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Abstract: Polysaccharide from the seeds of Plantago asiatica L. has many bioactivities, but few
papers report on the structural and rheological characteristics of the alkaline extract. The alkaline
extracted polysaccharide was prepared from seeds of P. asiatica L. and named herein as alkaline
extracted polysaccharide from seeds of P. asiatica L. (PLAP). Its structural and rheological
properties were characterized by monosaccharide composition, methylation, GC-MS and rheometry.
PLAP, as an acidic arabinoxylan, was mainly composed of 1,2,4-linked Xylp and 1,3,4-linked Xylp
residues. PLAP solution showed pseudoplastic behavior, and weak gelling properties at high
concentration. Sodium and especially calcium ions played a significant role in increasing the apparent
viscosity and gel strength.
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1. Introduction

Arabinoxylan is widely distributed around the world. It is non-starch polysaccharide, and composed
of a linear β-1,4-linked Xylp backbone. Ara residues are usually distributed in the side chain.
Residues of β-1,4-linked Xylp in the backbone are substituted at some O-2 and/or O-3 by Ara and
other residues. Arabinoxylan is usually considered to play in beneficial roles in stimulating prebiotic
growth [1,2], reducing cardiovascular risk [3], and exhibiting immunoregulation [4] and anti-tumor [5]
activities. Psyllium, a mucilaginous polysaccharide material from seed husks, is also an excellent
source of arabinoxylan [6–10].

There are more than 200 species of Plantago, which are used extensively all over the world.
Polysaccharide extracted from Plantago seeds is one of bioactive components which were widely
reported in recent years [11]. Previous studies mainly focused on the polysaccharide extracted from
Plantago genus, to characterize its rheological behavior and gelling properties [12–14]. However, as yet
few reports has paid enough attention to the polysaccharide extracted from P. asiatica L., except for
a very limited number of reports in which the water-soluble polysaccharide has been confirmed
as a typical arabinoxylan [15,16] that exhibited weak gelling property [17] and promoted colon
health [18–20].

Therefore, the aim of this paper was to investigate the structural and rheological properties
of alkaline extracted polysaccharide. The alkaline extracted polysaccharide (named hereafter
as PLAP) was prepared from the seeds of P. asiatica L. Techniques including monosaccharide
compositional analysis, methylation analysis, together with gas chromatography-mass spectrometry
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(GC-MS), were combined to characterize the molecular structural features of the PALP. Additionally,
the rheological properties of PALP with an addition of different ratio of sodium or calcium ions
were also characterized by rheometry. Relationships between the structural features and rheological
performance of the P. asiatica L. polysaccharide are discussed.

2. Results

2.1. Structural Characterization

Table 1 shows the basic molecular structural features, in which PALP was characterized to be
acidic polysaccharide that contained 20.5% of uronic acid. Xyl and Ara, whose molar ratio was 4.1,
were considered as the main compositional monosaccharides since they accounted for a significantly
higher proportion of the contents. In contrast, Rha, Glc and Ga detected at low levels were the minor
compositional monosaccharides for the PALP. These results indicated that PALP should be considered
an arabinoxylan. In addition, the intrinsic viscosity of PALP diffused in 0.1 M NaCl solution was
measured at 5.81 dL/g. The molecular weight of PLAP would be much higher than 3.80 × 10−6 as
the sample recovery was only 13.9% when it was subjected for HPSEC analysis. The low sample
recovery could be explained by the phenomenon that the polysaccharide hardly passed through the
filter membrane. Most of the sample was retained by the filter.

Table 1. Physicochemical properties of PLAP.

Sugar
(%)

Protein
(%)

Uronic Acid
(%)

(η)
(dL/g) a

Molecular Weight,
Mw (×10−6) b

Monosaccharide Composition (Molar Ratio)

Rha Ara Xyl Glc Gal

82.84 0.68 20.50 5.81 3.80 1.00 15.41 63.95 1.29 2.58
a (η): Intrinsic viscosity; b Mw: the sample recovery was 13.9%.

