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Abstract: Quinoline-2-carboxylates are an important subclass of quinoline derivatives largely
present in a variety of biologically active molecules, as well as useful ligands in metal-catalyzed
reactions. Herein, we present a new one-pot protocol for synthesizing this class of derivatives starting
from β-nitroacrylates and 2-aminobenzaldehydes. In order to optimize the protocol, we investigated
several reaction conditions, obtaining the best results using the 2-tert-Butylimino-2-diethylamino-
1,3-dimethylperhydro-1,3,2-diazaphosphorine (BEMP) as solid base, in acetonitrile. Finally,
we demonstrated the generality of our approach over several substrates which led to synthesize a
plethora of functionalized quinolines-2-carboxylate derivatives in good overall yields.
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1. Introduction

Quinoline constitutes one of the most important nitrogen-containing heterocyclic compounds
possessing several biological activities such as anti-bacterial, anti-fungal, anti-malarial, anti-convulsant,
anti-inflammatory, anthelmintic, cardiotonic and analgesic [1]. In addition, the quinolinic nucleus is
largely occurring in natural compounds and deeply investigated as building blocks for synthesizing
highly functionalized materials [2,3]. In particular, quinoline-2-carboxylates play a predominant
role as precursor of biologically active molecules [4–8] and as useful ligands in metal-catalyzed
reactions [9,10]. Due to their importance, over the years, a variety of synthetic methodologies
have been reported in the literature, which can be classified (Scheme 1) in: (i) oxidative processes,
starting from the corresponding 2-methyl or 2-carbonyl quinolines [11,12]; (ii) hydrolytic reactions
of cyano precursors [13]; (iii) metal-catalyzed cyclization, starting from N-aryl glycine derivatives
or iminoethyl glyoxylates [14,15]; (iv) one-pot reduction-cyclization processes of 2-acylnitroarenes
with α-oxoesters [16]; (v) carboxylation reactions of 2-chloro quinoline derivatives [17]; and (vi) the
historical Doebner-Von Miller protocol [18].

Nevertheless, several of the reported procedures present some limitations such as restricted
applicability (only few examples were reported) [11–13,18], low overall yields [16] and harsh reaction
conditions [17]. Hence, new simple and general protocols for synthesizing these derivatives would
surely be welcome. In this context, following our studies on the chemistry of β-nitroacrylates as
valuable precursors of heterocycle systems [19–27], we propose their application as strategic starting
materials, in combination with 2-aminobenzaldheydes, for synthesizing quinoline-2-carboxylates.
The idea was to develop a new one-pot process involving four different reactions: (i) an
aza-Michael addition between the 2-aminobenzaldheydes 1 and β-nitroacrylates 2; followed by (ii) an
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intramolecular Henry reaction to give the benzopiperidines 3; (iii) elimination of water; and (iv) nitrous
acid elimination to provide the aromatization of the piperidine core, and thus the formation of title
targets 4 (Scheme 2).
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2. Results and Discussion

In order to study the reaction, we first synthesized the starting materials (Scheme 3).
2-Aminobenzaldheydes were prepared from the corresponding alcohols or nitro precursors [28,29],
while β-nitroacrylates were synthesized by the Henry reaction-elimination process, starting from
nitroalkanes and alkyl glyoxalates [30,31].
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Once the starting materials were prepared, we switched our attention to optimize the process.
Thus, first we studied the “aza-Michael-Henry domino process” between 2-aminobenzaldheyde 1a
and ethyl-3-nitropent-2-enoate 2a (Table 1). Based on our previous experiences, we started testing the
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reaction under promoter-free and solvent-free conditions and, after a series of trials, the best result
was obtained using a slight excess of 2a (1.1 equivalent) at 70 ˝C (3aa, 66%, entry 7, the presence of
solvents or bases makes the reaction unproductive entry 9–12).

