Supplementary Materials: Transition Metal Complexes Coordinated by Water Soluble Phosphane Ligands: How Cyclodextrins can Alter the Coordination Sphere?

Michel Ferreira, Hervé Bricout, Sébastien Tilloy and Eric Monflier

1. Platinum Conversion Determination

When RAME- β -CD is added to an aqueous solution of the pure [PtL₃Cl]⁺, Cl⁻ organometallic complex, species PtCl₂L₂ could be formed according to (L = water-soluble phosphane):

$$[PtL_3CI]^+, CI^- \to PtCl_2L_2 + L$$
(1)

Platinum conversion could be written as follows:

$$\operatorname{conv}_{\mathsf{Pt}}(\%) = \frac{n_{\mathsf{PtCl}_2 \mathsf{L}_2}}{n_{[\mathsf{PtL}_3 \mathsf{Cl}]^+, \mathsf{Cl}^-} + n_{\mathsf{PtCl}_2 \mathsf{L}_2}} \times 100$$
(2)

where $n_x = x$ mole number after RAME- β -CD addition.

Taking into account the phosphorus atoms number in the platinum species, Equation (2) becomes:

$$\operatorname{conv}_{Pt}(\%) = \frac{\frac{S_{PtCl_2L_2}}{2}}{\frac{S_{[PtL_3Cl]^+, Cl^-}}{3} + \frac{S_{PtCl_2L_2}}{2}} \times 100$$
(3)

where $S_x = {}^{31}P{}^{1}H$ NMR total surface relating to species x.

The fact that $PtCl_2L_2$ species often lead to a large signal difficult to integrate, combined with satellites signals (coming from the platinum coupling) close to the background noise, led us to use the M_d (doublet) and M_L (singlet) signals of the ³¹P{¹H} NMR spectrum represented Figure S1 to calculate the platinum conversion (in order to clarify, the PtCl₂L₂ large signals were not represented). The M_L singlet corresponds to the decoordinated phosphane ligand coming from the cyclodextrin addition. S_d and S_L are respectively the surface area of the M_d and M_L signals.

Figure S1. Theoretical ³¹P{¹H} spectrum of [PtL₃Cl]⁺, Cl⁻ and free ligand signal (L).

As only one third of the platinum (¹⁹⁵Pt) has a spin of 1/2, doublets and triplets of the [PtL₃Cl]⁺, Cl⁻ species appear, from downfield to upfield, in relative ratios 2:1:8:2:4:1, representing a total area of 18. So:

$$S_{d} = \frac{8}{18} \times S_{[PtL_{3}Cl]^{+},Cl^{-}} = \frac{4}{9} \times S_{[PtL_{3}Cl]^{+},Cl^{-}}$$
(1)

Moreover, given that every ligand decoordination from the [PtL₃Cl]⁺, Cl⁻ complex leads to formation of 1 equiv of PtCl₂L₂:

$$S_{L} = \frac{S_{Cl_2PtL_2}}{2}$$
(2)

By combining Equations (4) and (5) with (3):

$$\operatorname{conv}_{Pt}(\%) = \frac{S_{L}}{\frac{3 S_{d}}{4} + S_{L}} \times 100$$
(3)

2. Complexes formed by Mixing K₂PtCl₄ Platinum Aqueous Solution with 2 Equiv. of *Para*-Substituted Phosphane

Figure S2. ³¹P{¹H}-NMR spectrum of *cis*-PtCl₂(tris(*p*-Me)TPPTS)₂ at 25 °C.

Figure S3. ³¹P{¹H}-NMR spectrum of *cis*-PtCl₂(tris(*p*-OMe)TPPTS)₂ at 25 °C.

Figure S4. ³¹P{¹H}-NMR spectrum of (**a**) [Pt(tris(*p*-Me)TPPTS)₃Cl]Cl at 25 °C, with addition of (**b**) 3 equiv. or (**c**) 9 equiv. of RAME-β-CD.

Figure S5. ³¹P{¹H}-NMR spectrum of (**a**) [Pt(tris(*p*-OMe)TPPTS)₃Cl]Cl at 25 °C, with addition of (**b**) 3 equiv. or (**c**) 9equiv. of RAME-β-CD.

4. Interaction Study β -CD/Biphenylphosphanes

Figure S6. Job plots for inclusion complexes β -CD/biphenyl phosphane at 25 °C in D₂O. P(Biph)₂PhTS: \circ ; de la P(Biph)Ph₂TS: Δ ; de la P(Biph)₃TS: \Box .

Figure S7. 2D T-ROESY spectrum of a solution containing [β -CD] (1 mM) and [P(Biph)Ph₂TS] (4 mM) at 25 °C in D₂O.

Figure S8. Proposed structure of the inclusion complex between β -CD and P(Biph)Ph₂TS.

Figure S9. 2D T-ROESY spectrum of a solution containing [β -CD] (7 mM) and [P(Biph)₂PhTS] (3 mM) at 25 °C in D₂O.

Figure S10. 2D T-ROESY spectrum of a solution containing [β -CD] (7 mM) and [P(Biph)₃TS] (3 mM) at 25 °C in D₂O.

Figure S11. Proposed structure of the inclusion complex between β -CD and (**a**) P(Biph)₂PhTS. or (**b**) P(Biph)₃TS.

5. RAME-β-CD Influence on PdL₃ Complex with L = P(Biph)Ph₂TS

Figure S12. ³¹P{¹H}-NMR spectra of Pd(P(Biph)Ph₂TS)₃ depending on both temperature and RAME- β -CD quantity in D₂O with a ligand concentration of 66 mM.