Supplementary Materials: Efficient Synthesis of Fully Efficient Synthesis of Fully Substituted Pyrrolidine-Fused 3-Spirooxindoles via 1,3-Dipolar Cycloaddition of Aziridine and 3-Ylideneoxindole

Wen Ren, Qian Zhao, Chuan Zheng, Qiong Zhao, Li Guo and Wei Huang

1. General Information

NMR data was obtained for ¹H at 400 MHz, and for ¹³C at 101 MHz. Chemical shifts were reported in ppm from tetramethylsilane using solvent resonance in CDCl₃ solution as the internal standard. ESI HRMS was performed on a Waters SYNAPT G2. Column chromatography was performed on silica gel (200–300 mesh) using an eluent of ethyl acetate and petroleum ether. TLC was performed on glass-backed silica plates; products were visualized using UV light and I₂. Melting points were determined on a Mel-Temp apparatus and were not corrected. All chemicals were used from Adamas-beta without purification unless otherwise noted.

Compounds **1** were prepared according to the literature [1]. Compound **2** were prepared according to the literature [2].

2. General Producer for the Spirooxindole-Pyrrolidines 3

A mixture of 3-ylideneoxindole **1** (1.1 mmol), aziridine **2** (1.0 mmol) and additive TEA (0.5 mmol) in toluene (2 mL) was refluxed at 110 °C under an open atmosphere. The reaction mixture was stirred for a specified reaction time until the reaction was completed (monitored by TLC). Then the reaction mixture was concentrated and the residue was isolated by elaborative chromatography on silica gel to give the final product **3**.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate = 5:1) in 78% yield (71.3 mg). The *dr* value was calculated to be 5:1 from crude ¹H-NMR analysis of the mixture. After which, the pure major isomer **3a** was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate = 10:1) in 65% yield (59.4 mg). m.p. 130–132 °C; ¹H-NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.35 (d, *J* = 7.2 Hz, 1H), 7.25–7.18 (m, 3H),

6.99 (t, J = 7.6 Hz, 1H), 6.85 (dd, J = 13.2, 7.6 Hz, 2H), 6.74 (d, J = 8.0 Hz, 2H), 5.42 (d, J = 8.4 Hz, 1H), 5.11 (s, 1H), 4.09–3.99 (m, 3H), 3.88–3.82 (m, 1H), 3.80–3.66 (m, 3H), 0.99 (t, J = 7.2 Hz, 3H), 0.79 (t, J = 7.2 Hz, 3H); ¹³C-NMR (101 MHz, CDCl₃) δ 176.14, 171.80, 167.35, 167.32, 145.26, 141.23, 129.59, 128.73, 126.28, 125.67, 122.71, 120.26, 116.39, 109.40, 68.76, 64.88, 61.45, 61.41, 61.08, 58.06, 54.64, 13.85, 13.49, 13.42; HRMS: m/z calcd. for C₂₆H₂₈N₂O₇+Na, 503.1794; found, 503.1790.

The pure minor isomer **3a**' was obtained as a semi-solid after elaborative chromatography (petroleum ether/ethyl acetate = 10:1) in 13% yield (11.9 mg). ¹H-NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 8.24 (d, *J* = 7.6 Hz, 1H), 7.24–7.20 (m, 3H), 7.05 (t, *J* = 7.6 Hz, 1H), 6.90–6.83 (m, 2H), 6.67 (d, *J* = 8.0 Hz, 2H), 4.99 (d, *J* = 10.8 Hz, 1H), 4.72 (s, 1H), 4.53 (d, *J* = 10.8 Hz, 1H), 4.47–4.39 (m, 1H), 4.29–4.21 (m, 1H), 4.11–4.08 (m, 2H), 3.88–3.80 (m, 1H), 3.75–3.67 (m, 1H), 1.37 (t, *J* = 7.2 Hz, 3H), 1.13 (t, *J* = 7.2 Hz, 3H); ¹³C-NMR (101 MHz, CDCl₃) δ 175.69, 171.24, 169.74,

167.24, 145.33, 140.19, 130.41, 129.43, 129.08, 126.32, 123.47, 119.93, 114.75, 109.29, 71.19, 62.15, 61.56, 61.42, 61.14, 60.43, 52.95, 14.03, 13.99, 13.37; HRMS: *m*/*z* calcd. for C₂₆H₂₈N₂O₇ + Na, 503.1794; found, 503.1798.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate = 5:1) in 82% yield (86.7 mg). The *dr* value was calculated to be 2.5:1 from crude ¹H-NMR analysis of the mixture. The pure major isomer **3b** could not be separated in pure form after elaborative chromatography; the yield of **3b** was calculated to be 59% based on the total yield and *dr* value. m.p. 128–130 °C; ¹H-NMR (400 MHz, CDCl₃) δ 8.74 (s, 1H), 7.24–7.14 (m, 4H), 6.87–6.82 (m, 2H), 6.72 (d,

J = 8.0 Hz, 2H), 5.49 (s, 1H), 5.40 (d, J = 8.8 Hz, 1H), 4.81 (d, J = 8.8 Hz, 1H), 4.18–4.08 (m, 4H), 4.06–4.02 (m, 2H), 1.14 (t, J = 7.2 Hz, 3H), 1.11 (t, J = 7.2 Hz, 3H), 0.89 (t, J = 7.2Hz, 3H); ¹³C-NMR (101 MHz, CDCl₃) δ 176.33, 172.46, 168.35, 168.22, 144.79, 144.09, 130.81, 128.81, 128.67, 127.02, 119.60, 118.46, 116.37, 115.42, 109.43, 64.93, 64.31, 61.69, 61.40, 58.94, 51.01, 14.01, 13.68, 13.62; HRMS: *m*/*z* calcd. for C₂₆H₂₇BrN₂O₇ + Na, 581.0899; found, 581.0901.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate = 5:1) in 83% yield (78.2 mg). The *dr* value was calculated to be 4:1 from crude ¹H-NMR analysis of the mixture. After which, the pure major isomer **3c** was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate = 10:1) in 67% yield (62.6 mg). m.p. 120–122 °C; ¹H-NMR (400 MHz, CDCl₃) δ 8.90 (s, 1H), 7.22 (t, *J* = 8.0 Hz, 2H), 7.13 (dd, *J* = 8.0,

