Supplementary Materials: Transition Metal Complexes Coordinated by Water Soluble Phosphane Ligands: How Cyclodextrins can Alter the Coordination Sphere?

Michel Ferreira, Hervé Bricout, Sébastien Tilloy and Eric Monflier

1. Platinum Conversion Determination

When RAME- $\beta-C D$ is added to an aqueous solution of the pure $\left[\mathrm{PtL}_{3} \mathrm{Cl}^{+}, \mathrm{Cl}^{-}\right.$organometallic complex, species $\mathrm{PtCl}_{2} \mathrm{~L}_{2}$ could be formed according to ($\mathrm{L}=$ water-soluble phosphane):

$$
\begin{equation*}
\left[\mathrm{PtL}_{3} \mathrm{Cl}^{+}, \mathrm{Cl}^{-} \rightarrow \mathrm{PtCl}_{2} \mathrm{~L}_{2}+\mathrm{L}\right. \tag{1}
\end{equation*}
$$

Platinum conversion could be written as follows:

$$
\begin{equation*}
\operatorname{conv}_{\mathrm{Pt}}(\%)=\frac{\mathrm{n}_{\mathrm{PtCl}_{2} \mathrm{~L}_{2}}}{\mathrm{n}_{\left[\mathrm{PtL}_{3} \mathrm{Cl}^{+}, \mathrm{Cl}^{-}\right.}+\mathrm{n}_{\mathrm{PtCl}_{2} \mathrm{~L}_{2}}} \times 100 \tag{2}
\end{equation*}
$$

where $\mathrm{n}_{\mathrm{x}}=\mathrm{x}$ mole number after RAME- β-CD addition.
Taking into account the phosphorus atoms number in the platinum species, Equation (2) becomes:

$$
\begin{equation*}
\operatorname{conv}_{\mathrm{Pt}}(\%)=\frac{\frac{\mathrm{S}_{\mathrm{PtCl}_{2} L_{2}}}{2}}{\frac{\mathrm{~S}_{\left[\mathrm{PtL}_{3} \mathrm{ClI}^{+}, \mathrm{Cl}^{-}\right.}}{3}+\frac{\mathrm{S}_{\mathrm{PtCl}_{2} \mathrm{~L}_{2}}}{2}} \times 100 \tag{3}
\end{equation*}
$$

where $S_{x}={ }^{31} P\left\{{ }^{1} \mathrm{H}\right\}$ NMR total surface relating to species x.
The fact that $\mathrm{PtCl}_{2} \mathrm{~L}_{2}$ species often lead to a large signal difficult to integrate, combined with satellites signals (coming from the platinum coupling) close to the background noise, led us to use the M_{d} (doublet) and M_{l} (singlet) signals of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum represented Figure S 1 to calculate the platinum conversion (in order to clarify, the $\mathrm{PtCl}_{2} \mathrm{~L}_{2}$ large signals were not represented). The ML singlet corresponds to the decoordinated phosphane ligand coming from the cyclodextrin addition. S_{d} and S_{L} are respectively the surface area of the M_{d} and M_{L} signals.

Figure S1. Theoretical $\left.{ }^{31} \mathrm{P}^{1}{ }^{1} \mathrm{H}\right\}$ spectrum of $\left[\mathrm{PtL}_{3} \mathrm{Cl}\right]^{+}, \mathrm{Cl}^{-}$and free ligand signal (L).

As only one third of the platinum (${ }^{195} \mathrm{Pt}$) has a spin of $1 / 2$, doublets and triplets of the $\left[\mathrm{PtL}_{3} \mathrm{Cl}^{+}, \mathrm{Cl}^{-}\right.$species appear, from downfield to upfield, in relative ratios 2:1:8:2:4:1, representing a total area of 18 . So:

$$
\begin{equation*}
\mathrm{S}_{\mathrm{d}}=\frac{8}{18} \times \mathrm{S}_{\left[\mathrm{PtL}_{3} \mathrm{Cl}\right]^{+}, \mathrm{Cl}}{ }^{-}=\frac{4}{9} \times \mathrm{S}_{\left[\mathrm{PtL}_{3} \mathrm{Cl}^{+}, \mathrm{Cl}^{-}\right.} \tag{1}
\end{equation*}
$$

Moreover, given that every ligand decoordination from the $\left[\mathrm{PtL}_{3} \mathrm{Cl}^{+}\right]^{+} \mathrm{Cl}^{-}$complex leads to formation of 1 equiv of $\mathrm{PtCl}_{2} \mathrm{~L}_{2}$:

$$
\begin{equation*}
\mathrm{S}_{\mathrm{L}}=\frac{\mathrm{S}_{\mathrm{Cl}_{2} \mathrm{PtL}}^{2}}{} \tag{2}
\end{equation*}
$$

