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Abstract: Reported is a rationally-designed one-pot sequential strategy that allows homoallylic
alcohols to be employed in a catalytic, asymmetric, direct vinylogous aldol reaction with a series of
activated acyclic ketones, including trifluoromethyl ketones, γ-ketoesters, and α-keto phosphonates,
in high yields (up to 95%) with excellent regio- and enantio-selectivity (up to 99% ee). This modular
combination, including Jones oxidation and asymmetric organocatalysis, has satisfactory
compatibility and reliability even at a 20 mmol scale, albeit without intermediary purification.

Keywords: asymmetric organocatalysis; vinylogous aldol reactions; oxidation; cascade; homoallylic
alcohols

1. Introduction

Asymmetric vinylogous aldol (AVA) reaction allows expedient generation of chiral
multifunctional alcohols with an extended carbon skeleton and α,β-unsaturated group, which is easily
further transformed into structurally complex molecules with divergent synthetic targets [1–5]. As such,
the development of the AVA reaction has spurred research in this field in the past few decades [1–19].
Inspired by the atom economy philosophy, the AVA variant in which direct employment of unmasked
nucleophiles to facilitate the generation of dienolates is our current focus [6–19].

We disclosed a direct AVA reaction of allyl ketones to isatins back in 2013, leading to the
divergent synthesis of biologically-important 3-hydroxy-2-oxindoles derivatives [14]. Since then,
a series of direct asymmetric vinylogous reactions using allyl ketones as nucleophiles have been
carried out successfully with excellent γ-selectivity and enantioselectivity [17–19]. For example,
Chen and co-workers developed a catalytic asymmetric vinylogous Michael addition of allyl ketones
to maleimides through dienamine catalysis [17]. Xu et al. reported another efficient asymmetric
vinylogous Michael addition between allyl ketones and α,β-unsaturated aldehydes by employing
a multifunctional supramolecular iminium catalyst [18]. Very recently, our group introduced a
highly-enantioselective vinylogous aldol reaction of allyl ketones to activated acyclic ketones, such as
trifluoromethyl ketones, α-ketoesters, and α-keto phosphonates, developing expedient and divergent
methods to access valuable chiral electron-withdrawing group-substituted tertiary hydroxyl-based
carboxylic acids [19]. These progressive contributions highlight the versatility of allyl ketone
nucleophiles in asymmetric synthesis.

The oxidation of homoallylic alcohols is known as the most direct and efficient method to
synthesize allyl ketones. However, previous works revealed that yields of allyl ketones were
non-quantitative (less than 70%; most gave poor conversions) through Jones oxidation or Dess-Martin
oxidation [20–22]. In the course of our studies, allyl ketones were observed to easily isomerize to the
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more stable activated α,β-alkenes during of purification and storage [14,19]. The relative instability of
allyl ketones means a major fraction of it forms the more stable precursor before vinylogous reactions,
and complicating the process for large-scale synthesis.

The “one-pot” tandem strategy is known to sequentially perform multiple chemical
transformations in a single reaction vessel without intermediary purification steps [23–28]. Owing
to the significant potential in scale-up production, as well as saving costs, time, and waste
generation, it has been recognized as one of the most promising paradigms in both industry and
pharmaceuticals [23–28]. As an extension of our work towards direct asymmetric vinylogous reactions,
we envisaged developing a tandem one-pot protocol involving both oxidation and asymmetric
organocatalysis. The in situ generation of allyl ketone from homoallylic alcohol is fed directly into
AVA, thus skipping intermediate purification.

2. Results and Discussion

To probe the feasibility of this one-pot asymmetric method, we initiated our study with the model
reaction of homoallylic alcohol 1a with trifluoromethyl acetophenone 2a (Table 1). The Dess-Martin
oxidation of homoallylic alcohol 1a in CH2Cl2 at 25 ˝C completed within 20 min, affording the
corresponding allyl ketone 3a with full conversion. However there was no reaction after adding
2a under the AVA reaction conditions: 10 mol % of catalyst 4, 2.0 equiv. of Na3PO4 in tBuPh at
´10 ˝C [19]. Subsequent Jones oxidation gave a cloudy reaction mixture requiring extraction and
flash chromatography purification. After careful selection of diverse benzenes (such as benzene,
toluene, chlorobenzene, and so on) as the solvent, only tert-butylbenzene was found to present a clear
separation between the organic and aqueous phases, and the tandem Jones oxidation and direct AVA
reaction of 1a can provide 5a in 80% yield and 95% ee after 38 h.

Table 1. Investigation of reaction conditions a.
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With optimized reaction conditions, we began assessing the potential of this one-pot sequential
protocol in the reaction between homoallylic alcohols 1 and trifluoromethyl ketones 2. As shown in
Table 2, the corresponding adduct 5 was obtained in 44%–95% yields with ee of 73%–99%. It should
be noted that allyl ketones 1 with ortho-substituted phenyl groups gave deteriorated enantiomeric
excesses (Table 2, entries 18 and 23), whereas allyl 2-thienyl ketone presented 5y with outstanding 98%
ee (Table 2, entry 25). This is in contrast with the results of the AVA reaction between allyl ketones and
trifluoromethyl ketones as reported [19], and overall yields were increased dramatically. A plausible
mechanism for this asymmetric vinylogous aldol reaction is proposed via the transition-state model in
the Supplementary Materials.
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Table 2. One-pot tandem reactions between homoallylic alcohols 1 and trifluoromethyl ketones 2 a.
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a Reaction conditions: 1 (0.4 mmol), Jones reagent (1.5 equiv.), 1.0 mL tBuPh, 0 ˝C, then 2 (0.1 mmol), catalyst
IV (0.01 mmol), Na3PO4 (0.2 mmol), ´10 ˝C. In all reactions, the ratio of E/Z was >20:1 determined by crude
1H-NMR; b Yield of isolated product; c determined by HPLC analysis on a chiral stationary phase; d the ee value
and yield were obtained after a single recrystallization. Initial data: 80% yield, 85% ee.

The established protocol was also used in vinylogous aldol reactions of vinyl ketones with
α-ketoesters and α-keto phosphonates. Representative methyl benzoylformate 6a was selected to react
with homoallylic alcohol 1a under the established reaction conditions. After the complete oxidation
of 1a, asymmetric reaction was performed in the presence of 10 mol % of catalyst 4 and 2.0 equiv. of
K2HPO4 as the acid-capturer in tBuPh at ´20 ˝C (Scheme 1, (1)) It was found that the reaction was
done in 48 h, affording the desired vinylogous aldol adduct 7a in 72% yield with 89% ee. Another
activated acyclic ketones, diethyl benzoylphosphonate 8a was also attempted (Scheme 1, (2)) and the
γ-selective adduct 9a was isolated in 67% yield with 92% ee after 50 h.

