Supplementary Materials: Synthesis, Spectral Characterization of Several Novel Pyrene-Derived Aminophosphonates and Their Ecotoxicological Evaluation Using *Heterocypris incongruens* and *Vibrio fisheri* Tests

Jarosław Lewkowski, Maria Rodriguez Moya, Marta Chmielak, Diana Rogacz, Kamila Lewicka, and Piotr Rychter

Figures 1–7–Spectra of compounds 3a–d, 4 and 5.

Figure S1. (a) Diphenyl *N*-phenylamino(pyren-1-yl)methylphosphonate (**3a**). ¹H-NMR—followed by enlarged fragments.

mch-27fl-2-13C 10 1 C:\MARYSIA\widma

S3 of S35

S4 of S35

by enlarged fragments.

mch-26f2-3(eter-lejek) 1 1 C:\MARYSIA\widma

Figure S2. (a) Diphenyl *N*-(4-methoxyphenyl)amino(pyren-1-yl)methylphosphonate (**3b**). ¹H-NMR – followed by enlarged fragments.

Figure S2. (b) Diphenyl *N*-(4-methoxyphenyl)amino(pyren-1-yl)methylphosphonate (**3b**). ¹³C-NMR— followed by enlarged fragments.

Figure S3. (a) Diphenyl *N*-(4-methylphenyl)amino(pyren-1-yl)methylphosphonate (**3c**). ¹H-NMR – followed by enlarged fragments.

Figure S3. (b) Diphenyl *N*-(4-methylphenyl)amino(pyren-1-yl)methylphosphonate (3c). ³¹P-NMR.

S13 of S35

mch-12(II)f3-5-13C 11 1 C:\MARYSIA\widma

Figure S3. (c) Diphenyl *N*-(4-methylphenyl)amino(pyren-1-yl)methylphosphonate (**3c**). ¹³C-NMR – followed by enlarged fragments.

Figure S4. (a)Diphenyl *N*-benzylamino(pyren-1-yl)methylphosphonate (**3d**). ¹H-NMR – followed by enlarged fragments.

mch-20(II)fl l l C:\MARYSIA\widma

mch-20(II)fl-13C 10 1 C:\MARYSIA\widma

mch-20(II)fl-13C 10 1 C:\MARYSIA\widma

mch-20(II)f1-13C 10 1 C:\MARYSIA\widma

Figure S4. (c) Diphenyl *N*-benzylamino(pyren-1-yl)methylphosphonate (**3d**). ¹³C-NMR—followed by enlarged fragments.

mrm-303f2 2 1 C:\MARYSIA\widma

mrm-303f2 2 1 C:\MARYSIA\widma

Figure S5. (a) Dimethyl N-(R)- α -methylbenzylamino(pyren-1-yl)methylphosphonate (4). Isolated predominant diastereoisomer ¹H-NMR – followed by enlarged fragments.

Figure S5. (b) Dimethyl *N*-(*R*)- α -methylbenzylamino(pyren-1-yl)methylphosphonate (4). Isolated predominant diastereoisomer ³¹P-NMR.

mrm-303f2Cl3 ll l C:\MARYSIA\widma

Figure S5. (c) Dimethyl *N*-(*R*)- α -methylbenzylamino(pyren-1-yl)methylphosphonate (4). Isolated predominant diastereoisomer ¹³C-NMR-followed by enlarged fragments.

mrm-303f3-6 11 1 C:\MARYSIA\widma

mrm-303f3-6 11 1 C:\MARYSIA\widma

Figure S6. (a) Dimethyl *N*-(*R*)- α -methylbenzylamino(pyren-1-yl)methylphosphonate (4). Mixture of diastereoisomers ¹H-NMR—followed by enlarged fragments.

mrm-303f3-6 10 1 C:\MARYSIA\widma

Figure S6. (b) Dimethyl *N*-(*R*)- α -methylbenzylamino(pyren-1-yl)methylphosphonate (4). Mixture of diastereoisomers ³¹P-NMR.

mrm-340f2-4 11 1 C:\MARYSIA\widma

Figure S7. (a) Dibenzyl N-(R)- α -methylbenzylamino(pyren-1-yl)methylphosphonate (5). Mixture of diastereoisomers ¹H-NMR—followed by enlarged fragments.

mrm-340f2-4 20 1 C:\MARYSIA\widma

S32 of S35

	00	ო თ	-1 00
0	2	-1 00	00
2	4	0 Q	9 9
57	4	<u>0</u> 0	<u>()</u> ()
		\vee	\vee

T		· · · ·			· · ·						· · · · ·
	131.4	131.2	131.0	130.8	130.6	130.4	130.2	130.0	129.8	129.6	ppm

S33 of S35

126.8 126.6 126.4 126.2 126.0 125.8 125.6 125.4 125.2 125.0 ppm

S34 of S35

Figure S7. (c) Dibenzyl *N*-(*R*)- α -methylbenzylamino(pyren-1-yl)methylphosphonate (5). Mixture of diastereoisomers ¹³C-NMR—followed by enlarged fragments.