By combining Equations (4) and (5) with (3):

$$
\begin{equation*}
\operatorname{conv}_{\mathrm{Pt}}(\%)=\frac{\mathrm{S}_{\mathrm{L}}}{\frac{3 \mathrm{~S}_{\mathrm{d}}}{4}+\mathrm{S}_{\mathrm{L}}} \times 100 \tag{3}
\end{equation*}
$$

2. Complexes formed by Mixing $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ Platinum Aqueous Solution with 2 Equiv. of Para-Substituted Phosphane

Figure S2. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ spectrum of $\operatorname{cis}-\mathrm{PtCl}_{2}(\operatorname{tris}(p-\mathrm{Me}) \mathrm{TPPTS}){ }_{2}$ at $25^{\circ} \mathrm{C}$.

Figure S3. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ spectrum of $\left.\operatorname{cis}-\mathrm{PtCl}_{2}(\operatorname{tris}(p-\mathrm{OMe}) \mathrm{TPPTS})\right)_{2}$ at $25{ }^{\circ} \mathrm{C}$.

3. RAME- β-CD Influence on $\left[\mathrm{PtL}_{3} \mathrm{Cl}\right] \mathrm{Cl}$ Complexes with $\mathrm{L}=\operatorname{tris}(p-\mathrm{Me})$ TPPTS and

 $\mathrm{L}=\operatorname{tris}(p-\mathrm{OMe}) \mathrm{TPPTS}$

Figure S4. ${ }^{31}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ spectrum of (a) $\left[\mathrm{Pt}(\text { tris }(p-\mathrm{Me}) \mathrm{TPPTS})_{3} \mathrm{Cl}\right] \mathrm{Cl}$ at $25^{\circ} \mathrm{C}$, with addition of (b) 3 equiv. or (c) 9 equiv. of RAME- β-CD.

Figure S5. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ spectrum of (a) $\left[\mathrm{Pt}(\operatorname{tris}(p-\mathrm{OMe}) \mathrm{TPPTS})_{3} \mathrm{Cl}\right] \mathrm{Cl}$ at $25^{\circ} \mathrm{C}$, with addition of $(\mathbf{b}) 3$ equiv. or (c) 9equiv. of RAME- β-CD.

4. Interaction Study β-CD/Biphenylphosphanes

Figure S6. Job plots for inclusion complexes $\beta-\mathrm{CD} /$ biphenyl phosphane at $25^{\circ} \mathrm{C}$ in $\mathrm{D}_{2} \mathrm{O} . \mathrm{P}(\mathrm{Biph})_{2} \mathrm{PhTS}$: \circ; de la P(Biph)Ph2TS: Δ; de la P(Biph) 3 TS: \square.

Figure S7. 2D T-ROESY spectrum of a solution containing [$\beta-\mathrm{CD}$] (1 mM) and [$\mathrm{P}(\mathrm{Biph}) \mathrm{Ph} 2 \mathrm{TS}](4 \mathrm{mM})$ at $25^{\circ} \mathrm{C}$ in $\mathrm{D}_{2} \mathrm{O}$.

Figure S8. Proposed structure of the inclusion complex between $\beta-C D$ and $P(B i p h) P h 2 T S$.

Figure S9. 2D T-ROESY spectrum of a solution containing [$\beta-\mathrm{CD}$] (7 mM) and [P(Biph)2PhTS] (3 mM) at $25^{\circ} \mathrm{C}$ in $\mathrm{D}_{2} \mathrm{O}$.

Figure S10. 2D T-ROESY spectrum of a solution containing [$\beta-\mathrm{CD}$] (7 mM) and $\left[\mathrm{P}(\mathrm{Biph})_{3} \mathrm{TS}\right](3 \mathrm{mM})$ at $25^{\circ} \mathrm{C}$ in $\mathrm{D}_{2} \mathrm{O}$.

(b)

Figure S11. Proposed structure of the inclusion complex between $\beta-C D$ and (a) $P(B i p h)_{2} \mathrm{PhTS}$. or (b) P(Biph) ${ }^{2} \mathrm{TS}$.

5. RAME- β-CD Influence on PdL_{3} Complex with $\mathrm{L}=\mathrm{P}(\mathrm{Biph}) \mathrm{Ph} 2 \mathrm{TS}$

Figure S12. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ spectra of $\mathrm{Pd}(\mathrm{P}(\mathrm{Biph}) \mathrm{Ph} 2 \mathrm{TS})_{3}$ depending on both temperature and RAME-β-CD quantity in $\mathrm{D}_{2} \mathrm{O}$ with a ligand concentration of 66 mM .

