Supplementary Materials: Efficient Synthesis of Fully Efficient Synthesis of Fully Substituted Pyrrolidine-Fused 3-Spirooxindoles via 1,3-Dipolar Cycloaddition of Aziridine and 3-Ylideneoxindole

Wen Ren, Qian Zhao, Chuan Zheng, Qiong Zhao, Li Guo and Wei Huang

1. General Information

NMR data was obtained for ${ }^{1} \mathrm{H}$ at 400 MHz , and for ${ }^{13} \mathrm{C}$ at 101 MHz . Chemical shifts were reported in ppm from tetramethylsilane using solvent resonance in CDCl_{3} solution as the internal standard. ESI HRMS was performed on a Waters SYNAPT G2. Column chromatography was performed on silica gel (200-300 mesh) using an eluent of ethyl acetate and petroleum ether. TLC was performed on glass-backed silica plates; products were visualized using UV light and I2. Melting points were determined on a Mel-Temp apparatus and were not corrected. All chemicals were used from Adamas-beta without purification unless otherwise noted.

Compounds 1 were prepared according to the literature [1]. Compound 2 were prepared according to the literature [2].

2. General Producer for the Spirooxindole-Pyrrolidines 3

A mixture of 3-ylideneoxindole $\mathbf{1}(1.1 \mathrm{mmol})$, aziridine $2(1.0 \mathrm{mmol})$ and additive TEA $(0.5 \mathrm{mmol})$ in toluene (2 mL) was refluxed at $110^{\circ} \mathrm{C}$ under an open atmosphere. The reaction mixture was stirred for a specified reaction time until the reaction was completed (monitored by TLC). Then the reaction mixture was concentrated and the residue was isolated by elaborative chromatography on silica gel to give the final product 3.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate $=5: 1$) in 78% yield $(71.3 \mathrm{mg})$. The $d r$ value was calculated to be 5:1 from crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the mixture. After which, the pure major isomer 3a was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate $=10: 1$) in 65% yield $(59.4 \mathrm{mg})$. m.p. $130-132{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 3 \mathrm{H})$, $6.99(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=13.2,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.11(\mathrm{~s}, 1 \mathrm{H}), 4.09-3.99(\mathrm{~m}, 3 \mathrm{H}), 3.88-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.66(\mathrm{~m}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.75(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.14,171.80,167.35,167.32,145.26$, $141.23,129.59,128.73,126.28,125.67,122.71,120.26,116.39,109.40,68.76,64.88,61.45,61.41,61.08$, $58.06,54.64,13.85,13.49,13.42$; HRMS: m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{7}+\mathrm{Na}, 503.1794$; found, 503.1790.

The pure minor isomer $3 \mathbf{a}^{\prime}$ was obtained as a semi-solid after elaborative chromatography (petroleum ether/ethyl acetate $=10: 1$) in 13% yield $(11.9 \mathrm{mg}) .{ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.43(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.05$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.99(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.72(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.29-4.21(\mathrm{~m}, 1 \mathrm{H}), 4.11-4.08$ $(\mathrm{m}, 2 \mathrm{H}), 3.88-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.67(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 0.76(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 175.69, 171.24, 169.74,
$167.24,145.33,140.19,130.41,129.43,129.08,126.32,123.47,119.93,114.75,109.29,71.19,62.15,61.56,61.42$, 61.14, 60.43, 52.95, 14.03, 13.99, 13.37; HRMS: m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{7}+\mathrm{Na}, 503.1794$; found, 503.1798 .