The glycosyl-linkage composition results of PLAP are presented in Table 2. The main residues
in PLAP were T-linked Araf (5.06%), 1,3-linked Araf (10.22%), T-linked Xylp (10.88%), 1,3-linked
Xylp (11.39%), 1,4-linked Xylp (6.19%), 1,2,4-linked Xylp (13.30%) and 1,3,4-linked Xylp (38.98%).
1,2,4-linked Xylp and 1,3,4-linked Xylp were the primary branched sugar residues, indicating side
chains probably connected to the backbone through O-2 and O-3 positions of 1,4-linked Xylp residues.
PLAP might be highly branched, since it was found to be rich in 1,2,4-linked Xylp and 1,3,4-linked Xylp
residues. Other residues, such as T-linked Galp, 1,4-linked Galp, 1,2-linked Rhap and 1,3-linked Glcp,
were also detected in small amounts. According to previous reports [12–14], this kind of polysaccharide
from Plantago seeds should be considered as an arabinoxylan whose backbone was probably composed
of 1,4-linked Xylp, including 1,2,4-linked Xylp and 1,3,4-linked Xylp.

Table 2. Glycosyl-linkage compositions of PLAP.

Residue Linkage Molar Ratio a m/z

T-linked Araf 5.06 43, 71, 87, 101, 102, 118, 129, 161
1,3-linked Araf 10.22 43, 69, 87, 99, 113, 118, 129, 233
T-linked Xylp 10.88 43, 59, 87, 88, 101, 102, 117, 118, 161, 162

1,3-linked Xylp 11.39 43, 59, 87, 101, 117, 118, 129, 173, 174
1,4-linked Xylp 6.19 43, 87, 99, 102, 118, 129, 162, 189

1,2,4-linked Xylp 13.30 43, 57, 71, 87, 88, 129, 130, 189, 190
1,3,4-linked Xylp 38.98 43, 85, 87, 99, 118, 201, 261

T-linked Galp 1.12 43, 59, 71, 87, 101, 102, 118, 129, 145, 161, 162, 205
1,4-linked Galp 1.19 43, 87, 99, 102, 113, 118, 129, 162, 173, 233
1,2-linked Rhap 0.65 43, 88, 89, 100, 101, 115, 130, 131, 161, 190
1,3-linked Glcp 0.40 43, 71, 87, 101, 118, 129, 161, 234

a Calculated a percentage of partially-methylated alditol acetates present, based on the peak area.
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2.2. Rheological Properties of PLAP

2.2.1. Steady State Shear Properties

The flow curves for a series of concentrations of PLAP ranging from 0.1% to 3.0% in aqueous
solution at 25 ◦C are shown in Figure 1. The typical curves of PLAP solutions showed shear thinning
behavior, as the viscosity decreased with increasing shear rate. It was more obvious when the
concentration was higher than 1.0%. For lower concentrations, the viscosity depended less on shear
rate. Similar effects of concentration on viscosity of arabinoxylan from Plantago family [12,13] and
other resources [21,22] has also been observed.
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Figure 1. Effect of polysaccharide concentration on apparent viscosity of PLAP at 25 ◦C.

The polysaccharide solutions showed pseudoplastic behaviour as the temperature increased,
but its apparent viscosity decreased dramatically with the increasing temperature (Figure 2).
Several interactions occur for polysaccharides in solution, such as hydrogen and electrostatic bonds,
and entanglements. When the disruption rate of these interactions reaches a similar level as their
generation rate, a constant apparent viscosity is observed, named the Newtonian plateau. A Newtonian
region in the low shear rates was observed, especially at the temperature of 60.0 ◦C. Both the Cross
and Carreau flow models could be used to describe the shear-thinning behavior of polymer solutions,
and calculate zero shear rate viscosity (η0). Herein, the Cross flow model was used to evaluate the
flow behavior of PLAP solutions at different concentrations.
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The Cross equation is as follows:

η = η∞ + (η0 −η∞)/(1 +αγ)m (1)

where η is the apparent viscosity, η0 is the zero shear rate viscosity which is obtained by measuring
the viscosity at a range of low shear rate and extrapolating to zero shear rate, η∞ is the limiting
viscosity infinite shear rate, α is a time constant related to the relaxation time of polysaccharide
in solution, m is a dimensionless exponent. The Cross equation generally describes well the shear
rate dependence of aqueous polysaccharide solutions. It was chosen to calculate η0 and relaxation
time. The values of the parameters obtained by fitting above equation to the tested data are shown
in Tables 3 and 4, respectively. An increase of η0 and α values with the increase of polysaccharide
concentration was found, while both of them decreased as the temperature went up. The relaxation
time (α value) decreased with increasing temperature, suggesting that formation of new interactions
between molecules predominated over the rate of their disruption.

Table 3. Parameters of the Cross model for the range of concentrations studied.

Concentration (wt %) η0
a (Pa.s) α b (s) m c

0.10 0.0104 0.0174 0.3402
0.25 0.0160 0.0056 0.4732
0.50 0.0448 0.0204 0.4615
1.0 1.8271 1.3301 0.5003
2.0 44.0297 4.4526 0.8284
3.0 300.2550 9.4121 0.8788

a η0: Zero shear rate viscosity; b α: a time constant of the power law; c m: Dimensionless constant.

Table 4. Parameters of the Cross model for the range of temperatures studied.

Temperature η0
a (Pa.s) α b (s) m c

10 7.8691 34.1772 0.4173
20 2.4583 15.1757 0.4755
30 0.5766 3.3620 0.5506
40 0.0966 0.0917 0.5945
50 0.0392 0.0094 0.5508
60 0.0226 0.0015 0.4250

a η0: Zero shear rate viscosity; b α: a time constant; c m: Dimensionless constant.

The Arrhenius equation is usually taken to describe the temperature dependence of the apparent
viscosity for an ideal Newtonian liquid, as shown in the following equation:

logη = log A + Ea/RT (2)

where η is the apparent viscosity, A is a constant, Ea is the activation energy for viscous flow, and R
is the gas constant. According to this equation, Ea could be calculated at zero-shear rate viscosity
which was estimated by the Cross equation (log η = 5220/T − 17.53, R2 = 0.989). The value of Ea was
calculated to be 43.40 kJ/mol.

2.2.2. Viscoelastic Properties

The mechanical spectra (frequency dependence of storage modulus (G′), and loss modulus (G”))
of PLAP at 25 ◦C are shown in Figure 3. For the frequency sweep tests, the strain used in all the
experiments was within the linear viscoelastic region where the gel structure was not damaged.
PLAP showed typical weak-gel structure: the values of G′ were higher than those of G” during the
whole experimental range [23], except for 1.0% PLAP. Both G′ and G” showed a dependency on
frequency and concentration. The higher the concentration, the less dependency the G′ on frequency
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(Figure 3). The increase in G” as a function of polysaccharide’s concentration suggested a higher
viscosity contribution to the gel structure. More solid-like behavior was observed for those solutions
at high concentrations. This may be due to an increased number of junction zones between the
polymer chains at higher concentration [24,25]. A higher number of intramolecular junctions at lower
concentration do not contribute to intermolecular cross-linking.
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Figure 3. Effect of polysaccharide concentration on storage (G′) and loss (G”) moduli of PLAP at 25 ◦C.