To demonstrate the synthetic value of this work, the sequential Jones oxidation/AVA reaction of
homoallylic alcohol 1a with trifluoromethyl acetophenone 2a was conducted in 20 mmol or gram-scale
(Scheme 2). Due to the scale-up, a longer reaction time of 54 h was necessary to fully oxidize 1a with
Jones reagent. After removal of the aqueous phase, the AVA reaction with 2a was completed within
60 h, affording the product 5a in 79% yield with 95% ee after flash chromatography. During the course
of reaction, the product 5a precipitated out; thus, a convenient filtration approach [20] could be carried
out. Enantiopure 5a (>99% ee) as a white powder was obtained in 66% yield after filtration and rinsing
with cold hexane (IMG-7, Scheme 2). This protocol, thus, has good potential in industry.
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3. Materials and Methods

Experiments involving moisture and/or air sensitive components were performed under a
positive pressure of nitrogen in oven-dried glassware equipped with a rubber septum inlet. Dried
solvents and liquid reagents were transferred by oven-dried syringes or hypodermic syringe
cooled to ambient temperature in a desiccator. Reaction mixtures were stirred in 10 mL sample
vials with Teflon-coated magnetic stirring bars unless otherwise stated. Moisture in non-volatile
reagents/compounds was removed in high vacuum by means of an oil pump and subsequent purging
with nitrogen. Solvents were removed in vacuo under ~30 mmHg and heated with a water bath at
30–35 ˝C using a rotary evaporator with an aspirator. The condenser was cooled with running water
at 0 ˝C.

All experiments were monitored by analytical thin layer chromatography (TLC). TLC was
performed on pre-coated plates, 60 F254. After elution, each plate was visualized under UV
illumination at 254 nm for UV-active material. Further visualization was achieved by staining with
KMnO4, ceric molybdate, or anisaldehyde solution. For those using the aqueous stains, the TLC plates
were heated on a hot plate.

Columns for flash chromatography (FC) contained 200–300 mesh silica gel. Columns were packed
as slurry of silica gel in petroleum ether and equilibrated solution using the appropriate solvent system.
The elution was assisted by applying pressure of about 2 atm with an air pump.
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Proton nuclear magnetic resonance (1H-NMR) and carbon NMR (13C-NMR) spectra were recorded
in CDCl3, unless otherwise stated. Chemical shifts are reported in parts per million (ppm), using
the residual solvent signal as an internal standard: CDCl3 (1H-NMR: δ 7.26, singlet; 13C-NMR:
δ 77.0, triplet). Multiplicities were given as: s (singlet), d (doublet), t (triplet), q (quartet), quintet, m
(multiplets), dd (doublet of doublets), dt (doublet of triplets), and br (broad). Coupling constants (J)
were recorded in Hertz (Hz). The number of proton atoms (n) for a given resonance was indicated by
nH. The number of carbon atoms (n) for a given resonance was indicated by nC. HRMS was reported
in units of mass of charge ratio (m/z). Mass samples were dissolved in CH3CN (HPLC grade) unless
otherwise stated. Melting points were determined on a melting point apparatus.

Enantiomeric excesses were determined by chiral high-performance liquid chromatography
(HPLC) analysis. UV detection was monitored at 254 nm, 230 nm, and 210 nm at the same time. HPLC
samples were dissolved in HPLC grade isopropanol (IPA), unless otherwise stated.

All commercial reagents were purchased with the highest purity grade. They were used without
further purification unless specified. All solvents used, mainly petroleum ether (PE) and ethyl
acetate (EtOAc), were distilled. Anhydrous DCM was freshly distilled from CaH2 and stored under
N2 atmosphere. tert-butylbenzene was freshly distilled from sodium/benzophenone before use.
All compounds synthesized were stored in a ´20 ˝C freezer and light-sensitive compounds were
protected with aluminum foil.

3.1. General Experimental Procedure for the One-Pot Tandem Direct Asymmetric Vinylogous Aldol Reaction of
Allyl Ketones 1 to Trifluoromethyl Ketones 2

Jones reagent (0.25 mL) was added dropwise to a solution of homoallic alcohols 1 (0.4 mmol,
4.0 equiv.) in tert-butylbenzene (1.0 mL) at 0 ˝C over a period of 3.5–7 h. When the reaction
was completed (monitored by TLC), the sample was stewed for a moment until a clear separation
between the organic and aqueous phase was formed, and the aqueous phase was released. Then
the trifluoromethyl ketone 2 (0.1 mmol, 1.0 equiv.) was added, the reaction mixture was stirred at
´10 ˝C for 10 min. Sodium phosphate (0.2 mmol, 2.0 equiv.) and catalyst 4 (0.01 mmol, 0.1 equiv.)
were added sequentially (10 min interval). The reaction mixture was stirred at ´10 ˝C and monitored
by TLC. Upon complete consumption of trifluoromethyl ketone 2, the reaction mixture was directly
loaded onto a short silica column, followed by gradient elution with PE/EA mixture (20/1–5/1 ratio).
Removing the solvent in vacuum afforded products 5a–y.

3.2. General Experimental Procedure for the One-Pot Tandem Direct Asymmetric Vinylogous Aldol Reaction of
Homoallylic Alcohol 1a to Acyclic Activated Ketones (6a and 8a)

Jones reagent (0.45 mL) was added dropwise to a solution of homoallic alcohol 1a (0.4 mmol,
4 equiv.) in tert-butylbenzene (800 µL) at 0 ˝C over a period of 4 h. When the reaction was completed
(monitored by TLC), the sample was stilled for a moment, and the aqueous phase was released.
The reaction mixture was stirred at ´20 ˝C for 10 min. Potassium phosphate anhydrous (0.2 mmol,
2.0 equiv.), catalyst 4 (0.01 mmol, 0.1 equiv.), and 6a/8a (0.1 mmol, 1.0 equiv.) were added sequentially
(10 min interval). The reaction mixture was stirred at ´20 ˝C and monitored by TLC. Upon complete
consumption of acyclic activated ketones 6a/8a, the reaction mixture was directly loaded onto a short
silica column, followed by gradient elution with PE/EA mixture (20/1–1/1 ratio). Removing the
solvent in vacuum afforded products 7a/9a.

