 11 of 15

3.2. Preparation of Rat Liver Microsomes

Male Sprague–Dawley rats weighting 200–220 g were supplied by the Laboratory Animal Center
of Peking University Health Science Center (Beijing, China). The rats were kept in a controlled breeding
room with temperature conditions at 22 ˘ 1 ˝C and relative humidity at 60% ˘ 5% before the start of
the experiment. They were fed standard laboratory chow with water ad libitum for 3 days and fasted
overnight prior to the experiment. All experimental procedures were approved by the Animal Care
Ethics committee on Peking University (No. LA2014162) and conducted according to the European
Community guidelines for the use of experimental animals. To induce cytochrome P450 enzymes
(CYP450), rats were given PB in physiological saline intraperitoneally as a single dose of 60 mg/kg
body weight and sacrificed on day 3 after treatment. Their livers were quickly removed and then
washed with ice-cold 10 mM potassium phosphate buffer (PPS; pH 7.4), and kept ice-cold. The
livers were sliced and thoroughly homogenized with four-volumes of PPS (pH 7.4) using an F6/10
superfine homogenizer (Fluko equipment, Shanghai, China), and centrifuged at 12,500 g for 15 min at
4 ˝C using a GL-20B centrifuge (Anke equipment, Shanghai, China) to produce a supernatant. The
supernatant was transferred to ultracentrifuge tubes and then centrifuged at 105,000 g for 65 min at
4 ˝C using an LB-80M ultracentrifuge (Beckman Instrument Inc., Fullerton, CA, USA). The microsomal
pellets were resuspended in 50 mM PPS (pH 7.4). The amount of microsomal protein was determined
following the method of Lowry-Folin [54]. CYP450 concentrations were determined as described by a
reference [55]. Rat liver microsomes (RLM) were found to contain 1.09 nM (18.55 mg proteins/mL)
CYP450 per mg protein.

3.3. 20(S)-G-Rg2 Metabolism by Rat Liver Microsomes

Under the optimized system [31], complete incubation systems (final volume, 2000 mL) contained
RLM (up to 2.0 mg/mL), 100 mM phosphate buffer (pH 7.4), 20(S)-G-Rg2 of 0.15 mg/mL, and an
NADPH-generating system consisting of 10.0 mM G-6-P, 1.0 mM NADP, 0.5 mM NADH, G-6-PDH of
1.0 IU/mL and 4.0 mM MgCl2. After RLM and 20(S)-G-Rg2 were preincubated for 5 min, the reaction
was started by the addition of the NADPH-generating system. Incubations were performed at 37 ˝C
for 120 min with continuous shaking (100 rpm) in a Dubnoff incubator. Reaction was terminated
by adding ice-cold cyclohexane (500 mL). After removal of the cyclohexane layer, the aqueous layer
was extracted six times with an equal volume of BuOH. The BuOH extracts were combined and then
concentrated by evaporation under vacuum to give 22.85 g of residue.

3.4. Isolation and Purification of Metabolites

The above-mentioned residue (22 g) was chromatographed on a silica gel open column eluting
with a gradient of chloroform–MeOH (10:1 to 1:1) to give 4 fractions (Fr.1–Fr.4). Fr.2 (12.22 g) was further
separated by RP-SP-HPLC eluting with MeCN–H2O (35:65) to afford 3 subfractions (Fr.2.1–Fr.2.3).
Fr.2.1 (4.76 g) was purified by RP-SP-HPLC eluting with MeCN–H2O (35:65) to yield prototype
20(S)-G-Rg2 (698 mg, retention time (tR) = 27 min) and M2 (23 mg, tR = 29 min), respectively. Fr.3
(5.32 g) was further purified by RP-SP-HPLC eluting with MeCN–H2O (35:65) to give M1 (8 mg, tR =
8 min) and M3 (12 mg, tR = 19 min), respectively.

Ginsenotransmetin A (M1; 6-O-α-L-rhamnopyranosyl-(1Ñ2)-β-D-glucopyranosyl-dammar-24Z-
ene-3β,6α,12β,20(R),27-pentol): White amorphous powder; rαs20

D +12.8 (c 0.185, MeOH); IR (KBr)
νmax: 3417, 2935, 1643, 1462, 1384, 1129, 1075, 1048, 812 cm´1; 1H-NMR (400 MHz, py-d5) and
13C-NMR (100 MHz, py-d5) data see Table 1; ESI-TOF-MS m/z 799.56 [M ´ H]´, 845.60 [M + HCOOH
´ H]´; HR-ESI-MS m/z 845.4896 [M + HCOOH ´ H]´ (calculated for C43H73O16, 845.4899).