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate $=5: 1$) in 82% yield $(86.7 \mathrm{mg})$. The $d r$ value was calculated to be 2.5:1 from crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the mixture. The pure major isomer $3 \mathbf{b}$ could not be separated in pure form after elaborative chromatography; the yield of $\mathbf{3 b}$ was calculated to be 59% based on the total yield and $d r$ value. m.p. $128-130{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.74(\mathrm{~s}, 1 \mathrm{H}), 7.24-7.14(\mathrm{~m}, 4 \mathrm{H}), 6.87-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.08(\mathrm{~m}, 4 \mathrm{H}), 4.06-$ $4.02(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 176.33,172.46,168.35,168.22,144.79,144.09,130.81,128.81,128.67,127.02,119.60,118.46$, $116.37,115.42,109.43,64.93,64.31,61.69,61.40,58.94,51.01,14.01,13.68,13.62$; HRMS: m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{BrN}_{2} \mathrm{O}_{7}+\mathrm{Na}$, 581.0899; found, 581.0901.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate $=5: 1$) in 83% yield $(78.2 \mathrm{mg})$. The $d r$ value was calculated to be $4: 1$ from crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the mixture. After which, the pure major isomer 3c was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate $=10: 1$) in 67% yield (62.6 mg). m.p. $120-122{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.90(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{dd}, J=8.0$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.89-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ $(\mathrm{s}, 1 \mathrm{H}), 4.09-4.01(\mathrm{~m}, 3 \mathrm{H}), 3.94-3.72(\mathrm{~m}, 4 \mathrm{H}), 1.01(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.48,171.68,167.25,167.13,158.64\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{cF}}=243.4 \mathrm{~Hz}\right)$, $145.09,137.56\left(\mathrm{~d}, J_{\mathrm{CF}}=2.0 \mathrm{~Hz}\right), 128.78,127.28\left(\mathrm{~d}, J_{\mathrm{CF}}=8.1 \mathrm{~Hz}\right), 120.59,116.60,116.12\left(\mathrm{~d}, J_{\mathrm{CF}}=23.2 \mathrm{~Hz}\right)$, $114.21\left(\mathrm{~d}, J_{\mathrm{CF}}=25.3 \mathrm{~Hz}\right), 110.26\left(\mathrm{~d}, J_{\mathrm{CF}}=8.1 \mathrm{~Hz}\right), 68.70,64.70,61.59,61.54,61.21,58.60,54.52,13.86$, 13.50, 13.48; HRMS: m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{FN}_{2} \mathrm{O}_{7}+\mathrm{Na}, 521.1700$; found, 521.1696.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate $=5: 1$) in 81% yield $(75.7 \mathrm{mg})$. The $d r$ value was calculated to be 6:1 from crude ${ }^{1} \mathrm{H}$-NMR analysis of the mixture. After which, the pure major isomer 3d was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate $=10: 1$) in 69% yield (64.9 mg). m.p. $120-123{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.61$ (s, 1H), 7.21 (dd, $\left.J=8.4,7.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.15$ (s, 1H), $7.02(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.74(\mathrm{~m}, 3 \mathrm{H}), 5.42(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}$, $1 \mathrm{H}), 4.10-4.01(\mathrm{~m}, 3 \mathrm{H}), 3.90-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.69(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{t}, \mathrm{J}=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.75(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.60,171.87$, $167.38,167.34,145.31,138.99,132.18,129.90,128.74,126.73,125.68,120.09,116.19,109.32,68.71,64.90$, $61.44,61.37,61.02,58.23,54.68,21.09,13.86,13.48,13.40$; HRMS: m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{7}+\mathrm{Na}$, 517.1951; found, 517.1954.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate $=5: 1$) in 81% yield $(76.3 \mathrm{mg})$. The $d r$ value was calculated to be $4: 1$ from crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the mixture. After which, the pure major isomer 3 e was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate $=10: 1$) in 65% yield (61.2 mg). m.p. $110-115{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}$, $3 \mathrm{H}), 7.05(\mathrm{td}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.97(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.70(\mathrm{~s}, 1 \mathrm{H}), 4.66-4.58(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.21(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.04$ $(\mathrm{m}, 2 \mathrm{H}), 1.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.56(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, 3H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.43,171.37,169.77,166.74,145.38,140.19,130.54,129.42,129.03$, 126.41, 123.49, 119.91, 114.74, 109.18, 71.32, 69.04, 62.16, 61.54, 61.42, 57.63, 52.95, 21.42, 20.56, 14.04, 13.99; HRMS: m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{7}+\mathrm{Na}, 517.1951$; found, 517.1948.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate $=5: 1$) in 87% yield $(86.9 \mathrm{mg})$. The $d r$ value was calculated to be $4: 1$ from crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the mixture. After which, the pure major isomer 3 f was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate $=10: 1$) in 70% yield (69.5 mg). m.p. $135-137^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.68(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{td}, J=7.6$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.13-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.28-6.25(\mathrm{~m}, 2 \mathrm{H}), 5.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.03$ $(\mathrm{m}, 2 \mathrm{H}), 3.75-3.65(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.74(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 176.29,171.74,167.25,166.36,149.72,145.16,141.62,129.88,129.33,128.80,126.46,126.20,125.62$, 122.97, 120.96, 120.50, 116.59, 109.99, 68.88, 64.87, 61.60, 61.20, 58.22, 54.62, 13.88, 13.50; HRMS: m/z calcd. for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{7}+\mathrm{Na}$, 551.1794; found, 551.1798.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate $=5: 1$) in 86% yield $(75.3 \mathrm{mg})$. The $d r$ value was calculated to be 4:1 from crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the mixture. After which, the pure major isomer 3 g was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate $=10: 1$) in 69% yield (60.2 mg). m.p. $140-142{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.72(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38$ (t, $J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 4.36-4.24(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.25-1.21(\mathrm{~m}, 3 \mathrm{H})$, 0.78 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.46,166.81,165.21,143.61,141.50,131.86$, $129.18,126.81,123.48,121.60,121.55,116.69,111.71,111.27,109.85,69.27,66.25,63.14,61.89,59.31$, 45.06, 13.82, 13.46; HRMS: m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{5}+\mathrm{Na}, 481.1488$; found, 481.1489 .