(´)-(S,E)-6,6,6-Trifluoro-5-hydroxy-1,5-diphenylhex-2-en-1-one (5a): White solid, Mp 133.7–135.2 ˝C; 25.6
mg (0.1 mmol), 80% yield; 95% ee; rαs26

D ´36.4 (c 2.47, CHCl3); 1H-NMR (300 MHz, CDCl3) δ 7.75
(d, J = 7.4 Hz, 2H), 7.59–7.51 (m, 3H), 7.46–7.33 (m, 5H), 6.91 (d, J = 15.5 Hz, 1H), 6.76–6.66 (m, 1H),
3.25–3.05 (m, 2H), 3.16 (s, 1H); 13C-NMR (75 MHz, CDCl3) δ 190.4, 140.6, 137.1, 135.8, 133.0, 130.7, 128.9,
128.6 (two peaks), 128.5, 126.3, 125.2 (q, J = 284.0 Hz), 77.7 (q, J = 28.2 Hz), 39.0; 19F-NMR (376 MHz,
CDCl3) δ ´79.55; HRMS (ESI) m/z 343.0928 [M + Na+], calc. for C18H15F3O2Na 343.0922. The ee was
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determined by HPLC analysis. CHIRALPAK IB (4.6 mm i.d. ˆ 250 mm); Hexane/2-propanol = 90/10;
flow rate 1.0 mL/min; 25 ˝C; 254 nm; retention time: 10.2 min (minor) and 11.2 min (major).

(´)-(S,E)-6,6,6-Trifluoro-5-hydroxy-1-phenyl-5-(4-(trifluoromethyl)phenyl)hex-2-en-1-one (5b): White solid,
Mp 88.2–90.9 ˝C; 33.8 mg (0.1 mml), 87% yield; 92% ee; rαs26

D –26.3 (c 2.47, CHCl3); 1H-NMR (300 MHz,
CDCl3) δ 7.75–7.66 (m, 6H), 7.51 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.8Hz, 2H), 6.92 (d, J = 15.5 Hz, 1H),
6.75–6.65 (m, 1H), 3.59 (s, 1H), 3.17 (m, 2H); 13C-NMR (75 MHz, CDCl3) δ 190.3, 140.0, 139.7, 136.9,
133.3, 131.8, 131.3, 130.9, 130.6, 130.4, 129.2 (two peaks), 128.6, 128.2, 127.0, 126.8, 125.6 (two peaks),
125.5 (two peaks), 125.4, 123.0, 122.0, 118.4, 77.2, 76.8, 76.4, 76.0, 39.0; 19F-NMR (376 MHz, CDCl3) δ
´62.77, ´79.37; HRMS (ESI) m/z 411.0797 [M + Na+], calc. for C19H14F6O2Na 411.0796. The ee was
determined by HPLC analysis. CHIRALPAK IB (4.6 mm i.d. ˆ 250 mm); Hexane/2-propanol = 90/10;
flow rate 1.0 mL/min; 25 ˝C; 254 nm; retention time: 10.9 min (minor) and 15.4 min (major).

(´)-(S,E)-6,6,6-Trifluoro-5-(4-fluorophenyl)-5-hydroxy-1-phenylhex-2-en-1-one (5c): White solid, Mp
107.0–108.3 ˝C; 24.0 mg (0.1 mmol), 71% yield; 94% ee; rαs26

D ´31.0 (c 2.42, CHCl3); 1H-NMR (300 MHz,
CDCl3) δ 7.77 (d, 2H), 7.78–7.52 (m, 3H), 7.41 (t, J = 7.6 Hz, 2H), 7.09 (t, J = 8.64 Hz, 2H), 6.92 (d,
J = 15.5 Hz, 1H), 6.76–6.66 (m, 1H), 3.47 (s, 1H), 3.22–3.04 (m, 2H); 13C-NMR (75 MHz, CDCl3) δ 190.3,
164.5 , 161.2, 140.3, 137.0, 133.2, 131.8, 131.7, 130.7, 128.6 (two peaks), 128.5 (two peaks), 128.4 (two
peaks), 125.1 (q, J = 283.4 Hz), 123.2, 115.6, 115.4, 76.4 (q, J = 28.4 Hz), 38.9; 19F-NMR (376 MHz, CDCl3)
δ ´79.80, ´112.84; HRMS (ESI) m/z 361.0829 [M + Na+], calc. for C18H14F4O2Na 361.0828. The ee was
determined by HPLC analysis. CHIRALPAK IB-3 (4.6 mm i.d. ˆ 250 mm); Hexane/2-propanol =
90/10; flow rate 1.0 mL/min; 25 ˝C; 254 nm; retention time: 11.2 min (major) and 12.6 min (minor).

(´)-(S,E)-5-(4-Chlorophenyl)-6,6,6-trifluoro-5-hydroxy-1-phenylhex-2-en-1-one (5d): White solid, Mp
110.4–111.6 ˝C; 34.8 mg (0.1 mmol), 98% yield; 94% ee; rαs26

D ´46.6 (c 3.41, CHCl3); 1H-NMR (300 MHz,
CDCl3) δ 7.76 (d, J = 7.32 Hz, 2H), 7.53–7.50 (m, 3H), 7.44–7.37 (m, 4H), 6.91 (d, J = 15.51 Hz, 1H),
6.75–6.65 (m, 2H), 3.51 (s, 1H), 3.21–3.04 (m, 2H); 13C-NMR (75 MHz, CDCl3) δ 190.3, 140.1, 137.0, 135.0,
134.5, 133.2, 130.8, 128.8, 128.6 (two peaks), 127.9, 125.0 (q, J = 284.3 Hz), 76.5 (q, J = 28.5 Hz ), 38.9;
19F-NMR (376 MHz, CDCl3) δ ´79.66; HRMS (ESI) m/z 377.0531 [M + Na+], calc. for C18H14ClF3O2Na
377.0532. The ee was determined by HPLC analysis. CHIRALPAK IB (4.6 mm i.d. ˆ 250 mm);
Hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 ˝C; 254 nm; retention time: 6.8 min (minor)
and 9.1 min (major).

(´)-(S,E)-5-(4-Bromophenyl)-6,6,6-trifluoro-5-hydroxy-1-phenylhex-2-en-1-one (5e): White solid, Mp
114.2–115.3 ˝C; 31.9 mg (0.1 mmol); 80% yield; 95% ee; rαs26

D ´54.5 (c 1.42, CHCl3); 1H-NMR (300 MHz,
CDCl3) δ 7.75 (d, J = 7.4 Hz, 2H), 7.56–7.53 (m, 3H), 7.47–7.39 (m, 4H), 6.90 (d, J = 15.5 Hz, 1H),
6.74–6.65 (m, 1H), 3.50 (s, 1H), 3.20–3.03 (m, 2H); 13C-NMR (75 MHz, CDCl3) δ 190.3, 140.1, 137.0, 135.1,
133.2, 131.7, 130.8, 128.6 (two peaks), 128.2 (two peaks), 126.8, 124.9 (q, J = 284.2 Hz), 123.3, 76.5 (q,
J = 28.4 Hz), 38.9; 19F-NMR (376 MHz, CDCl3) δ ´79.64; HRMS (ESI) m/z 423.0009 [M + Na+], calc. for
C18H14BrF3O2Na 423.0006. The ee was determined by HPLC analysis. CHIRALPAK IB (4.6 mm i.d. ˆ
250 mm); Hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 ˝C; 254 nm; retention time: 7.0 min
(minor) and 12.3 min (major).