2.4 Hz, 1H), 6.99–6.92 (m, 1H), 6.89–6.84 (m, 2H), 6.76 (d, J = 8.0 Hz, 2H), 5.38 (d, J = 8.0 Hz, 1H), 5.11 (s, 1H), 4.09–4.01 (m, 3H), 3.94–3.72 (m, 4H), 1.01 (t, J = 7.2 Hz, 3H), 0.85 (t, J = 7.2 Hz, 3H), 0.78 (t, J = 7.2 Hz, 3H); ¹³C-NMR (101 MHz, CDCl₃) δ 176.48, 171.68, 167.25, 167.13, 158.64 (d, $J_{CF} = 243.4$ Hz), 145.09, 137.56 (d, $J_{CF} = 2.0$ Hz), 128.78, 127.28 (d, $J_{CF} = 8.1$ Hz), 120.59, 116.60, 116.12 (d, $J_{CF} = 23.2$ Hz), 114.21 (d, $J_{CF} = 25.3$ Hz), 110.26 (d, $J_{CF} = 8.1$ Hz), 68.70, 64.70, 61.59, 61.54, 61.21, 58.60, 54.52, 13.86, 13.50, 13.48; HRMS: m/z calcd. for C₂₆H₂₇FN₂O₇ + Na, 521.1700; found, 521.1696.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate = 5:1) in 81% yield (75.7 mg). The *dr* value was calculated to be 6:1 from crude ¹H-NMR analysis of the mixture. After which, the pure major isomer **3d** was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate = 10:1) in 69% yield (64.9 mg). m.p. 120–123 °C; ¹H-NMR (400 MHz, CDCl₃) δ 8.61 (s, 1H), 7.21 (dd, *J* = 8.4, 7.6 Hz, 2H), 7.15 (s, 1H),

7.02 (dd, J = 8.0, 0.8 Hz, 1H), 6.84 (t, J = 7.2 Hz, 1H), 6.79–6.74 (m, 3H), 5.42 (d, J = 8.8 Hz, 1H), 5.11 (s, 1H), 4.10–4.01 (m, 3H), 3.90–3.82 (m, 1H), 3.78–3.74 (m, 1H), 3.72–3.69 (m, 2H), 2.27 (s, 3H), 1.00 (t, J = 7.2 Hz, 3H), 0.80 (t, J = 7.2 Hz, 3H), 0.75 (t, J = 7.2 Hz, 3H); ¹³C-NMR (101 MHz, CDCl₃) δ 176.60, 171.87, 167.38, 167.34, 145.31, 138.99, 132.18, 129.90, 128.74, 126.73, 125.68, 120.09, 116.19, 109.32, 68.71, 64.90, 61.44, 61.37, 61.02, 58.23, 54.68, 21.09, 13.86, 13.48, 13.40; HRMS: m/z calcd. for C₂₇H₃₀N₂O₇ + Na, 517.1951; found, 517.1954.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate = 5:1) in 81% yield (76.3 mg). The *dr* value was calculated to be 4:1 from crude ¹H-NMR analysis of the mixture. After which, the pure major isomer **3e** was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate = 10:1) in 65% yield (61.2 mg). m.p. 110–115 °C; ¹H-NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 7.2 Hz, 1H), 7.92 (s, 1H), 7.25–7.20 (m,

3H), 7.05 (td, *J* = 7.6, 0.8 Hz, 1H), 6.89–6.83 (m, 2H), 6.67 (d, *J* = 8.0 Hz, 2H), 4.97 (d, *J* = 10.8 Hz, 1H), 4.70 (s, 1H), 4.66–4.58 (m, 1H), 4.50 (d, *J* = 10.8 Hz, 1H), 4.48–4.40 (m, 1H), 4.30–4.21 (m, 1H), 4.16–4.04 (m, 2H), 1.37 (t, *J* = 7.2 Hz, 3H), 1.13 (t, *J* = 7.2 Hz, 3H), 1.03 (d, *J* = 6.4 Hz, 3H), 0.56 (d, *J* = 6.4 Hz, 3H).¹³C-NMR (101 MHz, CDCl₃) δ 175.43, 171.37, 169.77, 166.74, 145.38, 140.19, 130.54, 129.42, 129.03, 126.41, 123.49, 119.91, 114.74, 109.18, 71.32, 69.04, 62.16, 61.54, 61.42, 57.63, 52.95, 21.42, 20.56, 14.04, 13.99; HRMS: *m/z* calcd. for C₂₇H₃₀N₂O₇ + Na, 517.1951; found, 517.1948.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate = 5:1) in 87% yield (86.9 mg). The *dr* value was calculated to be 4:1 from crude ¹H-NMR analysis of the mixture. After which, the pure major isomer **3f** was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate = 10:1) in 70% yield (69.5 mg). m.p. 135–137 °C; ¹H-NMR (400 MHz, CDCl₃) δ 8.68 (s, 1H), 7.46 (d, *J* = 7.2 Hz, 1H), 7.30 (td, *J* = 7.6, 0.8 Hz, 1H), 7.23–7.14 (m, 4H), 7.13–7.05 (m, 2H), 6.91–6.84 (m, 2H), 6.78 (d, *J* =