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate $=5: 1$) in 63% yield $(57.6 \mathrm{mg})$. The $d r$ value was calculated to be $>20: 1$ from crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the mixture. After which, the pure major isomer 3 h was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate $=10: 1$) in 61% yield $(55.8 \mathrm{mg})$. m.p. $130-132{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-$ NMR (400 MHz, CDCl 3) $\delta 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=8.4,7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 6 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.80-$ $3.65(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.68(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.48,171.79$, $167.85,145.42,140.58,132.31,129.10,128.77,128.34,128.04,128.01,126.86,125.52,122.24,119.40,115.35$, $109.64,67.54,67.20,61.68,61.26,60.93,57.21,13.79,13.46$; HRMS: m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{Na}$, 507.1896; found, 507.1900.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate $=5: 1$) in 68% yield (73.2 mg). The $d r$ value was calculated to be $6: 1$ from crude ${ }^{1} \mathrm{H}$-NMR analysis of the mixture. After which, the pure major isomer $3 \mathbf{i}$ was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate $=10: 1$) in 58% yield $(62.7 \mathrm{mg})$. m.p. $79-82{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.14(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.94(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.33-5.31(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.80-$ $3.65(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.68(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.26,171.62$, $167.74,145.25,140.61,131.41,131.27,130.02,129.37,128.81,126.72,125.12,122.38,122.24,119.55,115.34$, 109.95, 67.49, 67.16, 61.46, 61.42, 61.02, 56.59, 13.82, 13.45; HRMS: m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{BrN}_{2} \mathrm{O}_{5}+\mathrm{Na}_{\text {, }}$ 585.1001; found, 585.1003.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate $=5: 1$) in 66% yield $(63.1 \mathrm{mg})$. The $d r$ value was calculated to be $>20: 1$ from crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the mixture. After which, the pure major isomer $3 \mathbf{j}$ was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate $=10: 1$) in 63% yield $(60.2 \mathrm{mg})$. m.p. $137-140^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.80(\mathrm{~m}, 3 \mathrm{H})$, $6.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.04-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.79-3.66(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.68(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.82,171.65,167.92,161.00\left(\mathrm{~d}, J_{\mathrm{CF}}=249.5 \mathrm{~Hz}\right), 145.44,141.01,129.78\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CF}}=3.0 \mathrm{~Hz}\right)$, $129.55\left(\mathrm{~d}, J_{\mathrm{CF}}=9.1 \mathrm{~Hz}\right), 129.21,128.81,126.98,125.44,123.60\left(\mathrm{~d}, J_{\mathrm{CF}}=3.0 \mathrm{~Hz}\right), 122.04,120.17\left(\mathrm{~d}, J_{\mathrm{CF}}=14.1\right.$ Hz), 119.51, 115.46, 115.39 (d, $J_{\mathrm{CF}}=23.2 \mathrm{~Hz}$), 109.71, 67.75, 67.11, 61.32, 60.98, 60.78, 49.67, 13.75, 13.43; HRMS: m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{2} \mathrm{FN}_{2} \mathrm{O}_{5}+\mathrm{Na}, 525.1802$; found, 525.1804.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate $=5: 1$) in 62% yield $(62.8 \mathrm{mg})$. The $d r$ value was calculated to be 5:1 from crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the mixture. After which, the pure major isomer $3 \mathbf{k}$ was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate $=10: 1$) in 52% yield (52.3 mg). m.p. $90-93{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.94-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.41(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.67(\mathrm{~m}, 2 \mathrm{H})$, $0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.69(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.72,171.33,167.55$, $147.58,145.05,140.37,140.00,129.69,129.31,128.88,126.70,124.65,123.26,122.61,119.84,115.42,109.97$, $67.58,66.90,61.63,61.41,61.13,56.49,13.81,13.46$; HRMS: m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{7}+\mathrm{Na}, 552.1747$; found, 552.1744.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate $=5: 1$) in 58% yield (55.3 mg). The $d r$ value was calculated to be $>20: 1$ from crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the mixture. After which, the pure major isomer 31 was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate $=10: 1$) in 56% yield (53.4 mg). m.p. $85-88{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.80(\mathrm{~m}, 5 \mathrm{H}), 6.73(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.00-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.80-3.65(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.68(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.55,171.87,167.89,145.47,140.63,137.59,132.16,129.25,129.06,128.76$, $127.83,126.92,125.33,122.14,119.38,115.37,109.69,67.54,67.44,61.68,61.23,60.92,57.20,21.24,13.79$, 13.46; HRMS: m / z calcd. for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{Na}, 521.2052$; found, 521.2056.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate $=5: 1$) in 57% yield (59.4 mg). The $d r$ value was calculated to be $4: 1$ from crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the mixture. After which, the pure major isomer 3 m was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate $=10: 1$) in 46% yield (47.5 $\mathrm{mg})$. m.p. 100-103 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=8.0,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.66-6.63(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.30$ $(\mathrm{s}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.83-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}$, $3 \mathrm{H}), 3.71-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.69(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 175.17,172.71,168.64,148.59,148.03,145.23,141.06,129.07,128.81,128.74,124.30,123.10$,
$122.96,120.62,118.92,114.75,111.36,110.49,109.64,68.45,65.15,61.66,61.29,61.13,58.39,55.60,55.49$, 13.98, 13.64; HRMS: m / z calcd. for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{7}+\mathrm{Na}, 567.2107$; found, 567.2110.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate $=5: 1$) in 55% yield (55.7 mg). The $d r$ value was calculated to be $>20: 1$ from crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the mixture. After which, the pure major isomer $3 n$ was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate $=10: 1$) in 53% yield $(53.5 \mathrm{mg})$. m.p. $105-107{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.67-7.65(\mathrm{~m}, 2 \mathrm{H})$, $7.59-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.07-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.96-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.81-3.62(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.66(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.39,171.83,167.84,145.44,140.61,132.89,132.87,129.93,129.18,128.79,128.14$, $127.96,127.62,127.44,126.91,126.12,126.02,125.71,125.47,122.25,119.46,115.41,109.78,67.62,67.48$, 61.75, 61.31, 60.96, 57.42, 13.80, 13.46; HRMS: m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{Na}, 557.2052$; found, 557.2049.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate $=5: 1)$ in 46% yield $(41.3 \mathrm{mg})$. The $d r$ value was calculated to be 3:1 from crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the mixture. After which, the pure major isomer 30 was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate $=10: 1$) in 35% yield (31.1 mg). m.p. $140-143{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.15(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.07-6.01(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-3.94(\mathrm{~m}$, 2H), 3.79-3.66 (m, 2H), $0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.71(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $176.58,171.71,167.64,147.90,145.28,142.35,140.79,129.15,128.80,126.74,125.63,122.31,119.66,115.53$, 110.03, 109.57, 107.99, 67.67, 66.83, 61.47, 61.02, 60.03, 50.42, 13.81, 13.48; HRMS: m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{Na}, 497.1689$; found, 497.1687 .

