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Abstract: Chromatographic separation of several sets of aromatic position isomers on three cellulose-
and one amylose-based chiral stationary phases was performed to evaluate the potential of
a polysaccharide-based chiral stationary phase (CSP) in the separation of isomeric or closely
similar molecules, and to understand the interaction mechanism of this type of CSP with analytes.
Their ability of molecular recognition was quite outstanding, but the selection rule was particular
to each polysaccharide derivative. In the series of analytes, cellulose tris(4-methylbenzoate) and
tris(3,5-dimethylphenylcarbamate) exhibited a contrasting selection rule, and the recognition
mechanism was considered based on the computer-simulation of the former polymer.

Keywords: chiral stationary phase; cellulose; amylose; position isomer; achiral; chromatography;
simulation

1. Introduction

The urethanes and esters of polysaccharides, particularly of cellulose and of amylose, are well
accepted as a class of the most potent chiral selectors [1–3]. We, in the course of attempts to
separate a variety of hard-to-separate mixtures entrusted by customers, realized that chiral stationary
phases (CSPs) very often exhibit nice recognition not only of chiral but also of structurally similar
molecules. Such potential of CSPs, mostly for separating diastereoisomers, can be seen in scattered
reports, some of which are referenced here [4–18]. If their achiral molecular recognition is something
outstanding in comparison with that of commonly used achiral stationary phases, they may be utilized
much more in achiral separation as well as chiral. This drove us to the systematic study of the power and
the selection rule of achiral recognition to promote the application of these phases. Indeed, Regalado
and Welch recently reported “the ‘trick’ of using CSPs in SFC (supercritical fluid chromatography)
mode to separate challenging mixtures of closely related non-enantiomeric compounds” and
mentioned that “many regular users of chiral SFC are surprised to learn of the power of this
approach” [18]. Furthermore, we would like to add that it would make such utilization of these CSPs
much easier if the characteristic feature of their molecular recognition would be better understood.

There is another reason why we are interested in achiral molecular recognition. The mechanism
of chiral recognition was elucidated for several combinations of a CSP and a chiral molecule [19–21].
A quantum mechanics or force-field calculation played an important role in predicting the interaction
mechanism. However, we do not yet know what elementary interactions contribute to chiral
recognition, other than hydrogen bonding. Even in a combination between an analyte and a CSP that
cannot include hydrogen bonding, a fine chiral recognition often takes place (e.g., chiral separations of
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Tröger’s base and methaqualone on cellulose tris(4-methylbenzoate)), which indicates the importance
of some weaker interactions involved in the molecular recognition mechanism. To know these
interactions should help us understand the general nature of a polysaccharide-based CSPs. We expected
the retention behavior of a simple molecule which has a less conformational mobility and cannot form
hydrogen bonds with the CSP would elucidate such weaker interactions.

Now we would like to report the separation of several sets of aromatic position isomers on
four coating types of polysaccharide-based CSPs in this paper. More examples of isomer separation,
including other types of isomers on coating and immobilized phases under HPLC and SFC conditions,
are to appear on the website of Daicel [19].

2. Result and Discussion

2.1. Polysaccharide-Based CSPs

In this work, four prototypical polysaccharide-based CSPs, CHIRALCEL® OB-H based on
cellulose tribenzoate (hereafter abbreviated to “OB-H”), OJ-H on cellulose tris(4-methylbenzoate)
(“OJ-H”), OD-H on cellulose tris(3,5-dimethylphenylcarbamate) (“OD-H”), and CHRALPAK® AD-H
based on amylose tris(3,5-dimethylphenylcarbamate) (“AD-H”) were chosen, though immobilized
types are becoming prevalent in polysaccharide-based CSPs because of their serviceability. This is
because “OB-H” and “OJ-H” often exhibit a characteristic retention behavior but are only available as
coating type; the aim of this study is to understand the relation between the structure and selectivity
of a polysaccharide-based CSP, rather than to establish practically useful chromatographic conditions.
To know the general feature of polysaccharide-based CSPs, an octadecylsilyl phase (“ODS”) was also
studied under reversed-phase conditions.

2.2. Separation of Some Sets of Aromatic Position Isomers

2.2.1. Terphenyls and Triphenylene

The relative retention of terphenyl isomers and polycondensed aromatic hydrocarbons isomers
are summarized in Table 1. While the separation of o-terphenyl (1) and triphenylene (7) is very often
discussed as an index for shape recognition of a stationary phase, all of terphenyl isomers were studied
as the analyte in this work. It can be seen that the separation factor for 1 and 7 cannot be the only
measure of isomer recognition, as “OJ-H” exhibited the best recognition of three terphenyl isomers,
while “OD-H” exhibited the largest separation factor (α) between 1 and 7. Only “OB-H” exhibited
the strongest retention of 2 among terphenyl isomers, and its preference of meta-substitution was also
observed in dimethyl phthalate isomers. “AD-H” did only moderate recognition among isomers in
spite of its excellent chiral recognition and “ODS” too.