8.0 Hz, 2H), 6.28–6.25 (m, 2H), 5.51 (d, J = 8.0 Hz, 1H), 5.19 (s, 1H), 4.30 (d, J = 8.0 Hz, 1H), 4.11–4.03 (m, 2H), 3.75–3.65 (m, 2H), 1.01 (t, J = 7.2 Hz, 3H), 0.74 (t, J = 7.2 Hz, 3H); ¹³C-NMR (101 MHz, CDCl₃) δ 176.29, 171.74, 167.25, 166.36, 149.72, 145.16, 141.62, 129.88, 129.33, 128.80, 126.46, 126.20, 125.62, 122.97, 120.96, 120.50, 116.59, 109.99, 68.88, 64.87, 61.60, 61.20, 58.22, 54.62, 13.88, 13.50; HRMS: m/z calcd. for C₃₀H₂₈N₂O₇ + Na, 551.1794; found, 551.1798.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate = 5:1) in 86% yield (75.3 mg). The *dr* value was calculated to be 4:1 from crude ¹H-NMR analysis of the mixture. After which, the pure major isomer **3g** was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate = 10:1) in 69% yield (60.2 mg). m.p. 140–142 °C; ¹H-NMR (400 MHz, CDCl₃) δ 8.72 (s, 1H), 7.46 (d, *J* = 7.6 Hz, 1H), 7.38 (t, *J* = 7.6 Hz,

1H), 7.29–7.25 (m, 2H), 7.13 (t, *J* = 7.6 Hz, 1H), 7.02 (d, *J* = 7.6 Hz, 1H), 6.95 (t, *J* = 7.6 Hz, 1H), 6.74 (t, *J* = 8.0 Hz, 2H), 5.44 (s, 1H), 5.23 (s, 1H), 4.36–4.24 (m, 2H), 3.83 (q, *J* = 7.2 Hz, 2H), 1.25–1.21(m, 3H), 0.78 (t, *J* = 7.2 Hz, 3H); ¹³C-NMR (101 MHz, CDCl₃) δ 172.46, 166.81, 165.21, 143.61, 141.50, 131.86, 129.18, 126.81, 123.48, 121.60, 121.55, 116.69, 111.71, 111.27, 109.85, 69.27, 66.25, 63.14, 61.89, 59.31, 45.06, 13.82, 13.46; HRMS: *m/z* calcd. for C₂₅H₂₂N₄O₅ + Na, 481.1488; found, 481.1489.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate = 5:1) in 63% yield (57.6 mg). The *dr* value was calculated to be >20:1 from crude ¹H-NMR analysis of the mixture. After which, the pure major isomer **3h** was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate = 10:1) in 61% yield (55.8 mg). m.p. 130–132 °C; ¹H-NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 7.48 (d, *J* = 7.2 Hz, 1H), 7.21 (dd, *J* = 8.4, 7.6

Hz, 2H), 7.12–7.04 (m, 6H), 7.01–6.97 (m, 1H), 6.81 (t, J = 7.2 Hz, 1H), 6.73 (d, J = 8.0 Hz, 2H), 6.63 (d, J = 7.6 Hz, 1H), 5.39 (d, J = 10.4 Hz, 1H), 5.33 (s, 1H), 4.30 (d, J = 10.4 Hz, 1H), 4.00–3.89 (m, 2H), 3.80–3.65 (m, 2H), 0.86 (t, J = 7.2 Hz, 3H), 0.68 (t, J = 7.2 Hz, 3H); ¹³C-NMR (101 MHz, CDCl₃) δ 176.48, 171.79, 167.85, 145.42, 140.58, 132.31, 129.10, 128.77, 128.34, 128.04, 128.01, 126.86, 125.52, 122.24, 119.40, 115.35, 109.64, 67.54, 67.20, 61.68, 61.26, 60.93, 57.21, 13.79, 13.46; HRMS: *m*/*z* calcd. for C₂₉H₂₈N₂O₅ + Na, 507.1896; found, 507.1900.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate = 5:1) in 68% yield (73.2 mg). The *dr* value was calculated to be 6:1 from crude ¹H-NMR analysis of the mixture. After which, the pure major isomer **3i** was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate = 10:1) in 58% yield (62.7 mg). m.p. 79–82 °C; ¹H-NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 7.47 (d, *J* = 7.6 Hz,

1H), 7.24–7.20 (m, 4H), 7.14 (t, *J* = 7.6 Hz, 1H), 7.02–6.94 (m, 3H), 6.83 (t, *J* = 7.2 Hz, 1H), 6.71 (d, *J* = 8.0 Hz, 2H), 6.66 (d, *J* = 7.6 Hz, 1H), 5.33–5.31 (m, 2H), 4.24 (d, *J* = 10.4 Hz, 1H), 3.99–3.93 (m, 2H), 3.80–3.65 (m, 2H), 0.88 (t, *J* = 7.2 Hz, 3H), 0.68 (t, *J* = 7.2 Hz, 3H); ¹³C-NMR (101 MHz, CDCl₃) δ 176.26, 171.62, 167.74, 145.25, 140.61, 131.41, 131.27, 130.02, 129.37, 128.81, 126.72, 125.12, 122.38, 122.24, 119.55, 115.34, 109.95, 67.49, 67.16, 61.46, 61.42, 61.02, 56.59, 13.82, 13.45; HRMS: *m*/*z* calcd. for C₂₉H₂₇BrN₂O₅ + Na, 585.1001; found, 585.1003.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate = 5:1) in 66% yield (63.1 mg). The *dr* value was calculated to be >20:1 from crude ¹H-NMR analysis of the mixture. After which, the pure major isomer **3j** was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate = 10:1) in 63% yield (60.2 mg). m.p. 137–140 °C; ¹H-NMR (400 MHz, CDCl₃) δ 8.46 (s, 1H), 7.39 (d, *J* = 7.6 Hz, 1H), 7.22 (t, *J* = 8.0 Hz, 2H), 7.16–7.11 (m, 2H), 7.09–7.06 (m, 1H), 6.95 (t, *J* = 7.6 Hz, 1H), 6.88–6.80 (m, 3H),