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate $=5: 1$) in 52% yield (48.1 mg). The $d r$ value was calculated to be 3:1 from crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the mixture. After which, the pure major isomer 3p was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate $=10: 1$) in 39% yield $(36.2 \mathrm{mg})$. m.p. $192-194{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 3 \mathrm{H})$, $7.06-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.70(\mathrm{~m}, 6 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.05-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.67(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.70(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 176.14,171.42,167.67,145.21,141.10,134.68,129.51,128.77,127.24,127.05,126.19,125.70$, $125.39,122.54,119.60,115.44,109.82,69.71,67.23,61.41,61.21,61.01,53.06,13.82,13.47 ;$ HRMS: m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}+\mathrm{Na}, 513.1460$; found, 513.1458.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate $=5: 1$) in 88% yield $(95.5 \mathrm{mg})$. The $d r$ value was calculated to be 7:1 from crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the mixture. After which, the pure major isomer 3 q was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate $=10: 1$) in 77% yield (83.6 mg). m.p. $170-172{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.29$ $(\mathrm{m}, 1 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.96(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{t}, J=8.4 \mathrm{~Hz} 3 \mathrm{H}), 5.44$ $(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-4.02(\mathrm{~m}, 2 \mathrm{H})$, 3.79-3.75 (m, 1H), 3.64-3.55 (m, 3H), 1.01-0.98 (m, 3H), 0.56-0.50 (m, 6H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ঠ 174.83, 171.78, 167.32, 167.28, 145.35, 143.43, 135.68, 129.38, 128.72, 128.68, 128.08, 127.92, 125.95, $125.38,122.68,120.20,116.41,108.67,68.94,65.08,61.40,60.99,57.50,54.78,44.65,22.66,13.86,13.30$, 13.24; HRMS: m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{7}+\mathrm{Na}, 593.2264$; found, 593.2266.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate $=5: 1$) in 82% yield (90.3 mg). The $d r$ value was calculated to be $6: 1$ from crude ${ }^{1} \mathrm{H}$-NMR analysis of the mixture. After which, the pure major isomer $3 \mathbf{r}$ was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate $=10: 1$) in 71% yield $(77.4 \mathrm{mg})$. m.p. $150-153{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.35-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=8.0,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{dd}, J=8.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 4.08-3.96(\mathrm{~m}, 3 \mathrm{H}), 3.78-$ $3.65(\mathrm{~m}, 4 \mathrm{H}), 1.68(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.81-0.76(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $173.34,171.55,167.06,166.75,149.01,145.13,140.31,129.80,129.21,128.73,125.31,124.64,120.07,116.70$, $114.59,84.73,69.08,64.90,61.88,61.49,61.12,58.18,55.31,42.99,28.10,14.15,13.83,13.38,13.26$; HRMS: m / z calcd. for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{9}+\mathrm{Na}, 603.2319$; found, 603.2314 .