(´)-(S,E)-6,6,6-Trifluoro-5-(3-fluorophenyl)-5-hydroxy-1-phenylhex-2-en-1-one (5f): Colorless oil; 32.1 mg
(0.1 mmol), 95% yield; 91% ee; rαs26

D ´41.5 (c 2.56, CHCl3); 1H-NMR (300 MHz, CDCl3) δ 7.78 (d,
J = 7.3 Hz, 2H), 7.55 (t, J = 7.4 Hz, 2H), 7.45–7.32 (m, 5H), 7.08 (t, J = 7.4 Hz, 1H), 6.93 (d, J = 15.5 Hz,
1H), 6.75–6.65 (m, 1H), 3.25 (s, 1H), 3.21–3.04 (m, 2H); 13C-NMR (75 MHz, CDCl3) δ 190.3 (two peaks),
164.5, 161.2, 140.1, 140.0, 138.6, 138.5, 137.0, 133.2, 130.8, 130.2, 130.1, 128.6 (two peaks), 125.0 (q,
J = 284.0 Hz), 122.0 (two peaks), 116.0, 115.7, 114.2, 113.8 (two peaks), 76.2 (two peaks), 75.8 (two
peaks), 39.0; 19F-NMR (376 MHz, CDCl3) δ ´79.51, ´111.68; HRMS (ESI) m/z 339.1004 [M + H+], calc.
for C18H15F4O2 339.1008. The ee was determined by HPLC analysis. CHIRALPAK IB-3 (4.6 mm i.d. ˆ
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250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 ˝C; 254 nm; retention time: 11.3 min
(major) and 13.2 min (minor).

(´)-(S,E)-5-(3-Chlorophenyl)-6,6,6-trifluoro-5-hydroxy-1-phenylhex-2-en-1-one (5g): Colorless oil; 33.3 mg
(0.1 mmol), 94% yield; 90% ee; rαs26

D ´35.6 (c 3.04, CHCl3); 1H-NMR (300 MHz, CDCl3) δ 7.77 (d,
J = 7.3 Hz, 2H), 7.62 (s, 1H), 7.55 (t, J = 7.4 Hz, 1H), 7.47–7.32 (m, 5H), 6.92 (d, J = 15.5 Hz, 1H), 6.74–6.64
(m, 1H), 3.54 (s, 1H), 3.21–3.05 (m, 2H); 13C-NMR (75 MHz, CDCl3) δ 190.4, 140.0, 138.1, 137.0, 134.7,
133.2, 130.9, 129.8, 129.1, 128.7, 128.6, 126.9, 126.8, 124.9 (q, J = 284.1 Hz), 124.6 (two peaks), 76.4 (q,
J = 28.4 Hz), 39.0; 19F-NMR (376 MHz, CDCl3) δ ´79.48; HRMS (ESI) m/z 377.0533 [M + Na+], calc. for
C18H14ClF3O2 377.0532. The ee was determined by HPLC analysis. CHIRALPAK IA (4.6 mm i.d. ˆ
250 mm); Hexane/2-propanol = 95/05; flow rate 1.0 mL/min; 25 ˝C; 254 nm; retention time: 9.8 min
(major) and 11.8 min (minor).

(´)-(S,E)-6,6,6-Trifluoro-5-(2-fluorophenyl)-5-hydroxy-1-phenylhex-2-en-1-one (5h): White solid, Mp
106.9–107.2 ˝C; 24.0 mg (0.1 mmol), 71% yield; 99% ee; rαs26

D ´26.5 (c 2.25, CHCl3); 1H-NMR (300 MHz,
CDCl3) δ 7.77–7.74 (m, 2H), 7.70–7.64 (m, 1H), 7.53 (t, J = 7.4 Hz, 1H), 7.42–7.34 (m, 3H), 7.21 (td, J = 7.9,
1.1 Hz, 1H), 7.13–7.06 (m, 1H), 7.00 (d, J = 15.5 Hz, 1H), 6.85–6.75 (m, 1H), 3.76 (d, J = 5.0 Hz, 1H),
3.60–3.52 (m, 1H), 3.08–3.00 (m, 1H); 13C-NMR (75 MHz, CDCl3) δ 190.5, 161.7, 158.4, 141.0, 137.2,
133.0, 131.4, 131.3, 130.4, 130 (two peaks), 128.6, 128.5, 124.9 (qd, J = 284.4, 1.7 Hz), 124.5 (two peaks),
122.4, 122.3, 116.8, 116.4, 76.2 (qd, J = 30, 3.6 Hz), 37.5, 37.4; 19F-NMR (376 MHz, CDCl3) δ ´80.65,
´80.69, ´111.46, ´111.50; HRMS (ESI) m/z 339.1004 [M + H+], calc. for C18H15F4O2 339.1008. The ee
was determined by HPLC analysis. CHIRALPAK IA (4.6 mm i.d. ˆ 250 mm); Hexane/2-propanol =
95/05; flow rate 1.0 mL/min; 25 ˝C; 254 nm; retention time: 9.4 min (major) and 11.9 min (minor).

(´)-(S,E)-6,6,6-Trifluoro-5-hydroxy-1-phenyl-5-(p-tolyl)hex-2-en-1-one (5i): White solid, Mp 109.2–110.6
˝C; 20.1 mg (0.1 mmol), 60% yield; 95% ee; rαs26

D ´51.2 (c 1.32, CHCl3); 1H-NMR (300 MHz, CDCl3) δ
7.78–7.75 (m, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.46–7.38 (m, 4H), 7.22 (d, J = 8.1 Hz, 2H), 6.91 (d, J = 15.5 Hz,
1H), 6.76–6.66 (m, 1H), 3.23–3.02 (m, 2H), 2.97 (d, J = 5.9 Hz, 1H), 2.37 (s, 3H); 13C-NMR (75 MHz,
CDCl3) δ 190.3, 140.6, 138.8, 137.2, 133.0, 132.9, 130.7, 129.3, 128.6, 128.5, 127.1, 125.2 (q, J = 284.2 Hz),
76.7 (q, J = 28.2 Hz), 39.0, 21.0; 19F-NMR (376 MHz, CDCl3) δ ´79.74; HRMS (ESI) m/z 357.1077
[(M + Na+], calc. for C19H17F3O2Na 357.1078. The ee was determined by HPLC analysis. CHIRALPAK
IB (4.6 mm i.d. ˆ 250 mm); Hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 ˝C; 254 nm;
retention time: 6.7 min (minor) and 10.8 min (major).