3.5. SIRT1-NAD/NADH Enzyme-Based Assay

The SIRT1 fluorometric drug discovery kit was purchased from Enzo Life Sciences Inc.
(Farmingdale, NY, USA). The assay was conducted carried out according to the protocols provided
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by the kit instruction. The SIRT1 enzyme reaction was conducted with 50 µL per well in a
half-volume 96 well microplate (Corning Costar® #400012; Cambridge, MA, USA). The SIRT1 reaction
solution included 0.02 U/µL enzyme, with or without test compound, in SIRT1 assay buffer. The
enzyme-compound mixture and the assay buffer (25 µL) were incubated at room temperature for
5 min. The reaction was started with the addition of 25 µL of a solution containing 500 µM NAD+

and 100 µM Fluor de Lys-SIRT1. After 45 min of incubation at room temperature, the reaction was
quenched by adding 50 µL of Fluor de Lys Developer II with 2 mM nicotinamide in the HDAC assay
buffer. After 30 min of incubation, the fluorescence of the reaction solution was measured using
a SpectraMax GEMNI XPS microplate reader (Molecular Devices, Sunnyvale, CA, USA.) using an
excitation wavelength of 360 nm and an emission of 460 nm, after adding 50 µL of the SIRT1 assay
buffer. The positive and negative controls were the reaction with dimethyl sulfoxide (DMSO) or
without enzyme, respectively.

3.6. Chromatographic and Mass Spectrometric Conditions

Chromatographic analysis was carried out by an Agilent 1290 UPLC system (Agilent Technologies,
Waldbronn, Germany), equipped with a binary pump, an online vacuum degasser, an autosampler
and a thermostatically controlled column compartment. Chromatographic separation was performed
by an Agilent ZORBAX RRHD Eclipse Plus C18 column (100 mm ˆ 3 mm, 1.8 µm) connected to
a Phenomenex Security Guard™ ULTRA Cartridge. The mobile phase consisted of H2O (A) and
MeCN (B), using a gradient elution of 20%–30% B at 0–2 min; 30%–90% B at 3–18 min. The flow rate
was 0.8 mL/min and the split ratio was 1:1. The detection wavelength was set at 203 nm and the
temperature was set at 45 ˝C. The inject volume was 1 µL.

Detection was carried out by an Agilent Q-TOF 6540, equipped with Agilent Jet Stream (AJS) ESI
source and data was collected using Agilent MassHunter Workstation Data acquisition software. The
instrument was operated in both positive and negative ion modes. The MS parameters were set as
follows: in negative mode, gas temperature: 300 ˝C, gas flow: 5 L/min, nebulizer pressure: 35 psi,
sheath gas temperature: 400 ˝C, sheath gas flow: 12 L/min, capillary voltage: 3500 V, nozzle voltage:
1500 V, fragmentor voltage: 280 V, two collision-energy voltage: 40 V and 60 V. Internal references
(Purine and HP-0921) were adopted to modify the measured masses in real time, and the reference
masses in negative ion mode was at m/z 119.0363 and 1033.9881. The mass spectrometer was in full
scan range of m/z 100–1700 for MS and MS/MS.

3.7. Statistical Analysis

All experimental results were presented as mean ˘ SD. The Student’s t-test was used for
comparisons among various treatment groups and compounds. The level of statistical significance
was taken when p < 0.05.

4. Conclusions

In this study, the metabolic profiles of 20(S)-G-Rg2 (1) in a RLM incubation system were
qualitatively described for the first time. The metabolites were isolated by CC and identified by
spectroscopic and UPLC-Q-TOF/MS methods. 20(S)-G-Rg2 could be converted into a new metabolite,
ginsenotransmetin A, and mono- and dioxidations as well as cyclization metabolites, and so on. Partial
metabolic pathways were proposed. The greater significance of the present study is that it clarified
for the first time the potential bioactive form of 1, as well as the fact that 1 and its some metabolites
are potential SIRT1 activators. With the identification of metabolites and their metabolic mechanism,
the application value of 1 would be significantly elevated. The results provided a meaningful basis
for the clinical application of 1 and a comprehensive understanding of the metabolic fate of 1 in the
liver. The metabolites M3 and M4 could serve as potential lead molecules to develop new drugs for
the treatment of aging diseases associated with the activation of SIRT1 [52].
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Supplementary Materials: The typical mass spectra and possible fragmentations of 20(S)-G-Rg2 and
pseudoginsenoside F11, and 1H- and 13C-NMR data of 20(S)-G-Rg2 and M3 are available as Supplementary
Materials, which may be accessed at: http://www.mdpi.com/1420-3049/21/6/757/s1.
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