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate $=5: 1$) in 70% yield $(62.3 \mathrm{mg})$. The $d r$ value was calculated to be 5:1 from crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the mixture. After which, the pure major isomer 3s was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate $=10: 1$) in 58% yield (52.1 mg). m.p. $135-138^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.73(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.66$ (d, J=7.6 Hz, 1H), $6.61(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.09-4.02$ $(\mathrm{m}, 3 \mathrm{H}), 3.88-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.68(\mathrm{~m}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.81-0.74(\mathrm{~m}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.66,171.99,167.45,167.38,145.19,141.42,138.41,129.59,128.56$, $126.21,125.70,122.69,121.19,117.19,113.43,109.63,68.72,64.81,61.42,61.22,61.07,58.14,54.64,21.65$, 13.90, 13.49, 13.40; HRMS: m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{7}+\mathrm{Na}, 517.1951$; found, 517.1954.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate $=5: 1$) in 67% yield $(55.4 \mathrm{mg})$. The $d r$ value was calculated to be 5:1 from crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the mixture. After which, the pure major isomer 3t was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate $=10: 1$) in 56% yield (46.2 mg). m.p. $145-147{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.62(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 2 \mathrm{H})$, $7.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.45(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 4.16-4.07(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.84(\mathrm{~m}$, $1 \mathrm{H}), 3.81-3.69(\mathrm{~m}, 3 \mathrm{H}), 1.06(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.76(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.21,171.26,166.92,166.85,147.99,141.39,129.90,126.10,126.09,125.22,124.54$ $\left(\mathrm{d}, J_{\mathrm{CF}}=272.7 \mathrm{~Hz}\right), 122.82,121.67\left(\mathrm{~d}, J_{\mathrm{CF}}=33.3 \mathrm{~Hz}\right), 115.51,109.75,68.63,64.62,61.86,61.61,61.46,58.06$, 54.78, 13.90, 13.45, 13.40; HRMS: m/z calcd. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{7}+\mathrm{Na}, 571.1668$; found, 571.1671.