6.73 (d, J = 8.4 Hz, 2H), 6.69 (d, J = 8.0 Hz, 1H), 5.41 (d, J = 9.6 Hz, 1H), 5.34 (s, 1H), 4.66 (d, J = 9.6 Hz, 1H), 4.04–3.92 (m, 2H), 3.79–3.66 (m, 2H), 0.88 (t, J = 7.2 Hz, 3H), 0.68 (t, J = 7.2 Hz, 3H); ¹³C-NMR (101 MHz, CDCl₃) δ 176.82, 171.65, 167.92, 161.00 (d, $J_{CF} = 249.5$ Hz), 145.44, 141.01, 129.78 (d, $J_{CF} = 3.0$ Hz), 129.55 (d, $J_{CF} = 9.1$ Hz), 129.21, 128.81, 126.98, 125.44, 123.60 (d, $J_{CF} = 3.0$ Hz), 122.04, 120.17 (d, $J_{CF} = 14.1$ Hz), 119.51, 115.46, 115.39 (d, $J_{CF} = 23.2$ Hz), 109.71, 67.75, 67.11, 61.32, 60.98, 60.78, 49.67, 13.75, 13.43; HRMS: m/z calcd. for C₂₉H₂₇FN₂O₅ + Na, 525.1802; found, 525.1804.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate = 5:1) in 62% yield (62.8 mg). The *dr* value was calculated to be 5:1 from crude ¹H-NMR analysis of the mixture. After which, the pure major isomer **3k** was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate = 10:1) in 52% yield (52.3 mg). m.p. 90–93 °C; ¹H-NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.8 Hz, 2H),

7.94–7.89 (m, 1H), 7.48 (d, J = 7.6 Hz, 1H), 7.29 (d, J = 8.8 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 7.14 (t, J = 7.6 Hz, 1H), 7.02 (t, J = 7.6 Hz, 1H), 6.85 (t, J = 7.2 Hz, 1H), 6.73 (d, J = 8.0 Hz, 2H), 6.65 (d, J = 7.6 Hz, 1H), 5.41 (d, J = 10.0 Hz, 1H), 5.34 (s, 1H), 4.38 (d, J = 10.4 Hz, 1H), 4.02–3.92 (m, 2H), 3.82–3.67 (m, 2H), 0.88 (t, J = 7.2 Hz, 3H), 0.69 (t, J = 7.2 Hz, 3H); ¹³C-NMR (101 MHz, CDCl₃) δ 175.72, 171.33, 167.55, 147.58, 145.05, 140.37, 140.00, 129.69, 129.31, 128.88, 126.70, 124.65, 123.26, 122.61, 119.84, 115.42, 109.97, 67.58, 66.90, 61.63, 61.41, 61.13, 56.49, 13.81, 13.46; HRMS: *m*/*z* calcd. for C₂₉H₂₇N₃O₇ + Na, 552.1747; found, 552.1744.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate = 5:1) in 58% yield (55.3 mg). The *dr* value was calculated to be >20:1 from crude ¹H-NMR analysis of the mixture. After which, the pure major isomer **31** was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate = 10:1) in 56% yield (53.4 mg). m.p. 85–88 °C; ¹H-NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.49 (d, *J* = 7.6 Hz,

1H), 7.21 (t, J = 7.6 Hz, 2H), 7.11 (t, J = 7.6 Hz, 1H), 7.00 (t, J = 7.6 Hz, 1H), 6.95–6.80 (m, 5H), 6.73 (d, J = 8.4 Hz, 2H), 6.63 (d, J = 8.0 Hz, 1H), 5.35 (d, J = 10.4 Hz, 1H), 5.31 (s, 1H), 4.25 (d, J = 10.0 Hz, 1H), 4.00–3.89 (m, 2H), 3.80–3.65 (m, 2H), 2.13 (s, 3H), 0.86 (t, J = 7.2 Hz, 3H), 0.68 (t, J = 7.2 Hz, 3H); ¹³C–NMR (101 MHz, CDCl₃) δ 176.55, 171.87, 167.89, 145.47, 140.63, 137.59, 132.16, 129.25, 129.06, 128.76, 127.83, 126.92, 125.33, 122.14, 119.38, 115.37, 109.69, 67.54, 67.44, 61.68, 61.23, 60.92, 57.20, 21.24, 13.79, 13.46; HRMS: *m*/z calcd. for C₃₀H₃₀N₂O₅ + Na, 521.2052; found, 521.2056.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate = 5:1) in 57% yield (59.4 mg). The *dr* value was calculated to be 4:1 from crude ¹H-NMR analysis of the mixture. After which, the pure major isomer **3m** was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate = 10:1) in 46% yield (47.5 mg). m.p. 100–103 °C; ¹H-NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.2 Hz, 1H),

7.28 (s, 1H), 7.22 (dd, *J* = 8.0, 7.6 Hz, 2H), 7.14 (t, *J* = 7.6 Hz, 1H), 7.02 (t, *J* = 7.6 Hz, 1H), 6.82 (t, *J* = 7.6 Hz, 1H), 6.72 (d, *J* = 8.0 Hz, 2H), 6.66–6.63 (m, 2H), 6.57 (d, *J* = 8.0 Hz, 1H), 6.46 (d, *J* = 2.0 Hz, 1H), 5.30 (s, 1H), 5.24 (d, *J* = 10.4 Hz, 1H), 4.22 (d, *J* = 10.4 Hz, 1H), 4.02–3.91 (m, 2H), 3.83–3.79 (m, 1H), 3.75 (s, 3H), 3.71–3.67 (m, 1H), 3.61 (s, 3H), 0.88 (t, *J* = 7.2 Hz, 3H), 0.69 (t, *J* = 7.2 Hz, 3H); ¹³C-NMR (101 MHz, CDCl₃) δ 175.17, 172.71, 168.64, 148.59, 148.03, 145.23, 141.06, 129.07, 128.81, 128.74, 124.30, 123.10,

