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Abstract: In this article the dynamic features of the highly excited vibrational states of the
hypochlorous acid (HOCl) non-integrable system are studied using the dynamic potential and
Lyapunov exponent approaches. On the condition that the 3:1 resonance between the H–O stretching
and H–O–Cl bending modes accompany the 2:1 Fermi resonance between the O–Cl stretching and
H–O–Cl bending modes, it is found that the dynamic potentials of the highly excited vibrational states
vary regularly with different Polyad numbers (P numbers). As the P number increases, the dynamic
potentials of the H–O stretching mode remain the same, but those of the H–O–Cl bending mode
gradually become complex. In order to investigate the chaotic and stable features of the highly excited
vibrational states of the HOCl non-integrable system, the Lyapunov exponents of different energy
levels lying in the dynamic potentials of the H–O–Cl bending mode (P = 4 and 5) are calculated. It is
shown that the Lyapunov exponents of the energy levels staying in the junction of Morse potential
and inverse Morse potential are relative large, which indicates the degrees of chaos for these energy
levels is relatively high, but the stabilities of the corresponding states are good. These results could be
interpreted as the intramolecular vibrational relaxation (IVR) acting strongly via the HOCl bending
motion and causing energy transfers among different modes. Based on the previous studies, these
conclusions seem to be generally valid to some extent for non-integrable triatomic molecules.
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1. Introduction

The chaotic vibrational dynamics of the hypochlorous acid (HOCl) non-integrable system has
aroused widespread interest [1–3]. The interaction among the three vibrational modes of HOCl (H–O
stretching mode, O–Cl stretching mode and H–O–Cl bending mode) makes the molecular system
non-integrable and its dynamic features are more complicated than those of the integrable system [4–6].
Numerous studies using quantum ab-initio calculations and classical bifurcation analysis on the
nonlinear coupling of the O–Cl stretching and H–O–Cl bending modes were undertaken, and in
recent years, semi-classical methods represented by the dynamic potential method have brought a new
approach to this issue [7–13]. In previous work, the HOCl integrable system, which is governed
by the 2:1 Fermi resonance between the O–Cl stretching mode and the H–O–Cl bending mode, was
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investigated and it was found that the dynamic potential approach could illustrate the dynamic
features visually using geometrical patterns [10]. Specifically, this approach shows its superiority in
that it is very simple and shows a clear picture, both methodologically and physically.

There is 3:1 resonance between the H–O stretching mode and the H–O–Cl bending mode
accompanying the 2:1 Fermi resonance between the O–Cl stretching mode and the H–O–Cl bending
mode [2–4] in the HOCl non-integrable system, which indicates the dynamic features of this system are
complicated and interesting. However, the physical connotations behind this are unclear so far because
the traditional ab-initio calculations for this complex nonlinear system are extremely burdensome and
it is hard to get a clear picture. As a new way, the dynamic features of the highly excited vibrational
states of the HOCl non-integrable system are studied using the dynamic potential approach in the
paper. With the semi-classical Hamiltonian, the dynamic potentials under different Polyad numbers
are obtained and a comparative analysis is done. In addition, the chaotic and stable features of the
highly excited vibrational states of the HOCl non-integrable system are studied by calculating the
corresponding Lyapunov exponents.

2. Semi-Classical Hamiltonian of HOCl Non-Integrable System and Corresponding Dynamic
Characterizing Methods

2.1. Semi-Classical Hamiltonian of HOCl Non-Integrable System

The dissociation energy of HOCl (X1A’, electronic ground state) is 19,289.6 cm−1 (experimental
value) [1] and the highly excited energy region studied in this work is 7 × 103 cm−1–1.8 × 104 cm−1,
where the experimental data of energy levels are plentiful (350 levels) and the dynamic features are
attractive [2–4]. Considering 3:1 resonance and 2:1 resonance, the Hamiltonian could be expressed as
with second quantization form:
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Subscripts 1, 2, and 3 of the Hamiltonian respectively correspond to the H–O stretching vibrational
mode, the H–O–Cl bending vibrational mode and the O–Cl stretching vibrational mode. a+ and a
indicate the increase or decrease of quantum number of different vibrational modes. n is quantum
number of vibrational modes and for convenience, hereinafter we use ni (i = 1, 2, 3) to denote the
corresponding vibrational modes, whose corresponding position coordinates are marked by qi and the
momentum coordinates are marked by pi, respectively. ω is the simple harmonic oscillation coefficient
and X, y, z, k, KKK denote the nonlinear coupling coefficients among three different modes. For this
Hamiltonian, a matrix can be constructed by the basis states |n1|n2|n3 > and the eigenvalues can be
obtained for fitting the level energies to elucidate the Hamiltonian coefficients. This process has been
done [1] and the results are given here in Table 1.
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Table 1. The coefficients of the vibration Hamiltonian of the HOCl non-integrable system.