Figure 4a presents the change of G′ and G” of 3.0% PLAP as the temperature ranged from 5 to 78 ◦C.
The heating and cooling curve (G′) of PLAP was not superimposed. As the temperatures increased
during the range lower than 30 ◦C, both G′ and G” of PLAP decreased gradually, then, both of them
decreased sharply when the temperature was higher. There was a cross-over point for G′ and G”
at the temperature of 55 ◦C. The gel melting process was completed. There was thermal hysteresis
demonstrated in the cooling curve of PLAP. It seemed that the gel structure was weak, unlike the gel
fraction from psyllium reported by Guo et al. [13].
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2.3. Effects of Na+ and Ca2+ on Rheological Properties of PLAP

The gelling properties of PLAP were studied when the polysaccharide solution was added with
0.2 M Na+ or Ca2+. The effects of Ca2+ and Na+ on the frequency dependence of G′ and G” of PLAP
are shown in Figure 5. It appeared that the strain dependence when the strain increased over 100%.
Therefore, a strain of 5% was applied in the tests to make sure it was within the linear viscoelastic
region. G′ was higher than G”, and showed a weak dependence on frequency throughout all the
frequency range. The spectrum of G′ and G” of PLAP with 0.2 M Ca2+ showed relatively less frequency
dependence, suggesting PLAP with 0.2 M Ca2+ was more typical of a true gel.
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In order to deeply understand the influence of Na+ and Ca2+ concentration on gelling properties
of PLAP, elastic modulus G′ and critical strain (S) of the polysaccharide were compared by adding
different concentrations of Na+ or Ca2+, using strain sweep tests. The critical strain S was defined
as the strain where G′ decreased sharply in the test, reflecting the deformability of a gel, and G′ was
obtained in the linear region of the gel. The results are shown in Figures 6 and 7, respectively. It was
found that G′ values increased greatly with increasing of Ca2+ concentration, especially when it was
lower than 0.04 M. Then, the G′ value decreased when Ca2+ concentration was 0.05 M. The gel strength
(G′) increased again with increasing concentration of Ca2+, but the rate was a little slower. As for the
critical strain S, it obviously decreased with increasing Ca2+ concentration. When the concentration of
Ca2+ was higher than 0.05 M, critical strain S was almost stable.
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When it came to Na+, it was obviously different. The gel strength was much weaker than that
of PLAP with Ca2+ at the same ion concentration. It increased slowly, and did not increase any more
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0.2 M Na+ decreased more obviously than that of PLAP containing 0.2 M Ca+. The heating and cooling
curves of 1.0% PLAP added with 0.2 M Ca2+ were superimposed, different from the original solution
or the polysaccharide solution added with 0.2 M Na+, where both of them exhibited pronounced
thermal hysteresis phenomenon. A sharp decrease in G′ and G” above ~50 ◦C for 1.0% PLAP addition
with 0.2 M Na+ and ~70 ◦C for 1.0% PLAP addition with 0.2 M Ca2+ was observed. This phenomenon
suggested characteristic gel melting. The melting process changed gradually, and the cross point was
detected at 65.4 ◦C for the sample addition with 0.2 M Na+. It was 86.4 ◦C for 1.0% PLAP addition
with 0.2 M Na+. These results suggested that the gel of 1.0% PLAP addition with Ca2+ was more stable
during the temperature increasing.

3. Discussion

Polysaccharide extracted from Plantago seeds is usually arabinoxylan, although it was reported
to contain small amount of uronic acid [7,8,15,16,26–28]. In this study, the alkaline extracted
polysaccharide from the seeds of P. asiatica L. was confirmed to be highly branched arabinoxyaln and
contain uronic acid, which was in accordance with polysaccharide from other psyllium resources.
Intrinsic viscosity is a measure of the hydrodynamic volume occupied by the polysaccharide chains in
a certain solvent. Few studies have reported intrinsic viscosity information of psyllium polysaccharide,
except some data on arabinoxylan from maize, rye and wheat. The intrinsic viscosity of PLAP was
5.81 dL/mg in 0.1 M NaCl, which was close to that of the water-extracted fraction from the same
sources [29]. It was also similar to values of some arabinoxylan reported by Rattan et al. [30] and
Cui and Mazza [31], but slightly higher than other reported intrinsic viscosities that ranged from 2 to
4 dL/g [22,32]. The botanical differences, sample preparation, together with the uronic acid contents
may combine to account for the different intrinsic viscosity.