(´)-(S,E)-6,6,6-Trifluoro-5-hydroxy-1-phenyl-5-(m-tolyl)hex-2-en-1-one (5j): White solid, Mp 78.5–80.4 ˝C;
22.4 mg (0.1 mmol), 67% yield; 94% ee; rαs26

D ´45.8 (c 1.84, CHCl3); 1H-NMR (300 MHz, CDCl3) δ
7.78–7.74 (m, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.43–7.28 (m, 5H), 7.19 (d, J = 7.2 Hz, 1H), 6.92 (d, J = 15.5 Hz,
1H), 6.76–6.66 (m, 1H), 3.24–3.06 (m, 2H), 3.02, (s, 1H) 2.38 (s, 3H); 13C-NMR (75 MHz, CDCl3) δ 190.4,
140.7, 138.3, 137.2, 135.8, 133.0, 130.8, 129.7, 128.7, 128.6, 128.5, 127.0 (two peaks), 125.2 (q, J = 284.0 Hz),
123.4 (two peaks), 77.7 (q, J = 28.2 Hz), 39.1, 21.6; 19F-NMR (376 MHz, CDCl3) δ ´79.99; HRMS (ESI)
m/z 357.1087 [M + Na+], calc. for C19H17F3O2Na 357.1078. The ee was determined by HPLC analysis.
CHIRALPAK IB (4.6 mm i.d. ˆ 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 ˝C;
254 nm; retention time: 9.5 min (minor) and 11.0 min (major).

(´)-(S,E)-6,6,6-Trifluoro-5-hydroxy-5-(naphthalen-2-yl)-1-phenylhex-2-en-1-one (5k): White solid, Mp
163.1–164.9 ˝C; 25.9 mg (0.1 mmol), 70% yield; 91% ee; rαs26

D ´40.1 (c 0.87, CHCl3); 1H-NMR (300 MHz,
acetone-d6) δ 8.30 (s, 1H), 8.00–7.92 (m, 3H), 7.83 (d, J = 8.8 Hz, 1H), 7.72 (d, J = 7.9 Hz, 2H), 7.58–7.51
(m, 3H), 7.36 (t, J = 7.7 Hz, 2H), 7.15 (d, J = 15.5 Hz, 1H), 6.76–6.67 (m, 1H), 6.13 (s, 1H), 3.63–3.56 (m,
1H), 3.31–3.24 (m, 1H); 13C-NMR (75 MHz, acetone-d6) δ 190.1, 141.7, 138.4, 135.2, 134.0, 133.9, 133.6,
131.1, 129.4, 129.3, 129.2, 128.8, 128.4, 127.8, 127.6, 127.3, 126.9 (q, J = 284.2 Hz), 77.5 (q, J = 27.5 Hz),
38.8; 19F-NMR (376 MHz, CDCl3) δ ´79.23; HRMS (ESI) m/z 371.1257 [M + H+], calc. for C22H18F3O2
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371.1259. The ee was determined by HPLC analysis. CHIRALPAK IE (4.6 mm i.d. ˆ 250 mm);
Hexane/2-propanol = 95/05; flow rate 1.0 mL/min; 25 ˝C; 254 nm; retention time: 11.8 min (minor)
and 12.7 min (major).

(´)-(R,E)-6,6,6-Trifluoro-5-hydroxy-1-phenyl-5-(thiophen-2-yl)hex-2-en-1-one (5l): White solid, Mp 77.2–82.2
˝C; 27.1 mg (0.1 mmol), 83% yield; 92% ee; rαs26

D ´26.6 (c 2.26, CHCl3); 1H-NMR (300 MHz, CDCl3)
δ 7.81 (d, J = 7.3 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.42 (t, J = 7.5 Hz, 2H), 7.36 (d, J = 5.1 Hz, 1H), 7.16
(d, J = 3.4 Hz, 1H), 7.04 (dd, J = 4.9, 3.9 Hz, 1H), 6.94 (d, J = 15.5 Hz, 1H), 6.87–6.78 (m, 1H), 3.58
(s, 1H), 3.13 (s, 1H), 3.10 (s, 1H); 13C-NMR (75 MHz, CDCl3) δ 190.4, 140.2, 140.0, 137.1, 133.1, 130.8,
128.7, 128.6, 127.3, 126.6, 126.1, 124.6 (q, J = 283.9 Hz), 76.4 (q, J = 29.7 Hz), 40.0; 19F-NMR (376 MHz,
CDCl3) δ ´80.58; HRMS (ESI) m/z 349.0493 [M + Na+], calc. for C16H13F3O2SNa 349.0486. The ee was
determined by HPLC analysis. CHIRALPAK IB-3 (4.6 mm i.d. ˆ 250 mm); Hexane/2-propanol =
90/10; flow rate 1.0 mL/min; 25 ˝C; 254 nm; retention time: 10.4 min (major) and 11.8 min (minor).

(+)-(R,E)-5-Hydroxy-1-phenyl-5-(trifluoromethyl)hept-2-en-1-one (5m): Colorless oil; 16.3 mg (0.1 mmol),
60% yield; 91% ee; rαs26

D +12.4 (c 0.74, CHCl3); 1H-NMR (300 MHz, CDCl3) δ 7.94–7.92 (m, 2H), 7.58
(t, J = 7.3 Hz, 1H), 7.48 (t, J = 7.5 Hz, 2H), 7.08–6.93 (m, 2H), 2.72 (d, J = 5.07 Hz, 2H), 2.36 (s, 1H),
1.81 (q, J = 7.6 Hz, 2H), 1.04 (t, J = 7.6 Hz, 3H); 13C-NMR (75 MHz, CDCl3) δ 190.2, 141.2, 137.4, 133.0,
129.8, 128.6 (two peaks), 126.2 (q, J = 284.9 Hz), 75.4 (q, J = 26.9 Hz), 36.5, 27.0, 7.2; 19F-NMR (376 MHz,
CDCl3) δ ´79.51; HRMS (ESI) m/z 273.1103 [M + H+], calc. for C14H16F3O2 273.1102. The ee was
determined by HPLC analysis. CHIRALPAK IB (4.6 mm i.d. ˆ 250 mm); Hexane/2-propanol = 90/10;
flow rate 1.0 mL/min; 25 ˝C; 254 nm; retention time: 7.0 min (major) and 7.7 min (minor).