122.96, 120.62, 118.92, 114.75, 111.36, 110.49, 109.64, 68.45, 65.15, 61.66, 61.29, 61.13, 58.39, 55.60, 55.49, 13.98, 13.64; HRMS: *m*/*z* calcd. for C₃₁H₃₂N₂O₇ + Na, 567.2107; found, 567.2110.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate = 5:1) in 55% yield (55.7 mg). The *dr* value was calculated to be >20:1 from crude ¹H-NMR analysis of the mixture. After which, the pure major isomer **3n** was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate = 10:1) in 53% yield (53.5 mg). m.p. 105–107 °C; ¹H-NMR (400 MHz, CDCl₃) δ 8.02 (s, 1H), 7.67–7.65 (m, 2H),

7.59–7.51 (m, 3H), 7.41–7.37 (m, 2H), 7.24–7.14 (m, 3H), 7.07–6.99 (m, 2H), 6.82 (t, J = 7.2 Hz, 1H), 6.75 (d, J = 8.0 Hz, 2H), 6.53 (d, J = 7.2 Hz, 1H), 5.50 (d, J = 10.4 Hz, 1H), 5.37 (s, 1H), 4.47 (d, J = 10.0 Hz, 1H), 3.96–3.88 (m, 2H), 3.81–3.62 (m, 2H), 0.83 (t, J = 7.2 Hz, 3H), 0.66 (t, J = 7.2 Hz, 3H); ¹³C-NMR (101 MHz, CDCl₃) δ 176.39, 171.83, 167.84, 145.44, 140.61, 132.89, 132.87, 129.93, 129.18, 128.79, 128.14, 127.96, 127.62, 127.44, 126.91, 126.12, 126.02, 125.71, 125.47, 122.25, 119.46, 115.41, 109.78, 67.62, 67.48, 61.75, 61.31, 60.96, 57.42, 13.80, 13.46; HRMS: m/z calcd. for C₃₃H₃₀N₂O₅ + Na, 557.2052; found, 557.2049.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate = 5:1) in 46% yield (41.3 mg). The *dr* value was calculated to be 3:1 from crude ¹H-NMR analysis of the mixture. After which, the pure major isomer **30** was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate = 10:1) in 35% yield (31.1 mg). m.p. 140–143 °C; ¹H-NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H), 7.34 (d, *J* = 7.6 Hz, 1H), 7.22 (t, *J* = 8.0

Hz, 2H), 7.15 (t, J = 7.6 Hz, 1H), 7.05 (s, 1H), 6.95 (t, J = 7.6 Hz, 1H), 6.85–6.77 (m, 2H), 6.72 (d, J = 8.0 Hz, 2H), 6.07–6.01 (m, 2H), 5.27 (d, J = 10.0 Hz, 1H), 5.25 (s, 1H), 4.43 (d, J = 9.6 Hz, 1H), 4.11–3.94 (m, 2H), 3.79–3.66 (m, 2H), 0.94 (t, J = 7.2 Hz, 3H), 0.71 (t, J = 7.2 Hz, 3H); ¹³C-NMR (101 MHz, CDCl₃) δ 176.58, 171.71, 167.64, 147.90, 145.28, 142.35, 140.79, 129.15, 128.80, 126.74, 125.63, 122.31, 119.66, 115.53, 110.03, 109.57, 107.99, 67.67, 66.83, 61.47, 61.02, 60.03, 50.42, 13.81, 13.48; HRMS: *m*/*z* calcd. for C₂₇H₂₆N₂O₆ + Na, 497.1689; found, 497.1687.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate = 5:1) in 52% yield (48.1 mg). The *dr* value was calculated to be 3:1 from crude ¹H-NMR analysis of the mixture. After which, the pure major isomer **3p** was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate = 10:1) in 39% yield (36.2 mg). m.p. 192–194 °C; ¹H-NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.48 (d, *J* = 7.6 Hz, 1H), 7.23–7.18 (m, 3H),

7.06–7.01 (m, 2H), 6.84–6.70 (m, 6H), 5.29 (s, 1H), 5.17 (d, J = 10.4 Hz, 1H), 4.59 (d, J = 10.0 Hz, 1H), 4.05–3.93 (m, 2H), 3.82–3.67 (m, 2H), 0.90 (t, J = 7.2 Hz, 3H), 0.70 (t, J = 7.2 Hz, 3H); ¹³C-NMR (101 MHz, CDCl₃) δ 176.14, 171.42, 167.67, 145.21, 141.10, 134.68, 129.51, 128.77, 127.24, 127.05, 126.19, 125.70, 125.39, 122.54, 119.60, 115.44, 109.82, 69.71, 67.23, 61.41, 61.21, 61.01, 53.06, 13.82, 13.47; HRMS: *m*/*z* calcd. for C₂₇H₂₆N₂O₅S + Na, 513.1460; found, 513.1458.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate = 5:1) in 88% yield (95.5 mg). The *dr* value was calculated to be 7:1 from crude ¹H-NMR analysis of the mixture. After which, the pure major isomer **3q** was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate = 10:1) in 77% yield (83.6 mg). m.p. 170–172 °C; ¹H-NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.0 Hz, 2H), 7.36–7.34 (m, 3H), 7.31–7.29