A shear thinning liquid is a kind of non-Newtonian fluid as its apparent viscosity decreases
with increasing shear rate. PLAP solutions at higher concentration showed more significant shear
thinning behavior. The shear thinning appeared at lower shear rate, and the viscosity reduction is more
pronounced for 3.0% PLAP than those with lower concentration. The shear thinning behavior was also
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widely reported for polysaccharides from other psylliums [12–14,17]. Although a strong hydrogen
bonding exists among chains of β-1,4-linked xylose [31], the presence of arabinose side residues would
reduce interaction among arabinoxylan chains which lead to less aggregation and lower viscosity of
polysaccharide solution. This could explain why the highly branched PLAP only showed weak gel
properties. However, both the apparent viscosity and gel strength of PLAP were much higher than
that of arabinoxylan from cereals [21,22,30]. The high molecular weight of the polysaccharide may be
one of the important reasons for this.

The shear viscosity and gel structure of polysaccharide solutions containing carboxylic acid groups
are sensitive to ionic strength. Both water-extracted polysaccharide [17] and the alkaline-extracted
fraction from the seeds of P. asiatica L. showed weak gel properties. An addition of Na+ or Ca2+ could
significantly increase their gel strength. Some differences of rheological features, such as the divergence
in apparent viscosity and gel strength, may be attributed to structural differences between the
two fractions. Alkaline treatment may be another reason because de-esterification reactions probably
occurred, which could break di- and triferulate crosslinks between polymer chains, and single ferulic
acid residues [32]. As we know, gelation of some polymers is thermoreversible as gels could be formed
during the cooling process of hot solutions and reversibly melted during heating process. The setting
and melting temperature could be characterized as thermoreversible. When the melting temperature is
higher than the setting temperature, the gel is considered to exhibit thermal hysteresis [33]. There was
thermal hysteresis for 3.0% PLAP. Although both the melting and setting temperature of 1.0% PLAP
with an addition of 0.2 M Na+ was higher than that of 3.0% PLAP, there was still thermal hysteresis.
As for the gel of 1.0% PLAP added with 0.2 M Ca2+, the melting temperature was almost equal to
its setting temperature. This means Ca2+ plays a more significant role than Na+ does in altering the
thermal properties of PLAP gel.

4. Materials and Methods

4.1. Materials

The seeds of P. asiatica L. were purchased from Ji’an County (Ji’an, Jiangxi Province, China)
and dried before use. Monosaccharide standards of mannose (Man), rhamnose (Rha), ribose (Rib),
galactose (Gal), xylose (Xyl), arabinose (Ara), fucose (Fuc) and glucose (Glc) were obtained from
Sigma Chemical Co. (St. Louis, MO, USA). Aqueous solutions were prepared with ultra-pure water
from a Milli-Q water purification system (Millipore, Bedford, MA, USA). All other reagents were of
analytical grade.

4.2. Polysaccharide Preparation

Seeds of Plantago asiatica L. were first extracted with boiling water twice to remove the
water-extracted polysaccharide. Then, the residue was extracted twice with 0.5 M NaOH for
2 h at 4 ◦C. The combined extract was filtered, neutralized with acetic acid, and concentrated on
a rotary evaporator at 55 ◦C. The concentrated solution was added ethanol at a final concentration of
80%. Then, the polysaccharide was redissolved in water, and deproteinated according to the Sevag
method [34]. The resulting aqueous solution was dialyzed, and precipitated again with ethanol
(80%, v/v). After centrifugation, the precipitate was successively washed with anhydrous ethanol,
acetone and diethyl ether. Final obtained polysaccharide PLAP was subjected to vacuum drying.