(´)-(S,E)-6,6,6-Trifluoro-1-(4-fluorophenyl)-5-hydroxy-5-phenylhex-2-en-1-one (5n): White solid, Mp
106.7–108.0 ˝C; 27.7 mg (0.1 mmol), 82% yield; 95% ee; rαs26

D ´30.2 (c 2.30, CHCl3); 1H-NMR (300 MHz,
CDCl3) δ 7.79–7.72 (m, 2H), 7.57 (d, J = 7.0 Hz, 2H), 7.45–7.36 (m, 3H), 7.10–7.03 (m, 2H), 6.86 (d,
J = 15.5 Hz, 1H), 6.75–6.65 (m, 1H), 3.27 (s, 1H), 3.25–3.17 (m, 1H), 3.12–3.04 (m, 1H); 13C-NMR
(75 MHz, CDCl3) δ 188.89, 167.4, 164.0, 140.9, 135.9, 133.5, 133.4, 131.3, 131.2, 130.3, 128.9, 128.6, 126.3,
125.2 (q, J = 284.1 Hz), 115.8, 115.5, 76.7 (q, J = 28.1 Hz), 39.0; 19F-NMR (376 MHz, CDCl3) δ ´79.56,
´105.09; HRMS (ESI) m/z 339.1015 [M + H+], calc. for C18H15F4O2 339.1008. The ee was determined
by HPLC analysis. CHIRALPAK IB (4.6 mm i.d. ˆ 250 mm); Hexane/2-propanol = 90/10; flow rate
1.0 mL/min; 25 ˝C; 254 nm; retention time: 8.0 min (minor) and 9.9 min (major).

(´)-(S,E)-1-(4-Chlorophenyl)-6,6,6-trifluoro-5-hydroxy-5-phenylhex-2-en-1-one (5o): White solid, Mp
90.1–91.5 ˝C; 30.5 mg (0.1 mmol), 86% yield; 96% ee; rαs26

D ´37.2 (c 2.60, CHCl3); 1H-NMR (300 MHz,
CDCl3) δ 7.67–7.63 (m, 2H), 7.57 (d, J = 6.8 Hz, 2H), 7.47–7.34 (m, 5H), 6.83 (d, J = 15.5 Hz, 1H), 6.75–6.65
(m, 1H), 3.34 (s, 1H), 3.24–3.17 (m, 1H), 3.12–3.04 (m, 1H); 13C-NMR (75 MHz, CDCl3) δ 189.3, 141.3,
139.5, 135.8, 135.4, 130.2, 130.0, 128.9, 128.8, 128.6, 126.30 (two peaks), 125.2 (q, J = 284.2 Hz), 76.7 (q,
J = 28.2 Hz), 39.0; HRMS (ESI) m/z 355.0720[M + H+], calc. for C18H15ClF3O2 355.0713. The ee was
determined by HPLC analysis. CHIRALPAK IB (4.6 mm i.d. ˆ 250 mm); Hexane/2-propanol = 90/10;
flow rate 1.0 mL/min; 25 ˝C; 254 nm; retention time: 11.0 min (minor) and 16.7 min (major).

(´)-(S,E)-6,6,6-Trifluoro-1-(3-fluorophenyl)-5-hydroxy-5-phenylhex-2-en-1-one (5p): White solid, Mp
87.1–88.9 ˝C; 31.1 mg (0.1 mmol), 92% yield; 96% ee; rαs26

D ´27.5 (c 1.32, CHCl3); 1H-NMR (300 MHz,
CDCl3) δ 7.58–7.50 (m, 3H), 7.46–7.35 (m, 5H), 7.23–7.20 (m, 1H), 6.84 (d, J = 15.6 Hz, 1H), 6.77–6.70
(m, 1H), 3.22 (m, 1H), 3.08 (m, 1H), 2.87 (s, 1H); 13C-NMR (75 MHz, CDCl3) δ 189.0, 164.4, 161.1, 141.3,
139.4, 139.3, 135.8, 130.4, 130.3, 130.2, 129.0, 128.7, 126.3, 125.2 (q, J = 283.9 Hz), 124.3 (two peaks), 120.2,
119.9, 115.6, 115.3, 39.1; HRMS (ESI) m/z 339.1010 [M + H+], calc. for C18H15F4O2 339.1008. The ee was
determined by HPLC analysis. CHIRALPAK IB (4.6 mm i.d. ˆ 250 mm); Hexane/2-propanol = 90/10;
flow rate 1.0 mL/min; 25 ˝C; 254 nm; retention time: 7.6 min (minor) and 8.6 min (major).
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(´)-(S,E)-1-(3-Chlorophenyl)-6,6,6-trifluoro-5-hydroxy-5-phenylhex-2-en-1-one (5q): Colorless oil; 28.4 mg
(0.1 mmol), 80% yield; 95% ee; rαs26

D ´38.2 (c 1.82, CHCl3); 1H-NMR (300 MHz, CDCl3) δ 7.70 (t,
J = 1.8 Hz, 1H), 7.59 (t, J = 8.2 Hz, 3H), 7.51–7.31 (m, 5H), 6.83 (d, J = 15.6 Hz, 1H), 6.76–6.66 (m, 1H),
3.25–3.18 (m, 1H), 3.12–3.05 (m, 2H); 13C-NMR (75 MHz, CDCl3) δ 189.0, 141.5, 138.7, 135.7, 134.8,
132.9, 130.3, 129.8, 129.0, 128.6, 126.6, 126.2 (two peaks), 125.2 (q, J = 284.0 Hz), 76.2, 39.0; HRMS (ESI)
m/z 355.0703 [M + H+], calc. for C18H15ClF3O2 355.0713. The ee was determined by HPLC analysis.
CHIRALPAK IB (4.6 mm i.d. ˆ 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 ˝C;
254 nm; retention time: 7.7 min (minor) and 8.8 min (major).

(´)-(S,E)-6,6,6-Trifluoro-1-(2-fluorophenyl)-5-hydroxy-5-phenylhex-2-en-1-one (5r): White solid, Mp
74.0–75.9 ˝C; 22.0 mg (0.1 mmol), 65% yield; 88% ee; rαs26

D ´40.5 (c 1.86, CHCl3); 1H-NMR (300 MHz,
CDCl3) δ 7.64–7.55 (m, 3H), 7.52–7.35 (m, 4H), 7.20–7.05 (m, 2H), 6.83 (dd, J = 15.5, 3.0 Hz, 1H),
6.73–6.64 (m, 1H), 3.23–3.16 (m, 1H), 3.07–3.03 (m, 1H), 2.96 (s, 1H); 13C-NMR (75 MHz, CDCl3) δ 188.4,
162.9, 159.5, 140.6, 135.8, 134.3, 134.2, 134.0, 133.9, 131.0, 130.9, 128.9, 128.5, 126.3 (two peaks), 125.1 (q,
J = 284.2 Hz), 124.5, 124.4, 116.6, 116.3, 76.6 (q, J = 28.3 Hz), 38.9; HRMS (ESI) m/z 339.1009 [M + H+],
calc. for C18H15F4O2 339.1008. The ee was determined by HPLC analysis. CHIRALPAK IA (4.6 mm i.d.
ˆ 250 mm); Hexane/2-propanol = 95/05; flow rate 1.0 mL/min; 25 ˝C; 254 nm; retention time: 9.3 min
(major) and 11.1 min (minor).