3. Synthetic Transformations to Access Other Drug-Like Spirocyclic Scaffolds 3

olefinic acenaphthene

2a

3u, 76\% (68\%) yield, 8:1 dr

A mixture of olefinic acenaphthene (1.1 mmol), aziridine $\mathbf{2 a}(1.0 \mathrm{mmol})$ and additive TEA (0.5 $\mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ was refluxed at $110^{\circ} \mathrm{C}$ under an open atmosphere. The reaction mixture would be cooled to room tempreture until most of olefinic acenaphthene was consumed (monitored by TLC). Then the reaction mixture was concentrated and the residue was isolated by flash chromatography on silica gel (petroleum ether/ethyl acetate $=5: 1$) to give the mixed two isomers in 76% yield (75.4 mg). The $d r$ value was calculated to be $8: 1$ from crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the mixture. After which, the pure major isomer $3 \mathbf{u}$ was obtained as a white solid after elaborative
chromatography (petroleum ether/ethyl acetate $=10: 1$) in 68% yield $(66.9 \mathrm{mg})$. m.p. $154-156{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.00-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.81(\mathrm{~m}, 4 \mathrm{H}), 6.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.53(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H})$, $4.48(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.46-3.36(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.04(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.65,171.97,168.09,145.61,142.19,134.83,132.95,132.84,131.87$, $130.23,128.76,128.22,128.05,127.81,127.76,127.62,125.07,123.99,121.86,119.30,115.42,68.07,67.71$, 66.11, 61.22, 60.41, 57.32, 13.82, 12.78; HRMS: m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{NO}_{5}+\mathrm{Na}, 542.1943$; found, 542.1945.

A mixture of olefinic indenedione (1.1 mmol), aziridine $\mathbf{2 a}(1.0 \mathrm{mmol})$ and additive TEA (0.5 $\mathrm{mmol})$ in toluene (2 mL) was refluxed at $110^{\circ} \mathrm{C}$ under an open atmosphere. The reaction mixture would be cooled to room tempreture until most of olefinic indenedione was consumed (monitored by TLC). Then the reaction mixture was concentrated and the residue was isolated by flash chromatography on silica gel (petroleum ether/ethyl acetate $=5: 1$) to give the mixed two isomers in 90% yield (85.3 mg). The $d r$ value was calculated to be $4: 1$ from crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the mixture. After which, the pure major isomer $3 \mathbf{v}$ was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate $=10: 1$) in 72% yield (68.2 mg). The $d r$ value was calculated to be $4: 1$ by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude reaction mixture; m.p. $133-135^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.67(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.79(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.57(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.01-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.84-3.72(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.64(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 198.08,197.65,171.57,168.05,145.09,142.18,142.05,136.00,135.74,131.84,128.71,128.64$, $128.46,128.30,123.27,123.08,119.11,115.14,66.58,66.13,65.76,61.23,61.18,56.29,13.82,13.33 ;$ HRMS: m / z calcd. for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{NO}_{6}+\mathrm{Na}, 520.1736$; found, 520.1733.