Table 1. Relative retention of terphenyl and polycondensed aromatic hydrocarbon (PAH) isomers.
See Scheme 1 for analyte structure.

CSP * 1 2 3 4 5 6 7

“OB-H” 0.35 3.52 1.35 1.18 1.16 7.00 2.01
“OJ-H” 0.51 1.76 4.23 6.96 5.29 52.6 3.99
“OD-H” 0.29 0.47 0.52 0.69 1.30 1.93 28.45
“AD-H” 0.18 0.51 0.58 0.43 0.41 2.08 0.86
“ODS” 8.42 10.26 11.45 6.79 6.14 15.72 11.30

* “CSP”: Chiral stationary phase; “OB-H”: CHIRALCEL® OB-H; “OJ-H”: CHIRALCEL® OJ-H;
“OD-H”: CHIRALCEL® OD-H; “AD-H”: CHIRALPAK® AD-H; “ODS”: “L-Column”. See Section 3.
Materials and methods for the column dimension, supplier, and analysis condition and see Section 2.1.
Polysaccharide-based CSPs for the selector material.
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Scheme 1. Structure of analytes appearing in Tables 1 and 2. 

2.2.2. Polycondensed Aromatic Hydrocarbons (PAHs) 

The retention of anthracene (4) and phenanthrene (5), and naphthacene (6) and triphenylene (7) 
were compared (Table 1). Here, the contrasting retention behaviors of “OD-H” and “OJ-H” become 
clearer. The former retained the nonlinearly condensed PAH more, and the latter retained the linearly 
condensed PAH between an isomeric pair, and the tendency is much more apparent in tetracyclic 
isomers, i.e., 6, 7 than in tricyclic ones, i.e., 4, 5. 

2.2.3. Acetyl PAHs  

The relative retention of acetylnaphthalenes, anthracenes, and phenanthrenes are summarized in 
Table 2, and the chromatograms of the five isomers of acetylanthracene (10, 11) and acetylphenanthrene 
(12, 13, 14) on “OD-H” and “OJ-H” are given in Figure 1. Here, the selectivities of “OD-H” and “OJ-H” 
are opposite from each other, except for the order between 11 and 14, where the nonplanarity of 11 
may hinder retention to some extent. While it is not easy to quantitatively express the characteristics, it 
is clearly seen that “OD-H” tends to retain the two-dimensionally expanded isomer, and “OJ-H” tends 
to retain the linearly extended isomer. “AD-H” exhibited a moderate selectivity, but the selection rule 
is not clear and ODS exhibited only poor recognition. 

Table 2. Relative retention of isomeric acetyl PAHs. See Scheme 1 for analyte structure. 
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“OB-H” 5.33 6.7 32.98 5.94 20.19 16.64 8.03 
“OJ-H” 5.02 7.83 95.59 6.43 52.05 14.25 8.62 
“OD-H” 3.67 3.30 4.79 12.78 5.77 6.86 186.26 
“AD-H” 4.57 5.56 7.62 5.12 7.09 6.46 9.28 
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2.2.2. Polycondensed Aromatic Hydrocarbons (PAHs)

The retention of anthracene (4) and phenanthrene (5), and naphthacene (6) and triphenylene (7)
were compared (Table 1). Here, the contrasting retention behaviors of “OD-H” and “OJ-H” become
clearer. The former retained the nonlinearly condensed PAH more, and the latter retained the linearly
condensed PAH between an isomeric pair, and the tendency is much more apparent in tetracyclic
isomers, i.e., 6, 7 than in tricyclic ones, i.e., 4, 5.

2.2.3. Acetyl PAHs

The relative retention of acetylnaphthalenes, anthracenes, and phenanthrenes are summarized in
Table 2, and the chromatograms of the five isomers of acetylanthracene (10, 11) and acetylphenanthrene
(12, 13, 14) on “OD-H” and “OJ-H” are given in Figure 1. Here, the selectivities of “OD-H” and “OJ-H”
are opposite from each other, except for the order between 11 and 14, where the nonplanarity of 11
may hinder retention to some extent. While it is not easy to quantitatively express the characteristics,
it is clearly seen that “OD-H” tends to retain the two-dimensionally expanded isomer, and “OJ-H”
tends to retain the linearly extended isomer. “AD-H” exhibited a moderate selectivity, but the selection
rule is not clear and ODS exhibited only poor recognition.