(´)-(S,E)-6,6,6-Trifluoro-5-hydroxy-5-phenyl-1-(p-tolyl)hex-2-en-1-one (5s): White solid, Mp 106.2–107.7
˝C; 30.8 mg (0.1 mmol), 92% yield; 95% ee; rαs26

D ´33.2 (c 1.69, CHCl3); 1H-NMR (300 MHz, CDCl3) δ
7.67 (d, J = 8.2 Hz, 2H), 7.58 (d, J = 7.2 Hz, 2H), 7.45–7.38 (m, 3H), 7.20 (d, J = 8.0 Hz, 2H), 6.74–6.64 (m,
1H), 6.78–6.61 (m, 1H), 3.24–3.04 (m, 3H), 2.39 (s, 3H); 13C-NMR (75 MHz, CDCl3) δ 189.8, 143.9, 140.0,
136.0, 134.6, 130.8, 129.2, 128.8 (two peaks), 126.3 (two peaks), 125.2 (q, J = 284.1 Hz), 76.7, 39.0, 21.6;
HRMS (ESI) m/z 335.1261 [(M + H+], calc. for C19H18F3O2 335.1259. The ee was determined by HPLC
analysis. CHIRALPAK IB (4.6 mm i.d. ˆ 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min;
25 ˝C; 254 nm; retention time: 13.6 min (minor) and 19.3 min (major).

(´)-(S,E)-6,6,6-Trifluoro-5-hydroxy-5-phenyl-1-(m-tolyl)hex-2-en-1-one (5t): Colorless oil; 30.4 mg
(0.1 mmol), 91% yield; 94% ee; rαs26

D ´40.7 (c 2.46, CHCl3); 1H-NMR (300 MHz, CDCl3) δ 7.59–7.53
(m, 4H), 7.45–7.28 (m, 5H), 6.89 (d, J = 15.5 Hz, 1H), 6.74–6.64 (m, 1H), 3.25–3.18 (m, 1H), 3.15 (s, 1H),
3.12–3.04 (m, 1H), 2.36 (s, 3H); 13C-NMR (75 MHz, CDCl3) δ 190.6, 140.2, 138.4, 137.2, 135.9, 133.8, 131.0,
130.9, 129.2, 128.8, 128.6, 128.4, 126.3 (two peaks), 125.8, 125.2 (q, J = 284.0 Hz), 76.7 (q, J = 28.2 Hz),
39.0, 21.3; HRMS (ESI) m/z 335.1257 [M + H+], calc. for C19H18F3O2 335.1259. The ee was determined
by HPLC analysis. CHIRALPAK IB (4.6 mm i.d. ˆ 250 mm); Hexane/2-propanol = 90/10; flow rate
1.0 mL/min; 25 ˝C; 254 nm; retention time: 10.5 min (minor) and 11.9 min (major).

(´)-(S,E)-6,6,6-Trifluoro-5-hydroxy-1-(4-methoxyphenyl)-5-phenylhex-2-en-1-one (5u): White solid, Mp
107.7–109.2 ˝C; 25.9 mg (0.1 mmol), 74% yield; 95% ee; rαs26

D ´39.6 (c 2.20, CHCl3); 1H-NMR (300 MHz,
CDCl3) δ 7.77 (d, J = 8.8 Hz, 2H), 7.58 (d, J = 7.0 Hz, 2H), 7.43–7.35 (m, 3H), 6.93–6.86 (m, 3H), 6.73–6.63
(m, 1H), 3.85 (s, 3H), 3.33 (s, 1H), 3.23–3.16 (m, 1H), 3.11–3.04 (m, 1H); 13C-NMR (75 MHz, CDCl3) δ
188.6, 163.6, 139.4, 136.0, 131.0, 130.6, 130.0, 128.8, 128.5, 127.1, 126.4 (two, peaks), 125.2 (q, J = 284.0 Hz),
113.8, 76.7 (q, J = 28.1 Hz), 55.4, 38.9; HRMS (ESI) m/z 351.1212 [M + H+], calc. for C19H18F3O2

351.1208. The ee was determined by HPLC analysis. CHIRALPAK IB (4.6 mm i.d. ˆ 250 mm);
Hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 ˝C; 254 nm; retention time: 12.1 min (minor)
and 15.0 min (major).

(´)-(S,E)-6,6,6-Trifluoro-5-hydroxy-1-(3-methoxyphenyl)-5-phenylhex-2-en-1-one (5v): Colorless oil; 27.7
mg (0.1 mmol), 79% yield; 94% ee; rαs26

D ´36.3 (c 2.76, CHCl3); 1H-NMR (300 MHz, CDCl3) δ 7.57
(d, J = 7.1 Hz, 2H), 7.45–7.38 (m, 3H), 7.33–7.31 (m, 3H), 7.11–7.06 (m, 1H), 6.89 (d, J = 15.5 Hz, 1H),
6.77–6.67 (m, 1H), 3.81 (s, 3H), 3.25–3.18 (m, 1H), 3.12–3.04 (m, 2H); 13C-NMR (75 MHz, CDCl3) δ 190.0,
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159.8, 140.5, 138.6, 135.9, 130.8, 129.5, 128.9, 128.6, 126.3, 125.2 (q, J = 284.2 Hz), 121.3, 119.7, 112.8, 76.7
(q, J = 28.2 Hz), 55.4, 39.0; HRMS (ESI) m/z 351.1211 [M + H+], calc. for C19H18F3O3 351.1208. The ee
was determined by HPLC analysis. CHIRALPAK IB (4.6 mm i.d. ˆ 250 mm); Hexane/2-propanol =
80/20; flow rate 1.0 mL/min; 25 ˝C; 254 nm; retention time: 17.7 min (minor) and 19.8 min (major).

(´)-(S,E)-6,6,6-Trifluoro-5-hydroxy-1-(2-methoxyphenyl)-5-phenylhex-2-en-1-one (5w): Colorless oil; 15.4
mg (0.1 mmol), 44% yield; 73% ee; rαs26

D ´38.3 (c 1.17, CHCl3); 1H-NMR (300 MHz, CDCl3) δ 7.57 (d,
J = 7.0 Hz, 2H), 7.48–7.34 (m, 5H), 7.00–6.91 (m, 2H), 6.83 (d, J = 15.6 Hz, 1H), 6.59–6.48 (m, 1H), 3.83
(s, 3H), 3.18–3.11 (m, 1H), 3.08–3.01 (m, 1H), 2.93 (s, 1H); 13C-NMR (75 MHz, CDCl3) δ 192.0, 158.1,
137.8, 136.2, 136.1, 133.3, 130.5, 128.8, 128.5, 128.2, 126.3, 125.1 (q, J = 283.9 Hz), 120.8, 111.5, 76.4 (q,
J = 28.1 Hz), 55.7, 38.8; HRMS (ESI) m/z 351.1204 [M + H+], calc. for C19H18F3O3 351.1208. The ee was
determined by HPLC analysis. CHIRALPAK IB (4.6 mm i.d. ˆ 250 mm); Hexane/2-propanol = 95/05;
flow rate 1.0 mL/min; 25 ˝C; 254 nm; retention time: 19.3 min (minor) and 22.1 min (major).