Table 1. Optimization studies concerning the “aza-Michael-Henry domino process”.
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Successively, we studied the conversion of 3aa into 4aa (Table 2) and, after deep screening in terms
of bases, solvents and temperature, we found the best yield of 4aa (86%, entry 8) at 50 ˝C, in acetonitrile
using 1.25 equivalents of BEMP on polymer [32].
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Finally, with the aim to demonstrate the generality of our method, we tested our reaction
conditions on a wide range of 2-aminobenzaldheydes 1 and β-nitroacrylates 2. In all cases, the products
were obtained in moderate to good overall yields (37%–64%), even in the presence of a variety of
functionalities (Scheme 5).
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3. Conclusions

In conclusion, we developed a new general and valuable one-pot procedure for synthesizing an
important class of quinolines such as quinoline-2-carboxylates. In our approach, it was possible to
prepare title compounds in good overall yields, introducing different substituent in 3-position as well
as in the benzene ring. Furthermore, the mildness of our reaction conditions allowed preserving several
functionalities such as ester, cyano, chlorine, fluorine and carbon–carbon double bond. In addition,
the use of supported BEMP enabled us to minimize the use of materials, avoiding any complex aqueous
work-up, with evident advantages from a sustainable point of view. Finally, we still demonstrated the
usefulness of β-nitroacrylates as a valuable precursor of heterocyclic systems.
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4. Experimental Section

4.1. General Section

1H-NMR were recorded at 400 MHz on a VarianMercury Plus 400. 13C-NMR were recorded
at 100 MHz. IR spectra were recorded with a PerkineElmer Paragon 500 FT-IR. Mass spectra were
performed on a GC/MS system by means of the EI technique (70 eV). Microanalyses were performed
with a CHNS-O analyzer Model EA 1108 from Fisons Instruments.

4.2. Chemistry Section

General Procedure for the Preparation of Compounds 4

A mixture of 2-aminobenzaldheydes 1 (1 mmol) and β-nitroacrylates 2 (1.1 mmol) was stirred,
under solvent-free conditions, at 70 ˝C for 18 h. Then, after that the temperature was diminished at
50 ˝C, acetonitrile (10 mL) and PS-BEMP (1.25 mmol, 0.570 mg) were added, and the resulting solution
was stirred at 50 ˝C for further 24 h. Finally, the resin was filtered off washing with fresh EtOAc
(10 mL) and the crude products 4, obtained after removal of the solvent at reduced pressure, were
purified by flash chromatography column (hexane–ethyl acetate 9:1).

Compound 4aa. Pale yellow oil. IR (cm´1, neat): 1063, 1160, 1458, 1619, 1727, 2959. 1H-NMR (CDCl3,
400 MHz) δ: 1.34 (t, 3H, J = 7.7 Hz), 1.46 (t, 3H, J = 7.3 Hz), 3.01 (q, 2H, J = 7.7 Hz), 4.53 (q, 2H,
J = 7.3 Hz), 7.53–7.60 (m, 1H), 7.65–7.72 (m, 1H), 7.78 (d, 1H, J = 8.1 Hz), 8.04 (s, 1H), 8.16 (d, 1H,
J = 8.5 Hz). 13C-NMR (CDCl3, 100 MHz) δ: 14.5, 15.4, 25.9, 62.2, 127.2, 128.2, 129.1, 129.5, 130.0, 135.6,
136.4, 146.0, 150.7, 167.1. GC-MS (70 eV): m/z: 229 ([M+], 29), 200 (83), 182 (14), 157 (39), 156 (99), 155
(63), 154 (100), 128 (34). Anal. Calcd. for C14H15NO2 (229.28): C, 73.34; H, 6.59; N, 6.11. Found: C,
73.39; H, 6.62; N, 6.08.

Compound 4ab. Pale yellow oil. IR (cm´1, neat): 1073, 1171, 1459, 1610, 1728, 2952. 1H-NMR (CDCl3,
400 MHz) δ: 0.9 (t, 3H, J = 7.3 Hz), 1.34–1.41 (m, 4H), 1.47 (t, 3H, J = 7.3 Hz), 1.65–1.74 (m, 2H), 2.96–2.99
(m, 2H), 4.53 (q, 2H, J = Hz 7.3), 7.55–7.60 (m, 1H), 7.67–7.72 (m, 1H), 7.79 (d, 1H, J = 8.1 Hz), 8.04 (s,
1H), 8.175 (d, 1H J = 8.5 Hz). 13C-NMR (CDCl3, 100 MHz) δ: 14.1, 14.4, 22.6, 30.1, 31.8, 32.7, 62.1, 127.1,
128.1, 129.0, 129.4, 130, 134.3, 137.1, 146.0, 151.0, 167.1. GC-MS (70 eV): m/z: 271 ([M+], 25), 245 (68),
228 (72), 224 (44), 199 (14), 198 (96), 196 (26), 182 (35), 168 (38), 166 (29), 156 (22), 155 (20), 154 (100), 143
(72), 142 (43), 141 (15), 140 (19), 132 (14), 115 (38). Anal. Calcd. for C17H21NO2 (271.36): C, 75.25; H,
7.80; N, 5.16. Found: C, 75.29; H, 7.77; N, 5.13.