(m, 1H), 7.24–7.16 (m, 3H), 6.96 (t, *J* = 7.6 Hz, 1H), 6.84 (t, *J* = 7.2 Hz, 1H), 6.76 (t, *J* = 8.4 Hz 3H), 5.44 (dd, *J* = 8.0, 1.0 Hz, 1H), 5.18 (s, 1H), 4.98 (d, *J* = 5.2 Hz, 2H), 4.10 (d, *J* = 8.4 Hz, 1H), 4.06–4.02 (m, 2H), 3.79–3.75 (m, 1H), 3.64–3.55 (m, 3H), 1.01–0.98 (m, 3H), 0.56–0.50 (m, 6H); ¹³C-NMR (101 MHz, CDCl₃) δ 174.83, 171.78, 167.32, 167.28, 145.35, 143.43, 135.68, 129.38, 128.72, 128.68, 128.08, 127.92, 125.95, 125.38, 122.68, 120.20, 116.41, 108.67, 68.94, 65.08, 61.40, 60.99, 57.50, 54.78, 44.65, 22.66, 13.86, 13.30, 13.24; HRMS: *m/z* calcd. for C₃₃H₃₄N₂O₇ + Na, 593.2264; found, 593.2266.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate = 5:1) in 82% yield (90.3 mg). The *dr* value was calculated to be 6:1 from crude ¹H-NMR analysis of the mixture. After which, the pure major isomer **3r** was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate = 10:1) in 71% yield (77.4 mg). m.p. 150–153 °C; ¹H-NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.4 Hz, 1H), 7.40 (dd, *J* = 7.6, 0.8 Hz, 1H), 7.35–7.30 (m, 1H), 7.21 (dd, *J* = 8.0, 7.2 Hz, 2H), 7.12 (dd, *J* = 8.0, 7.6 Hz, 1H), 6.86

(t, *J* = 7.6 Hz, 1H), 6.74 (d, *J* = 8.0 Hz, 2H), 5.39 (d, *J* = 8.0 Hz, 1H), 5.14 (s, 1H), 4.08–3.96 (m, 3H), 3.78–3.65 (m, 4H), 1.68 (s, 9H), 0.97 (t, *J* = 6.8 Hz, 3H), 0.81–0.76 (m, 6H); ¹³C-NMR (101 MHz, CDCl₃) δ 173.34, 171.55, 167.06, 166.75, 149.01, 145.13, 140.31, 129.80, 129.21, 128.73, 125.31, 124.64, 120.07, 116.70, 114.59, 84.73, 69.08, 64.90, 61.88, 61.49, 61.12, 58.18, 55.31, 42.99, 28.10, 14.15, 13.83, 13.38, 13.26; HRMS: *m*/*z* calcd. for C₃₁H₃₆N₂O₉ + Na, 603.2319; found, 603.2314.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate = 5:1) in 70% yield (62.3 mg). The *dr* value was calculated to be 5:1 from crude ¹H-NMR analysis of the mixture. After which, the pure major isomer **3s** was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate = 10:1) in 58% yield (52.1 mg). m.p. 135–138 °C; ¹H-NMR (400 MHz, CDCl₃) δ 8.73 (s, 1H), 7.35 (d, *J* = 7.6 Hz, 1H), 7.23 (t, *J* = 8.0 Hz, 1H), 7.08 (t, *J* = 7.6 Hz, 1H), 6.99 (t, *J* = 7.6 Hz, 1H), 6.66

(d, *J* = 7.6 Hz, 1H), 6.61 (s, 1H), 6.52 (d, *J* = 8.0 Hz, 1H), 5.41 (d, *J* = 8.4 Hz, 1H), 5.11 (s, 1H), 4.09–4.02 (m, 3H), 3.88–3.84 (m, 1H), 3.77–3.68 (m, 3H), 2.27 (s, 3H), 1.02 (t, *J* = 7.2 Hz, 3H), 0.81–0.74 (m, 6H); ¹³C-NMR (101 MHz, CDCl₃) δ 176.66, 171.99, 167.45, 167.38, 145.19, 141.42, 138.41, 129.59, 128.56, 126.21, 125.70, 122.69, 121.19, 117.19, 113.43, 109.63, 68.72, 64.81, 61.42, 61.22, 61.07, 58.14, 54.64, 21.65, 13.90, 13.49, 13.40; HRMS: *m*/*z* calcd. for C₂₇H₃₀N₂O₇ + Na, 517.1951; found, 517.1954.

The mixed two isomers were isolated by flash chromatography (petroleum ether/ethyl acetate = 5:1) in 67% yield (55.4 mg). The *dr* value was calculated to be 5:1 from crude ¹H-NMR analysis of the mixture. After which, the pure major isomer **3t** was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate = 10:1) in 56% yield (46.2 mg). m.p. 145–147 °C; ¹H-NMR (400 MHz, CDCl₃) δ 8.62 (s, 1H), 7.47 (d, *J* = 8.8 Hz, 2H), 7.29–7.24 (m, 2H), 7.01 (t, *J* = 7.6 Hz, 1H), 6.91 (d, *J* = 7.6 Hz, 1H), 6.75 (d, *J* = 8.4 Hz, 2H), 5.45 (d, *J* = 8.4 Hz, 1H), 5.14 (s, 1H), 4.16–4.07 (m, 2H), 4.03 (d, *J* = 8.4 Hz, 1H), 3.90–3.84 (m,

1H), 3.81–3.69 (m, 3H), 1.06 (t, *J* = 7.2 Hz, 3H), 0.80 (t, *J* = 7.2 Hz, 3H), 0.76 (t, *J* = 7.2 Hz, 3H); ¹³C-NMR (101 MHz, CDCl₃) δ 176.21, 171.26, 166.92, 166.85, 147.99, 141.39, 129.90, 126.10, 126.09, 125.22, 124.54 (d, *J*_{CF} = 272.7 Hz), 122.82, 121.67 (d, *J*_{CF} = 33.3 Hz), 115.51, 109.75, 68.63, 64.62, 61.86, 61.61, 61.46, 58.06, 54.78, 13.90, 13.45, 13.40; HRMS: *m*/z calcd. for C₂₇H₂₇F₃N₂O₇ + Na, 571.1668; found, 571.1671.