Parameter Values (cm−1) Parameter Values (cm−1)

ω1 3777.067 z2222 −0.04117
ω2 1258.914 z3333 −0.00171
ω3 753.834 z1122 −0.15070
X11 −80.277 z1222 0.13189
X12 −19.985 z2333 −0.01229
X22 −3.204 z1233 0.02381
X23 −10.637 z22222 0.00151
X33 −7.123 z22333 −0.00066
y111 −0.3619 k 0
y333 0.0825 k2 −0.76017
y122 −1.9534 k3 −0.24939
y133 −0.0532 k22 −0.01158
y223 −0.0802 k23 0.04075
y233 −0.2503 k33 0.00583
KKK 0.19520

The energy level fitting rms error is 5.29 cm−1 and the maximum error is 27.08 cm−1 [1].
In particular, the coupling coefficients between n2 and n3 of the non-integrable Hamiltonian are
similar to the ones of the integrable Hamiltonian, which means the effect of the H–O stretching mode
on the 2:1 Fermi resonance between n2 and n3 is weak.

Because of the coupling between the n1 and n2 modes, and the coupling between the n2 and n3

modes in the molecular system, according to the theory of conserved quantity, the additional conserved
quantity of the HOCl non-integrable Hamiltonian can be expressed by n1 + n2/3 + n3/6, which is
called the Polyad number (P number) [7–12]. There is a specified dynamic potential corresponding to
each P number and it is easy to find that there are (P + 1)(P + 2)/2 energy levels for every specified
P [8]. On the other hand, the corresponding coset space in the Lie group of the vibration Hamiltonian
of HOCl is SU(3)/U(2) and through general method of semi-classification of Hamiltonians [14], the
semi-classical expression of Equation (1) could be obtained as the following three representations:
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In this transformation, the equations nj = (q2
j + p2

j )/2, nk = [P−∑ αj(q2
j + p2

j )/2]/αj are used.
Here, nj denote any two different modes of n1, n2, n3 and nk denotes a residual one. αj is the front
coefficient of nj in the equation P = 1·n1 + 1/3·n2 + 1/6·n3 (j = 1,2,3). Considering the semi-classical
method is mainly applicable to highly excited states of molecular systems, in the following study, the
semi-classical Hamiltonian would be used to analyze the dynamic potential of P = 2, 3, 4, 5.

2.2. Dynamic Potential Methods for Non-Integrable System

The dynamic potential of H(p,q,P) is the effective environment in which the q coordinate stays
for each P in a certain molecule. This is achieved by calculating the maximal and minimal energies
by varying p for each q under the condition that the corresponding conserved quantum number is
non-negative. The dynamic potential composed of these maximal and minimal energies as a function
of q is represented by a closed curve in which the quantal levels are enclosed and also defines the q
region for each level it encloses [7–9]. From a dynamic potential perspective, it is easy to understand
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the dynamic information of each highly excited vibrational state in spectroscopy visually, such as
the localization, dissociation, isomerization, chaotic and even the energy transfers between different
modes in a molecule, which is significant for the study of highly excited vibrational dynamics [9–13].
For a better exploration of the HOCl vibrational dynamics, we need to calculate the dynamic potentials
of HOCl. With the Hamiltonian H(qi,pi,qj,pj,P) (i = 1, 2, 3; j = 1, 2, 3; i 6= j) of HOCl, for a certain P
number, the process is done by varying (pi,pj) to obtain maximum energy E+ and minimum energy
E− for each (qi,qj) under the constraint αi(q2

i + p2
i ) + αj(q2

j + p2
j ) ≤ 2P, which guarantees nk is positive.

Thus E+(qi,qj) and E−(qi,qj) determine the dynamic potential for a certain P number and the energy
levels share the same P number are all contained in a closed surface shaped by E+ and E−. Furthermore,
the points in the dynamic potential corresponding to ∂H/∂q = 0 are called fixed points in the dynamic
space, which governs the various quantal environments in which the vibrational states lie [10–13].