Compound 4ac. Pale yellow oil. IR (cm´1, neat): 1069, 1167, 1455, 1615, 1722, 2955. 1H-NMR (CDCl3,
400 MHz) δ: 0.84–0.92 (m, 3H), 1.23–1.44 (m, 6H), 1.59–1.73 (m, 4H), 1.74–1.86 (m, 2H), 1.89–2.11 (m,
4H), 2.88–2.94 (m, 2H), 5.51–5.58 (m, 1H), 7.53–7.58 (m, 1H), 7.71–7.75 (m, 1H), 7.77 (d, 1H, J = 8.1 Hz),
8.02 (s, 1H), 8.17 (d, 1H, J = 8.5 Hz). 13C-NMR (CDCl3, 100 MHz) δ: 14.3, 22.8, 24.1, 29.5, 31.4, 31.9, 32.8,
32.9, 79.4, 127.2, 128.1, 128.9, 129.6, 129.8, 133.7, 137.2, 145.8, 151.5, 167.2. GC-MS (70 eV): m/z: 325
([M+], 4), 257(14), 256 (73), 238 (14), 213 (18), 212 (100), 200 (20), 182 (17), 168 (19), 157 (16), 155 (26), 143
(55), 142 (61), 115(20). Anal. Calcd. for C21H27NO2 (325.45): C, 77.50; H, 8.36; N, 4.30. Found: C, 77.55;
H, 8.39; N, 4.27.

Compound 4ad. Pale yellow oil. IR (cm´1, neat): 1074, 1179, 1436, 1615, 1730, 2949. 1H-NMR (CDCl3,
400 MHz) δ: 1.46 (t, 3H, J = 7.3 Hz), 1.70–1.76 (m, 4H), 2.31–2.39 (m, 2H), 2.91–3.02 (m, 2H), 3.65 (s, 3H),
4.50 (q, 2H, J = 7.3 Hz), 7.57 (t, 1H, J = 7.3 Hz), 7.68 (t, 1H, J = 7.3 Hz), 7.77 (d, 1H, J = 8.1 Hz), 8.02 (s,
1H), 8.15 (d, 1H, J = 8.5 Hz). 13C-NMR (CDCl3, 100 MHz) δ: 14.5, 24.9, 30.8, 32.6, 34.0, 51.8, 62.3, 127.2,
128.3, 129.0, 129.7, 130.0, 133.8, 137.4, 146.0, 150.5, 167.0, 174.1. GC-MS (70 eV): m/z: 315([M+], 30), 286
(68), 284 (29), 270 (18), 242 (28), 236 (21), 228 (81), 182 (61), 180 (29), 170 (14), 168 (42), 167 (44), 156 (14),
155(22), 154 (100), 143 (52), 142 (22), 127 (14), 115 (27). Anal. Calcd. for C18H21NO4 (315.37): C, 68.55;
H, 6.71; N, 4.44. Found: C, 68.59; H, 6.68; N, 4.47.



Molecules 2016, 21, 776 6 of 8

Compound 4ae. Pale yellow oil. IR (cm´1, neat): 1027, 1236, 1456, 1659, 1716, 2245, 2933. 1H-NMR
(CDCl3, 400 MHz) δ: 1.47 (t, 3H, J = 7.3 Hz), 1.71–1.93 (m, 4H), 2.40 (t, 2H, J = 6.8 Hz), 3.03 (t, 2H,
J = 7.7 Hz), 4.53 (q, 2H, J = 7.3 Hz), 7.59 (t, 1H, J = 6.8 Hz), 7.71 (t, 1H, J = 7.3 Hz), 7.79 (d, 1H,
J = 8.12 Hz), 8.04 (s, 1H), 8.17 (d, 1H J = 8.1 Hz). 13C-NMR (CDCl3, 100 MHz) δ: 14.5, 17.3, 25.4, 30.4,
32.1, 62.4, 119.7, 127.2, 128.5, 129.0, 129.9, 130.0, 133.3, 137.5, 146.2, 150.0, 166.9. GC-MS (70 eV): m/z:
282 ([M+], 9), 253 (29), 228 (34), 209 (38), 209 (38), 182 (19), 170 (23), 168 (48), 154 (73), 143 (100), 142 (18),
140 (18), 115 (33), 91 (15). Anal. Calcd. for C17H18N2O2 (282.34): C, 72.32; H, 6.43; N, 9.92. Found: C,
72.36; H, 6.47; N, 9.89.