3. Synthetic Transformations to Access Other Drug-Like Spirocyclic Scaffolds 3

A mixture of olefinic acenaphthene (1.1 mmol), aziridine **2a** (1.0 mmol) and additive TEA (0.5 mmol) in toluene (2 mL) was refluxed at 110 °C under an open atmosphere. The reaction mixture would be cooled to room tempreture until most of olefinic acenaphthene was consumed (monitored by TLC). Then the reaction mixture was concentrated and the residue was isolated by flash chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give the mixed two isomers in 76% yield (75.4 mg). The *dr* value was calculated to be 8:1 from crude ¹H-NMR analysis of the mixture. After which, the pure major isomer **3u** was obtained as a white solid after elaborative

chromatography (petroleum ether/ethyl acetate = 10:1) in 68% yield (66.9 mg). m.p. 154–156 °C; ¹H-NMR (400 MHz, CDCl₃) & 7.94–7.91 (m, 2H), 7.76–7.71 (m, 2H), 7.61–7.55 (m, 2H), 7.23 (t, *J* = 8.0 Hz, 2H), 7.00–6.97 (m, 2H), 6.87–6.81 (m, 4H), 6.76 (d, *J* = 8.0 Hz, 2H), 5.53 (d, *J* = 10.4 Hz, 1H), 5.44 (s, 1H), 4.48 (d, *J* = 10.0 Hz, 1H), 4.03–3.93 (m, 2H), 3.46–3.36 (m, 2H), 0.88 (t, *J* = 7.2 Hz, 3H), 0.04 (t, *J* = 7.2 Hz, 3H); ¹³C-NMR (101 MHz, CDCl₃) & 201.65, 171.97, 168.09, 145.61, 142.19, 134.83, 132.95, 132.84, 131.87, 130.23, 128.76, 128.22, 128.05, 127.81, 127.76, 127.62, 125.07, 123.99, 121.86, 119.30, 115.42, 68.07, 67.71, 66.11, 61.22, 60.41, 57.32, 13.82, 12.78; HRMS: *m/z* calcd. for C₃₃H₂₉NO₅ + Na, 542.1943; found, 542.1945.

A mixture of olefinic indenedione (1.1 mmol), aziridine **2a** (1.0 mmol) and additive TEA (0.5 mmol) in toluene (2 mL) was refluxed at 110 °C under an open atmosphere. The reaction mixture would be cooled to room tempreture until most of olefinic indenedione was consumed (monitored by TLC). Then the reaction mixture was concentrated and the residue was isolated by flash chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give the mixed two isomers in 90% yield (85.3 mg). The *dr* value was calculated to be 4:1 from crude ¹H-NMR analysis of the mixture. After which, the pure major isomer **3v** was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate = 10:1) in 72% yield (68.2 mg). The *dr* value was calculated to be 4:1 by ¹H-NMR analysis of the crude reaction mixture; m.p. 133–135 °C; ¹H-NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.6 Hz, 1H), 7.75–7.67 (m, 3H), 7.22–7.15 (m, 4H), 7.10–7.05 (m, 3H), 6.79 (t, *J* = 7.6 Hz, 1H), 6.70 (d, *J* = 7.6 Hz, 2H), 5.57 (d, *J* = 10.0 Hz, 1H), 5.33 (s, 1H), 4.23 (d, *J* = 10.4 Hz, 1H), 4.01–3.92 (m, 2H), 3.84–3.72 (m, 2H), 0.89 (t, *J* = 7.2 Hz, 3H), 0.64 (t, *J* = 7.2 Hz, 3H); ¹³C-NMR (101 MHz, CDCl₃) δ 198.08, 197.65, 171.57, 168.05, 145.09, 142.18, 142.05, 136.00, 135.74, 131.84, 128.71, 128.64, 128.46, 128.30, 123.27, 123.08, 119.11, 115.14, 66.58, 66.13, 65.76, 61.23, 61.18, 56.29, 13.82, 13.33; HRMS: *m/z* calcd. for C₃₀H₂₇NO₆ + Na, 520.1736; found, 520.1733.

A mixture of olefinic pyrazolone (1.1 mmol), aziridine **2a** (1.0 mmol) and additive TEA (0.5 mmol) in toluene (2 mL) was refluxed at 110 °C under an open atmosphere. The reaction mixture would be cooled to room tempreture until most of olefinic pyrazolone was consumed (monitored by TLC). Then the reaction mixture was concentrated and the residue was isolated by flash chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give the mixed two isomers in 93% yield (92.4 mg). The *dr* value was calculated to be 5:1 from crude ¹H-NMR analysis of the mixture. After which, the pure major isomer **3w** was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate = 10:1) in 78% yield (76.8 mg). m.p. 165–167 °C; ¹H-NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 6.8 Hz, 2H), 7.27 (s, 1H), 7.25–7.20 (m, 6H), 7.09 (t, *J* = 7.2 Hz, 1H), 6.82 (t, *J* = 7.2 Hz, 1H), 6.71 (d, *J* = 8.0 Hz, 2H), 5.62 (d, *J* = 9.6 Hz, 1H), 5.12 (s, 1H), 4.08–4.05 (m, 1H), 4.01 (d, *J* = 7.2 Hz, 1H), 3.98–3.90 (m, 3H), 2.47 (s, 3H), 0.94 (q, *J* = 6.8 Hz, 6H); ¹³C-NMR (101 MHz, CDCl₃) δ 172.16, 169.60, 167.44, 157.03, 144.78, 137.18, 131.10, 128.86, 128.82, 128.64, 128.39, 125.23, 119.48, 118.97, 115.12, 65.83, 64.85, 64.69, 61.71, 61.43, 55.14, 13.88, 13.82, 13.74; HRMS: *m/z* calcd. for C₃₁H₃₁N₃O₅ + Na, 548.2161; found, 548.2159.