For convenience, the closed two-dimensional dynamic potential curve of E+(qi = 0,qj) and E−(qi = 0,qj)
is considered in the following discussion [8]. In particular, it is found that the dynamic potentials can
be obtained by three different coset representations of the Hamiltonian of a non-integrable triatomic
molecule system and in the following section, it will be demonstrated that though the dynamic
potentials obtained with different coset representations of the Hamiltonian are not strictly the same,
the shapes of the dynamic potentials and corresponding fixed points are almost similar for a certain
coordinates-momentum representation.

2.3. Lyapunov Exponent—Chaotic Index of Non-Integrable Systems

The Lyapunov exponent, which shows the rate of change of the separation divergence of two
neighboring trajectories in the phase coset space, can be used to characterize the degree of chaos
of a non-integrable system [14–16]. In the calculation, we may choose a point together with its
neighboring point in the coset space and then follow their corresponding trajectories determined by
Hamilton’s equations of motion. For a certain energy level, the equation H(qi,pi,qj,pj,P) = Es, (i = 1, 2, 3;
j = 1, 2, 3, i 6= j; Es is the value of a certain energy level) would be resolved, then the solution of the
system would be worked out by canonical equation as follows:

dqi/dt = ∂H/∂pj
dpj/dt = −∂H/∂qi

(5)

Giving another point that is ∆x0 away from the initial point, the distance of these two points’
trajectory is ∆xT at time T and the functional relationship between ∆x0 and ∆xT is:

∆xT = eλT∆x0 (6)

The parameter λ is the Lyapunov exponent and if λ > 0, the system is chaotic and more chaotic the
higher the value of λ [17]. λ can be resolved concretely in the following way: firstly, setting an initial
point x(0) and another point x(0)’ which fulfill the equation |x(0)− x(0)’| = d0 on the same curved
energy surface. After a time interval T1 = τ, these two points will become x(τ) and x(τ)’ which fulfill
the equation |x(τ)− x(τ)’| = d1 with the evolution of the Hamilton equations of the system. Then on
the segment line of points x(τ) and x(τ)’, a point x(τ)” can be obtained which fulfills the equation
|x(τ)− x(τ)”| = d0. Taking x(τ)’ and x(τ)” as initial values, after an interval T2 = 2τ, x(τ)’ and x(τ)”
would become x(2τ)’ and x(2τ)” with the evolution of Hamilton’s equations, which fulfill the equation
|x(2τ)− x(2τ)”| = d2. Repeating these steps, a series of di(1,2,3 . . . ) could be obtained and average
Lyapunov exponent λ is given by the expression:

λ = lim
n→∞

1
nτ

[
n

∑
i=1

ln(di/d0)] (7)
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The details of this calculation can be found in [15–17]. In the calculation, the convergence of the
exponent is checked and the maximal average Lyapunov exponent is considered [8]. In the following
discussion, “Lyapunov exponent” represents “maximal average Lyapunov exponent” for short.

3. Dynamic Features of Highly Excited Vibrational States in HOCl Non-Integrabel System

In a previous study, it is found that the dynamic features could be clarified visually by the dynamic
potentials and Lyapunov exponents [8]. In this section, the varying patterns of the dynamic potentials
under different P numbers and their dynamic connotative meanings in a non-integrable HOCl system
will be studied firstly. Secondly, the chaotic features of highly excited vibrational states will be shown
through a comparative analysis between the Lyapunov exponent and the dynamic potential under
some certain P value conditions.