A mixture of olefinic pyrazolone (1.1 mmol), aziridine $\mathbf{2 a}(1.0 \mathrm{mmol})$ and additive TEA (0.5 mmol) in toluene $(2 \mathrm{~mL})$ was refluxed at $110^{\circ} \mathrm{C}$ under an open atmosphere. The reaction mixture would be cooled to room tempreture until most of olefinic pyrazolone was consumed (monitored by TLC). Then the reaction mixture was concentrated and the residue was isolated by flash chromatography on silica gel (petroleum ether/ethyl acetate $=5: 1$) to give the mixed two isomers in 93% yield (92.4 mg). The $d r$ value was calculated to be 5:1 from crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the mixture. After which, the pure major isomer $\mathbf{3 w}$ was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate $=10: 1$) in 78% yield (76.8 mg) . m.p. $165-167^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 6 \mathrm{H}), 7.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.62(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 4.08-4.05(\mathrm{~m}, 1 \mathrm{H}), 4.01$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.90(\mathrm{~m}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $172.16,169.60,167.44,157.03,144.78,137.18,131.10,128.86,128.82,128.64,128.39,125.23,119.48,118.97$, 115.12, 65.83, 64.85, 64.69, 61.71, 61.43, 55.14, 13.88, 13.82, 13.74; HRMS: m/z calcd. for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{5}+$ Na, 548.2161; found, 548.2159.

A mixture of olefinic rhodanine (1.1 mmol), aziridine $\mathbf{2 a}(1.0 \mathrm{mmol})$ and additive TEA $(0.5 \mathrm{mmol})$ in toluene (2 mL) was refluxed at $110^{\circ} \mathrm{C}$ under an open atmosphere. The reaction mixture would be cooled to room tempreture until most of olefinic rhodanine was consumed (monitored by TLC). Then the reaction mixture was concentrated and the residue was isolated by flash chromatography on silica gel (petroleum ether/ethyl acetate $=5: 1$) to give the mixed two isomers in 72% yield $(78.1 \mathrm{mg})$. The $d r$ value was calculated to be $>20: 1$ from crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the mixture. After which, the pure major isomer $3 x$ was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate $=10: 1$) in 69% yield (74.9 mg). m.p. $162-165^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-$ $7.27(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.10(\mathrm{~m}, 7 \mathrm{H}), 6.85(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{dd}, J=41.6,14.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.94-3.85(\mathrm{~m}$, $3 \mathrm{H}), 0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.68,170.92,169.02$, $166.92,144.85,134.51,131.38,128.96,128.88,128.82,128.78,128.68,128.66,128.29,120.49,116.10,69.76$, $66.62,61.87,61.51,57.08,45.52,43.00,13.87,13.74$; HRMS: m / z calcd. for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}+\mathrm{Na}, 597.1494$; found, 597.1497.

4. Crystal Data of 3a

h,k,lmax	9,18,25	9, 18, 25
Nref	8895	8879
Tmin, Tmax	0.940,0.947	0.940, 0.947
Tmin'	0.940	
Correction method= \# Reported T Limits: $\mathrm{Tmin}=0.940 \mathrm{Tmax}=0.947$		
AbsCorr $=$ MULTI-SCAN		
Data completeness $=0.998$		Theta $(\max)=67.240$
R (reflections) $=0.0553(6288)$		$\mathrm{wR2}$ (reflections) $=0.1515(8879)$
$\mathrm{S}=1.044$		Npar $=637$