4.3. Physicochemical Characteristics

PLAP were analyzed for sugar contents [35,36], uronic acid contents [37] and protein contents [38].
Intrinsic viscosity determination was performed at 25.0 ◦C in 0.1 M NaCl solvent, using an Ubbelohde
Capillary Viscometer (Cannon Institution Company, State College, PA, USA). The polysaccharide was
hydrolyzed by 2 M TFA at 100 ◦C for 12 h and used for monosaccharide composition analysis using
a GC method [39].
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The molecular weight of PLAP was determined by size exclusion chromatography using
multiple detectors [29]: an 18-angle laser light scattering detector (GaAs3 semiconductor laser,
λ = 658 nm, eighteen angles, Dawn Heleos II, Wyatt Technology Corporation, Santa Barbara, CA, USA),
a differential pressure viscometer (DP) (Visco Star II, Wyatt Technology Corporation), and a refractive
index detector (RI) (OPTILAB T-rEX, Wyatt Technology Corporation). The OHpak SB-G guard
column (50 mm × 6.0 mm I.D., 10 µm), OHpak SB-804 HQ column (300 mm × 8.0 mm I.D., 10 µm),
and OHpak SB-806 HQ column (300 mm × 8.0 mm I.D., 13 µm), all of which were from Shodex Denko
Inc. (New York, NY, USA) were used in series. The mobile phase was composed of 0.1 M NaNO3

and 0.02% (w/w) NaN3 at the flow rate of 0.60 mL/min. PLAP was dissolved by the mobile
phase at a concentration of 0.5 mg/mL. A refractive index increment (dn/dc) of 0.146 was used
for the calculation.

4.4. Methylation Analysis

Methylation analysis of PLAP was conducted according to the method of previous reports [40,41]
with some modifications. The partially methylated alditol acetates (PMAA) of PLAP were taken for
linkage analysis using a 7890-7000A GC-MS system (Agilent, Santa Clara, CA, USA) equipped with
a SP-2330 column (Supelco, Bellefonte, PA, USA; 30 m × 0.25 mm, 0.2 µm film thickness). Individual
peaks of the PMAA and fragmentation patterns were identified by their mass spectra and relative
retention times in the GC traces.

4.5. Rheological Measurements

PLAP was prepared by dissolving in ultra-pure water (1.0%, w/v) and heating at 55 ◦C with
constant stirring, then cooled down to room temperature before steady and dynamic rheological
analysis. These were also carried out with PLAP at concentrations of 0.1, 0.25, 0.5, 2.0 and 3.0% (w/v) in
ultra-pure water, and at 1.0% in 0.001, 0.01, 0.1, 1.0 M NaCl or CaCl2 solutions. Rheological properties of
the gels were measured under low-amplitude oscillatory shear using cone-and-plate (50 mm diameter
with a gap of 0.046 mm, for the measurements of polysaccharide solutions in lower viscosity) or
parallel plate (50 mm diameter with a gap of 0.50 mm, the measurements of polysaccharide solutions
in higher viscosity or gel) geometry on an ARES Rheometer (TA Instruments, New Castle, DE, USA).
All sample measurements were performed in linear viscoelastic region. The oscillatory rheological
parameters used to compare the viscoelastic were: storage modulus (G′) and loss modulus (G”).
Samples were loaded onto the plate at 5 ◦C then heated to high temperature for temperature ramp
test, and temperature was controlled by a SR5 Peltier Circulator at 2 ◦C/min. The parallel plate
(50 mm diameter) was set with a gap of 1.0 mm for the measurements.

5. Conclusions

PLAP is an acidic arabinoxylan, composed of 1,2,4-linked Xylp and 1,3,4-linked Xylp residues.
PLAP showed pseudoplastic behavior and weak gelling properties. Sodium and especially calcium
ions played a significant role in increasing the apparent viscosity and gel strength.
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