Compound 4af. Pale yellow oil. IR (cm´1, neat): 1072, 1162, 1460, 1617, 1720, 2958. 1H-NMR (CDCl3,
400 MHz) δ: 0.89–1.03 (m, 6H), 1.46 (d, 3H, J = 6.4 Hz), 1.66–1.79 (m, 3H), 1.80–1.93 (m, 1H), 2.93 (dt,
2H, J = 7.7, 2.1 Hz), 5.19–5.31 (m, 1H), 7.58 (t, 1H, J = 8.1 Hz), 7.71 (t, 1H, J = 8.1 Hz), 7.79 (d, 1H,
J = 8.1 Hz), 8.05 (s, 1H), 8.24 (d, 1H, J = 8.1 Hz). 13C-NMR (CDCl3, 100 MHz) δ: 10.2, 14.3, 19.8, 24.8,
29.1, 35.0, 74.8, 127.5, 128.2, 129.0, 129.8, 130.3, 133.6, 137.8, 146.0, 151.6, 167.1. GC-MS (70 eV): m/z: 271
([M+], 8), 215(20), 214 (100), 200 (20), 198 (17), 182 (14), 170 (59), 168 (63), 154 (28), 143 (93), 143 (24), 115
(21), 41 (18), 29(19). Anal. Calcd. for C17H21NO2 (271.36): C, 75.25; H, 7.80; N, 5.16. Found: C, 75.21; H,
7.77; N, 5.19.

Compound 4ba. Pale yellow oil. IR (cm´1, neat): 1070, 1177, 1479, 1616, 1723, 2975. 1H-NMR (CDCl3,
400 MHz) δ: 1.31 (t, 3H, J = 7.3 Hz), 1.45 (t, 3H, J = 7.3 Hz), 2.99 (q, 2H, J = 7.3 Hz), 4.51 (q, 2H,
J = 7.3 Hz), 7.57–7.63 (m, 1H), 7.73-7.76 (m, 1H), 7.93 (s, 1H), 8.08 (d, 1H, J = 9.0 Hz). 13C-NMR (CDCl3,
100 MHz) δ: 14.5, 15.2, 25.9, 62.4, 125.9, 129.7, 130.6, 131.6, 134.0, 135.5, 136.7, 144.3, 150.9, 166.8. GC-MS
(70 eV): m/z: 263 ([M+], 26), 236 (25), 234 (71), 218 (15), 216 (16), 192 (30), 191 (54), 190 (100), 189 (59),
188 (57), 163 (19), 154 (52), 153 (14), 128 (14), 126 (18). Anal. Calcd. for C14H14ClNO2 (263.72): C, 63.76;
H, 5.35; N, 5.31. Found: C, 63.80; H, 5.38; N, 5.27.

Compound 4bg. Pale yellow oil. IR (cm´1, neat): 1072, 1173, 1481, 1615, 1721, 2978. 1H-NMR (CDCl3,
400 MHz) δ: 1.46 (t, 3H, J = 7.3 Hz), 2.64 (s, 3H), 4.52 (q, 2H, J = 7.3 Hz), 7.60 (dd, 1H, J = 9.4, 2.6 Hz),
7.20 (d, 1H, J = 2.6 Hz), 7.91 (s, 1H), 8.09 (d, 1H, J = 8.6 Hz). 13C-NMR (CDCl3, 100 MHz) δ: 14.5, 20.0,
62.3, 125.6, 129.6, 130.6, 131.3, 131.7, 134.2, 137.1, 144.4, 150.4, 166.6. GC-MS (70 eV): m/z: 249 ([M+], 9),
220 (18), 179 (31), 178 (15), 177 (100), 176 (18), 175 (18), 141 (24), 140 (40). Anal. Calcd. for C13H12ClNO2

(249.69): C, 62.53; H, 4.84; N, 5.61. Found: C, 62.50; H, 4.81; N, 5.58.