3.1. Dynamic Potentials and Their Different Coordinates Representation Features for a Typical P Number

The dynamic potentials of the non-integrable HOCl system obtained with H(q1,p1,q3,p3,P) are
shown in Figures 1 and 2.
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A fixed point in the inverse Morse type potential (Morse type potential) of the H–O, O–Cl
stretching modes is denoted as [R] ([r]) and the one of the bending mode is denoted as [B] ([b]). A “*”
superscript added to [R] ([r]) or [B] ([b]) is for the secondary appearance of [R] ([r]) or [B] ([b]) type
fixed point in a dynamic potential. An additional subscript 1, 2, 3 for a fixed point is a reminder of
the appearance in the dynamic potential of coordinate q1,q2,q3. This will be used in the following
discussion. It is shown that the dynamic potentials of q1 under different P numbers are all very simple
and the patterns of all the dynamic potentials are simple inverse Morse types as P = 2, 3, 4, which
indicates that the stability of higher energy levels is superior to that of lower ones [7–10]. A fixed
point appears at the bottom of the pattern in the case of P = 5, which indicates that the vibration
corresponding to the lowest energy level is localized and its stability is better compared with other
states which share a common P number. The dynamic features contained in the dynamic potentials of
q3 are relatively more complicated. When P = 2, the shape of the dynamic potential is a Morse type one
and the stability of lower energy levels is superior to that of higher ones. As the value of P increases,
there are two new stable fixed points ([r3*]) at the bottom of the dynamic potential pattern, which
means that a localized vibrational mode in a limited range appears. When P is up to 5, the original
stable fixed point ([r3]) at the bottom of pattern would disappear and the dynamic potential pattern
tends to be simple, while the two fixed points ([r13]) at the bottom of the dynamic potential pattern
stay the same, which indicates that these two points are insensitive to the increase of the vibrational
energy of the whole system.

The dynamic potentials of the non-integrable HOCl system obtained with H(q2,p2,q3,p3,P) are
shown in Figures 3 and 4. In these figures it is found that the dynamic potentials of q2 are similar
under different P values, but the fixed points are different. As P is increasing, a new fixed point ([b2*])
appears at the bottom of the pattern when P is up to 4. When P = 5, one of fixed point in the dynamic
potential when P = 4 in the center area disappears, while another one remains. What should be noticed
is that the dynamic potentials of q3 obtained with H(q2,p2,q3,p3,P) are similar with the ones obtained
with H(q1,p1,q3,p3,P), especially the fixed points which are almost the same. This indicates that the
dynamic potentials for a certain P and a certain coordinate representation, corresponding fixed points
would not change. This conclusion shows that in the future work for triatomic non-integrable systems,
repeating the analysis of dynamic potential of a specified coordinate representation from two different
types of Hamiltonian is not necessary, which is similar with the case of the integrable system.
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in Figures 5 and 6.
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In Figures 5 and 6, it is seen that dynamic potentials of q1 and q2 obtained with H(q1,p1,q2,p2,P)
are just the mirror inversion in the q coordinate compared the ones obtained with H(q1,p1,q3,p3,P)
H(q2,p2,q3,p3,P), respectively. Because the dynamic potentials of q1 are is bilaterally symmetric, they
stay the same with the representation of H(q1,p1,q2,p2,P) or H(q1,p1,q3,p3,P). On the other hand, the
observed clipping direction of the bending mode in the q1 coordinate is opposite to the result for the
q3 coordinate and it is easy to know that the mirror inversion of dynamic potentials is due to the
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reversal of the vibrational reference frame. Just like the results mentioned in the previous section, the
fixed points remain the same in the dynamic potentials of q1 and q2 obtained with H(q1,p1,q2,p2,P)
compared with the results obtained with H(q1,p1,q3,p3,P) and H(q2,p2,q3,p3,P), respectively, which
indicates the dynamic features obtained before are independent of the different coset representations
of the Hamiltonians.Molecules 2017, 22, 101 11 of 14 
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Compared to the integrable HOCl system [10,11], the dynamic potential of the non-integrable
HOCl system is simpler. Though only the 2:1 resonance between the O–Cl stretching mode and the
H–O–Cl bending mode is considered in the integrable system, the number of fixed points in the
dynamic potentials under different P values are significantly different [11]. On the other hand, the
3:1 Fermi resonance of the H–O stretching mode and the H–O–Cl bending mode makes the dynamic
features of the non-integrable HOCl system simple, which indicates that the number of coupling modes
considered in a molecular system does not directly affect the complexity of the dynamic features of the
system. From Figures 1–6, it is easy to get an overview of the dynamic potentials’ evolution of the HOCl
non-integrable system under different P numbers and the dynamic features of some certain states
(such as localizations). With the increase of P, the dynamic potentials of the H–O stretching mode don’t
change greatly, but the dynamic potentials of the H–O–Cl bending mode become more complicated.