(´)-(S,E)-6,6,6-Trifluoro-5-hydroxy-1-(naphthalen-2-yl)-5-phenylhex-2-en-1-one (5x): White solid, Mp
91.4–93.2 ˝C; 29.6 mg (0.1 mmol), 80% yield; 93% ee; rαs26

D ´28.0 (c 3.13, CHCl3); 1H-NMR (300 MHz,
CDCl3) δ 8.20 (s, 1H), 7.87–7.80 (m, 4H), 7.63–7.37 (m, 7H), 7.04 (d, J = 15.5 Hz, 1H), 6.83–6.73 (m,
1H), 3.43 (d, J = 3.3 Hz, 1H), 3.30–3.22 (m, 1H), 3.17–3.10 (m, 1H); 13C-NMR (75 MHz, CDCl3) δ 190.3,
140.5, 136.0, 135.5, 134.4, 132.3, 130.8, 130.4, 129.5, 128.9, 128.6, 128.5 (two peaks), 126.7, 126.4 (two
peaks), 125.2 (q, J = 283.9 Hz), 76.7 (q, J = 28.1 Hz), 38.9; HRMS (ESI) m/z 371.1258 [M + H+], calc.
for C22H18F3O2 371.1259. The ee was determined by HPLC analysis. CHIRALPAK IB (4.6 mm i.d. ˆ
250 mm); Hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 ˝C; 254 nm; retention time: 12.5 min
(minor) and 20.9 min (major).

(´)-(S,E)-6,6,6-Trifluoro-5-hydroxy-5-phenyl-1-(thiophen-2-yl)hex-2-en-1-one (5y): White solid, Mp
126.3–128.0 ˝C; 27.1 mg (0.1 mmol), 83% yield; 98% ee; rαs26

D ´44.6 (c 2.46, CHCl3); 1H-NMR (300 MHz,
CDCl3) δ 7.64–7.56 (m, 4H), 7.44–7.34 (m, 3H), 7.11–7.08 (m, 1H), 6.84 (d, J = 15.3 Hz, 1H), 6.80–6.73 (m,
1H), 3.26–3.18 (m, 2H), 3.11–3.05 (m, 1H); 13C-NMR (75 MHz, CDCl3) δ 181.7, 144.4, 139.9, 135.9, 134.4,
132.5, 130.1, 128.9, 128.5, 128.2, 126.3, 125.2 (q, J = 284.1 Hz), 76.6 (q, J = 28.3 Hz), 38.8; HRMS (ESI)
m/z 327.0666 [M + H+], calc. for C16H14F3O2S 327.0667. The ee was determined by HPLC analysis.
CHIRALPAK IB (4.6 mm i.d. ˆ 250 mm); Hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 ˝C;
254 nm; retention time: 30.6 min (minor) and 31.5 min (major).

(+)-(S,E)-Methyl 2-hydroxy-6-oxo-2,6-diphenylhex-4-enoate (7a): Colorless oil; 24.2 mg (0.1 mmol), 78%
yield; 89% ee; rαs26

D +5.8 (c 1.27, CHCl3); 1H-NMR (300 MHz, CDCl3) δ 7.85–7.82 (m, 2H), 7.63–7.52 (m,
3H), 7.46–7.30 (m, 5H), 6.92–6.90 (m, 2H), 3.82 (s, 4H), 3.22–3.15 (m, 1H), 3.06–3.00 (m, 1H); 13C-NMR
(75 MHz, CDCl3) δ 190.7, 174.5, 142.6, 140.8, 137.6, 132.7, 129.9, 128.6, 128.5 (two peaks), 128.2, 125.3,
78.0, 53.5, 43.0; HRMS (ESI) m/z 333.1092 [M + H+], calc. for C19H18O4Na 333.1103. The ee was
determined by HPLC analysis. CHIRALPAK IC (4.6 mm i.d. ˆ 250 mm); Hexane/2-propanol = 80/20;
flow rate 1.0 mL/min; 25 ˝C; 254 nm; retention time: 20.7 min (minor) and 23.6 min (major).

(´)-(R,E)-Diethyl (1-hydroxy-5-oxo-1,5-diphenylpent-3-en-1-yl)phosphonate (9a): White solid; Mp
130.1-131.9 ˝C; 26.0 mg (0.1 mmol), 67% yield; 92% ee; rαs26

D ´16.1 (c 1.13, CHCl3); 1H-NMR (300 MHz,
CDCl3) δ 7.73–7.70 (m, 2H), 7.76–7.59 (m, 2H), 7.50 (t, J = 7.4 Hz, 1H), 7.38 (t, J = 7.5 Hz, 4H), 7.31 (dd,
J = 7.2, 1.6 Hz, 1H), 6.86–6.70 (m, 2H), 4.17–4.07 (m, 2H), 4.04–3.89 (m, 1H), 3.87–3.76 (m, 1H), 3.63 (d,
J = 6.7 Hz, 1H), 3.21 (t, J = 7.1 Hz, 2H), 3.21 (t, J = 7.1 Hz, 2H), 1.27 (t, J = 7.0 Hz, 3H), 1.17 (t, J = 7.1 Hz,
3H); 13C-NMR (75 MHz, CDCl3) δ 190.8, 142.4, 142.2, 138.1, 137.5, 132.6, 130.3, 128.6, 128.4, 128.3, 128.2,
127.7, 127.6, 126.1 (two peaks), 76.6, 74.5, 63.7, 63.6, 63.5, 63.4, 41.4, 41.3, 16.4, 16.3 (two peaks), 16.2;
HRMS (ESI) m/z 411.1336 [M + Na+], calc. for C21H25O5P 411.1337. The ee was determined by HPLC
analysis. CHIRALPAK IC (4.6 mm i.d. ˆ 250 mm); Hexane/2-propanol = 80/20; flow rate 1.0 mL/min;
25 ˝C; 254 nm; retention time: 19.2 min (minor) and 22.4 min (major).
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4. Conclusions

In summary, we have developed an elaborate one-pot tandem strategy, which allowed homoallyic
alcohols to be successfully employed in the direct AVA reaction with a series of activated acyclic ketones,
such as trifluoromethyl ketones, α-ketoesters, and α-keto phosphonates, in high yields, γ-selectivity,
and stereoselectivity. This modular combination, including Jones oxidation and asymmetric hydrogen
bonding catalysis, features satisfactory compatibility and reliability, albeit without an intermediary
purification step. This methodology also presents effective in large-scale synthesis. We anticipate
that this efficient one-pot tandem paradigm will find application in more types of direct vinylogous
reactions using homoallylic alcohols as pro-nucleophiles.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/21/
7/842/s1.
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