5. NMR Spectra

Elemental Composition Report

Single Mass Analysis
Tolerance $=2.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT = 3
Monoisotopic Mass, Even Electron Ions
1550 formula(e) evaluated with 8 results within limits (up to 50 closest results for each mass)
$\begin{array}{llllllll}\text { Elements Used: } & \mathrm{N}: 2-4 & 0: 4-8 & \mathrm{~F}: 0-1 & \mathrm{Na}: 0-1 & \mathrm{~s}: 0-2 & \mathrm{Cl}: 0-1 & \mathrm{Br}: 0-1\end{array}$
RW-3a $18(0.406)$
$1:$ TOF MS ES +

Page 1
 $\begin{array}{llll}\text { M1n1mum: } & & & -1.5 \\ \text { Max1mum: } & 2.0 & 10.0 & 50.0\end{array}$
Mass Calc. Mass mba ppM DBE 1-PIT Norm Conf (8) Formula

$\begin{array}{llllllllllll}503.1794 & -0.4 & -0.8 & 13.5 & 543.2 & 0.000 & 99.98 & \mathrm{C} 26 & \mathrm{H} 28 & \mathrm{~N} 2 & 07 \mathrm{Na} \\ 503.1783 & 0.7 & 1.4 & 7.5 & 570.3 & 27.160 & 0.00 & \mathrm{C} 23 & \mathrm{H} 33 & \mathrm{~N} 2 & 05 & \mathrm{~F} \\ \mathrm{~S}\end{array} \mathrm{C}$

Elemental Composition Report
Page 1
Single Mass Analysis
olerance $=2.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron lons
2438 formula(e) evaluated with 10 results within limits (up to 50 closest results for each mass)
$\begin{array}{llllllll}\text { Elements Used: } \\ \text { C: } 0-34 & \mathrm{H}: 0-40 & \mathrm{~N}: 2-4 & 0: 4-8 & \mathrm{~F}: 0-1 & \mathrm{Na}: 0-1 & \mathrm{~S}: 0-2 & \text { Cl: 0-1 } \\ \mathrm{Br} .0-1\end{array}$
RW- 3 a
1: TOF MS ES
(0.140)

$\begin{array}{llll}\text { M1n1mum: } & & & -1.5 \\ \text { Max1mum: } & 2.0 & 10.0 & 50.0\end{array}$
Mass Calc. Mass mDa ppM DBE 1-FIT Norm Conf (8) Formula

$\begin{array}{lllllllll}503.1792 & 0.6 & 1.2 & -0.5 & 714.1 & 26.253 & 0.00 & \text { C18 H38 N2 } \\ 503 & \text { F Na S2 }\end{array}$
$\begin{array}{lllllllll}503.1805 & -0.7 & -1.4 & 6.5 & 713.8 & 26.026 & 0.00 & \mathrm{C} 23 & \mathrm{H} 36 \\ 503 & \mathrm{~N} 2 & \mathrm{O} 4 & \mathrm{~S} 2 & \mathrm{Cl}\end{array}$


```
RW-3\times2 (0.069)
{
```

Emental Composition Report
Page 1
Single Mass Analysis
Tolerance $=2.0 \mathrm{mDa}$
Element prediction: Off
Number of isotope peaks used for
Monoisotopic Mass, Even Electron Ions
580 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass)
$\begin{array}{lllllll}\text { Clements } 30-32 & \mathrm{H}: 30-35 \quad \mathrm{~N}: 0-4 & \mathrm{O}: 5-8 & \mathrm{Na}: 0-1 & \mathrm{~S}: 1-2 & \mathrm{Cl}: 0-2 & \text { Br. } 0-2\end{array}$
RW-3x $2(0.069)$
1: TOF MS ES +

$3 x$
$1.97 e+004$
 $\begin{array}{llll}\text { M1n1mum: } & & & -1.5 \\ \text { Max1mum: } & 2.0 & 10.0 & 50.0\end{array}$
Mass Calc. Mass mDa pPM DBE 1-FIT Norm Conf (8) Formula