3.2. Lyapunov Exponents and Chaotic Features of Highly Excited Vibrational States under Certain P number

In previous work, it is shown that the Lyapunov exponent is the degree of chaos of a highly
excited vibrational state and with a larger Lyapunov exponent, the stability of highly excited vibrational
energy levela is better because the energy could be transferred among different modes and avoids
being accumulated in a certain mode, which would prevent the dissociation or isomerization [8,18].
In order to verify whether this conclusion is applicable to the non-integrable HOCl system, the
Lyapunov exponent of every energy level is calculated when P = 4 (15 energy levels included) and
P = 5 (21 energy levels included). The results are shown in Figure 7 (the Lyapunov exponents obtained
with H(q1,p1,q2,p2,P), H(q1,p1,q3,p3,P) and H(q2,p2,q3,p3,P) are almost same, so here we use the results
of H(q1,p1,q2,p2,P)).
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As shown in Figure 7 and comparison with the dynamic potentials of q2 (Figures 3 and 6), it is
found that the Lyapunov exponents of the energy levels in the Morse dynamic potential are small
both in case (a) and (b), which indicates that the vibrational modes of these energy levels are regular,
simple and energy transferring through intramolecular vibrational relaxation (IVR) between the three
different modes (H–O stretching, H–O–Cl bending and O–Cl stretch) is weak [18,19]. On the other
hand, the Lyapunov exponents of the energy levels in the inverse Morse dynamic potential are large,
which indicates that vibrational modes of these energy levels are much more chaotic and the IVR
effect is much more obvious than the one in the Morse dynamic potential. Furthermore, the energy
level corresponding the maximum value of Lyapunov exponent is the one that lies in the junction
of the Morse and inverse Morse dynamic potential, where the motion range of vibration reaches the
maximum and it could be elucidated that the IVR effect is strong. The above results demonstrate
that the occurrence of energy transfers among the three modes and the appearance of large nonzero
Lyapunov exponents are well correlated. This is logical in the sense that the bending motion often plays
a pumping role in the energy exchange between the two stretching motions in three-body dynamics.
This mediation by the bending motion is also favorable for the IVR, thereby enhancing the degree of
dynamic chaos, which leads to a larger Lyapunov exponent. The energy flow mediated by the bending
motion between the H–O and O–Cl stretches facilitates the relaxation of the energy accumulated in
the H–C bond and makes the system stable instead of facilitating dissociation, which agrees with the
previous work [8].

In Figures 3 and 5 of [1], the features of these states are shown by the probability densities
of the vibrational wave functions obtained by ab-initio potential energy surface (EPS) calculations.
Our result indicates that the three lowest energy states when P = 4 and the six lowest energy states
when P = 5 possess mainly HOCl bending motion and the IVR is strong. This is consistent with the
results in [1]. From the comprehensive analysis of the Lyapunov exponent and dynamic potentials, the
distinction and differentiation of different states are easy to find, which could also be demonstrated
by the probability densities of wave functions. However, the level of difficulty of the two different
ways are incomparable. On the other hand, the ab-initio EPS could not show the exact wave function
of 3-mode coupling of the non-integrable HOCl system in [1] because of the heavy computational
burden, but in our work the results are very easy to obtain.

4. Conclusions and Remarks

The above studies suggest that considering the 3:1 resonance between the H–O stretching and
H–O–Cl bending modes adding the 2:1 Fermi resonance between the O–Cl stretching and H–O–Cl
bending modes, the dynamic potentials of these three modes change regularly with different Polyad
numbers. With the increase of Polyad number, the dynamic potentials of the H–O stretching mode don’t
change greatly, but the dynamic potentials of the H–O–Cl bending mode become more complicated.
Particularly, when considering the 3:1 resonance, the dynamic features of the highly excited vibrational
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states are greatly different from the ones of the integrable HOCl system only governed by 2:1 Fermi
resonance, which means that the 3:1 resonance is not negligible. With the analysis of the Lyapunov
exponents of different energy levels when P = 4 and 5, it is found that the vibrational modes of low
energy levels contained in the Morse type dynamic potential are rigid and the corresponding Lyapunov
exponents are relative small. However, the vibrational modes of high energy levels contained in the
inverse Morse type dynamic potential are chaotic and their Lyapunov exponents are relative large.
The energy level corresponding to the maximum Lyapunov exponent is the one that lies in the junction
of the Morse and inverse Morse potentials, which means the range of corresponding vibrational
motions is the largest. It is also found that the Lyapunov exponents are well correlated with the
mediation by the bending motion in IVR and the bending motion often plays a pumping role in
the energy exchange between the two stretching motions in three-body dynamics. Considering the
similar results of HCO and DCO [8,18], it seems that these conclusions are generally valid to some
extent for triatomic molecules in general, which enables us to understand non-integrable dynamics of
triatomic molecules simply from their geometrical pattern without repeated and complex ab-initio
calculation elaboration.
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