A mixture of olefinic rhodanine (1.1 mmol), aziridine **2a** (1.0 mmol) and additive TEA (0.5 mmol) in toluene (2 mL) was refluxed at 110 °C under an open atmosphere. The reaction mixture would be cooled to room tempreture until most of olefinic rhodanine was consumed (monitored by TLC). Then the reaction mixture was concentrated and the residue was isolated by flash chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give the mixed two isomers in 72% yield (78.1 mg). The *dr* value was calculated to be >20:1 from crude ¹H-NMR analysis of the mixture. After which, the pure major isomer **3x** was obtained as a white solid after elaborative chromatography (petroleum ether/ethyl acetate = 10:1) in 69% yield (74.9 mg). m.p. 162–165 °C; ¹H-NMR (400 MHz, CDCl₃) δ 7.31–7.27 (m, 5H), 7.25–7.10 (m, 7H), 6.85 (t, *J* = 7.2 Hz, 1H), 6.67 (d, *J* = 7.6 Hz, 2H), 5.54 (s, 1H), 5.09 (d, *J* = 10.0 Hz, 1H), 4.69 (dd, *J* = 41.6, 14.0 Hz, 2H), 4.55 (d, *J* = 10.0 Hz, 1H), 4.07–4.03 (m, 1H), 3.94–3.85 (m, 3H), 0.94 (t, *J* = 7.2 Hz, 3H), 0.84 (t, *J* = 7.2 Hz, 3H); ¹³C-NMR (101 MHz, CDCl₃) δ 172.68, 170.92, 169.02, 166.92, 144.85, 134.51, 131.38, 128.96, 128.88, 128.82, 128.78, 128.68, 128.66, 128.29, 120.49, 116.10, 69.76, 66.62, 61.87, 61.51, 57.08, 45.52, 43.00, 13.87, 13.74; HRMS: *m/z* calcd. for C₃₁H₃₀N₂O₅S₂ + Na, 597.1494; found, 597.1497.

4. Crystal Data of 3a

28	NOMOYE FORCED	Prob = 50 Temp = 293		
PLATON-Sep 17 08:11:37 2015 - (210615)			EtOOC,	N COOEt COOEt N H 3a
Z -116 exp_6644 P-1	R = 0.06 R	ES= 0 -106 X		
Bond precision:	C-C = 0.0036 A		Wavelength	= 1.54184
Cell:	A = 7.7992(5)	B = 15.5	450(9)	C = 20.9801(11)
	Alpha = 100.568(5)	Beta = 95	5.160(5)	Gamma = 94.057(5)
Temperature:	293 K			
	Calculated		Report	ed
Volume	2480.4(3)		2480.4	(3)
Space group	P-1		P-1	
Hall group	-P-1			
Moiety formula	C26 H28 N2 O7			
Sum formula	C26 H28 N2 O7		C52 H56 N	J4 O14
Mr	480.50		961.0	1
Dx, g cm ⁻³	1.287		1.282	7
Z	4		2	
Mu (mm ⁻¹)	0.779		0.779)
F000	1016.0		1016.	0
F000'	1019.36			

h,k,lmax	9,18,25	9, 18, 25				
Nref	8895	8879				
Tmin,Tmax	0.940,0.947	0.940, 0.947				
Tmin'	0.940					
Correc	ction method= # Reported T	Limits: Tmin = 0.940 Tmax = 0.947				
AbsCorr = N	IULTI-SCAN					
Data comple	teness = 0.998	Theta(max) = 67.240				
R(reflections)	= 0.0553(6288)	wR2(reflections) = 0.1515(8879)				
S = 1.044		Npar = 637				

5. NMR Spectra

S38 of S53

585.1008	-0.5	-0.9	25.5	407.2	22.161	0.00	C35	H21	07	S	
585.0995	0.8	1.4	7.5	394.4	9.393	0.01	C21	H31	N4	07	Na S Br
585.1014	-1.1	-1.9	4.5	393.3	8.314	0.02	C23	H38	06	S 3	Br
585.0991	1.2	2.1	18.5	403.6	18.546	0.00	C26	H22	N6	05	Na S2
585.1015	-1.2	-2.1	21.5	404.0	18.958	0.00	C28	H21	N6	05	S2
585.0990	1.3	2.2	1.5	396.2	11.166	0.00	C21	H39	06	Na	S3 Br
585.1018	-1.5	-2.6	17.5	404.6	19.543	0.00	C30	H26	07	Na	S2
585.1019	-1.6	-2.7	10.5	392.6	7.603	0.05	C23	H30	N4	07	S Br
585.0985	1.8	3.1	15.5	391.5	6.433	0.16	C26	H26	N4	07	Br
585.0984	1.9	3.2	22.5	406.8	21.801	0.00	C33	H22	07	Na	S

S39 of S53

S45 of S53

S46 of S53

S47 of S53

S50 of S53

S51 of S53

6.39e+005

6.39e+005 535.1068 538.1504 537.7208 540.2155 542.2285 543.2322 645.2079545.7117 551.2242 553.3025 567.2113 559.2008 550.208 550.0208 55

-1.5 2.0 10.0 50.0

Mass Calc. Mass mDa PPM DBE 1-FIT Norm Conf(%) Formula

 548.2159
 548.2161
 -0.2
 -0.4
 17.5
 486.8
 0.000
 99.98
 C31 H31 N3 O5 Na

 548.2150
 0.9
 1.6
 21.5
 495.9
 9.116
 0.01
 C34 H28 N3 O2 F2

 548.2173
 -1.4
 -2.6
 13.5
 497.5
 10.691
 0.00
 C28 H32 N3 O6 F Na

 548.2145
 1.4
 2.6
 16.5
 497.3
 10.467
 0.00
 C28 H30 N5 O7

Minimum: Maximum:

=0

Ρh

Ň.