Compound 4ca. Pale brown oil. IR (cm´1, neat): 1057, 1126, 1435, 1633, 1730, 2977. 1H-NMR (CDCl3,
400 MHz) δ: 1.36 (t, 3H, J = 7.3 Hz), 1.47 (t, 3H, J = 7.3 Hz), 3.04 (q, 2H, J = 7.3 Hz), 4.54 (q, 2H,
J = 7.3 Hz), 7.74 (d, 1H, J = 8.9 Hz), 7.92 (d, 1H, J = 8.9 Hz), 8.11 (s, 1H), 8.49 (s, 1H). 13C-NMR (CDCl3,
100MHz) δ: 14.4, 15.0, 25.8, 29.8, 32.9, 62.3, 121.3, 123.6, 123.7, 126.7, 127.8, 127.9, 128.0, 128.1, 128.4,
130.4, 131.0, 131.7, 136.0, 137.7, 144.9, 152.3, 166.6. GC-MS (70 eV): m/z: 297 ([M+], 21), 268 (82), 225
(36), 224 (100), 223 (66), 222 (96), 197 (21), 196 (14), 154 (31). Anal. Calcd. for C15H14F3NO2 (297.28): C,
60.61; H, 4.75; N, 4.71. Found: C, 60.57; H, 4.78; N, 4.68.

Compound 4dh. Yellow oil. IR (cm´1, neat): 1052, 1119, 1431, 1606, 1638, 1728, 2971. 1H-NMR (CDCl3,
400 MHz) δ: 1.46 (t, 3H, J = 7.3 Hz), 2.40–2.48 (m, 2H), 2.53 (s, 3H), 3.05-3.11 (m, 2H), 4.52 (q, 2H,
J = 7.3 Hz), 4.97–5.07 (m, 2H), 5.80–5.93 (m, 1H), 7.50–7.55 (m, 2H), 7.94 (s, 1H), 8.09 (d, 1H, J = 9.4 Hz).
13C-NMR (CDCl3, 100 MHz) δ: 14.5, 22.0, 32.4, 35.3, 62.3, 115.9, 126.0, 129.1, 129.5, 132.2, 133.7, 137.2,
137.6, 138.6, 144.5, 149.2, 166.9. GC-MS (70 eV): m/z: 264 (7), 235 (14), 197 (37), 193 (100), 191 (50), 177
(11), 142 (11), 30 (10). Anal. Calcd. for C17H19NO2 (269.34): C, 75.81; H, 7.11; N, 5.20. Found: C, 75.77;
H, 7.08; N, 5.22.

Compound 4di. Yellow oil. IR (cm´1, neat): 697, 825, 1076, 1170, 1286, 1455, 1492, 1626, 1724, 2967.
1H-NMR (CDCl3, 400 MHz) δ: 1.25 (t, 3H, J = 7.3 Hz), 2.53 (s, 3H), 2.96 (t, 2H, J = 7.3 Hz), 5.51 (s, 2H),
7.31–7.42 (m, 3H), 7.48–7.56 (m, 4H), 7.94 (s, 1H), 8.07 (d, 1H, J = 8.5 Hz). 13C-NMR (CDCl3, 100 MHz)
δ: 15.4, 22.0, 25.9, 67.8, 126.0, 128.6, 128.8, 128.9, 129.3, 129.6, 132.1, 135.8, 135.9, 136.0, 138.5, 144.5, 149.2,
166.9. GC-MS (70 eV): m/z: 210 (24), 196 (18), 168 (100), 167 (75), 165 (31), 152 (19), 141 (18), 114 (14), 90
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(73), 65 (28). Anal. Calcd. for C20H19NO2 (305.38): C, 78.66; H, 6.27; N, 4.59. Found: C, 78.69; H, 6.24;
N, 4.62.
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Abbreviations

The following abbreviations are used in this manuscript:

TMG 1,1,3,3-Tetramethylguanidine
DBU 1,5-Diazabiciclo[5.4.0]undec-5-ene
BEMP 2-tert-Butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine
TBD 1,5,7-Triazabicyclo[4.4.0]dec-5-ene
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