Table 2. Relative retention of isomeric acetyl PAHs. See Scheme 1 for analyte structure.

CSP 8 9 10 11 12 13 14

“OB-H” 5.33 6.7 32.98 5.94 20.19 16.64 8.03
“OJ-H” 5.02 7.83 95.59 6.43 52.05 14.25 8.62
“OD-H” 3.67 3.30 4.79 12.78 5.77 6.86 186.26
“AD-H” 4.57 5.56 7.62 5.12 7.09 6.46 9.28
“ODS” 1.67 1.66 3.61 3.25 3.41 3.33 3.24
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Figure 1. Chromatograms of isomeric acetyl phenanthrenes and anthracenes. Upper: On CHIRALCEL® 
OJ-H. Lower: On CHIRALCEL® OD-H. In each subfigure, the right side shows the total chromatogram 
and the left shows its 0–60 min range, enlarged. The elution order was totally inverse, except the one 
between 11 and 14. The mobile phase was a mixture of hexane and 2-propanol in 100:1 (v/v) ratio. For 
other conditions, see Section 3. Materials and Methods. 

2.3. Relation between Chiral and Achiral Recognition 

Here, our question was whether chiral recognition and achiral recognition are carried out 
independently or dependently. The suggestion arising from the contrasting selectivity of “OD-H” and 
“OJ-H” CSPs led us to study the chiral separation of the ethanol species 15 and 16, respectively derived 
from the acetyl PAHs 10 and 14, on the two CSPs (Table 3, Scheme 2). The ethanol derived from a 
ketone retained more on one of the CSPs was retained more on the CSP that is accompanied by a larger 
enantiomeric separation factor than the other CSP. It is rationalized that the frame of 2-substituted 
anthracene fits well to the “OJ-H” binding site, while 9-substituted phenanthrene fits into “OD-H”, 
and each coupling results in a better arrangement for chiral recognition. In other words, achiral and 
chiral recognitions occur in combination. 

Table 3. Relative retention (k’) of 2-acetylanthracene (10), 9-acetylphenanthrene (14), and the racemic 
alcohols 15 and 16 derived from each.  

CSP 
Analyte

10 15 Enantiomers 14 16 Enantiomers 
“OJ-H” 96 32.4, 95.2 (α = 2.94) 8.6 4.35, 4.68 (α = 1.07) 
“OD-H” 4.8 2.42, 4.87 (α = 2.01) 186 20.8, 123 (α = 5.88) 

10 and 14 were chromatographed with hexane/2-propanol (100:1 v/v) mixture, and 15 and 16 with 
hexane/2-propanol (9:1 v/v) mixture. Every k’ was calculated with the V0 value of 3.1 mL. 
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OJ-H. Lower: On CHIRALCEL® OD-H. In each subfigure, the right side shows the total chromatogram
and the left shows its 0–60 min range, enlarged. The elution order was totally inverse, except the one
between 11 and 14. The mobile phase was a mixture of hexane and 2-propanol in 100:1 (v/v) ratio.
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2.3. Relation between Chiral and Achiral Recognition

Here, our question was whether chiral recognition and achiral recognition are carried out
independently or dependently. The suggestion arising from the contrasting selectivity of “OD-H” and
“OJ-H” CSPs led us to study the chiral separation of the ethanol species 15 and 16, respectively derived
from the acetyl PAHs 10 and 14, on the two CSPs (Table 3, Scheme 2). The ethanol derived from a
ketone retained more on one of the CSPs was retained more on the CSP that is accompanied by a larger
enantiomeric separation factor than the other CSP. It is rationalized that the frame of 2-substituted
anthracene fits well to the “OJ-H” binding site, while 9-substituted phenanthrene fits into “OD-H”,
and each coupling results in a better arrangement for chiral recognition. In other words, achiral and
chiral recognitions occur in combination.

Table 3. Relative retention (k’) of 2-acetylanthracene (10), 9-acetylphenanthrene (14), and the racemic
alcohols 15 and 16 derived from each.

CSP
Analyte

10 15 Enantiomers 14 16 Enantiomers

“OJ-H” 96 32.4, 95.2 (α = 2.94) 8.6 4.35, 4.68 (α = 1.07)
“OD-H” 4.8 2.42, 4.87 (α = 2.01) 186 20.8, 123 (α = 5.88)

10 and 14 were chromatographed with hexane/2-propanol (100:1 v/v) mixture, and 15 and 16 with
hexane/2-propanol (9:1 v/v) mixture. Every k’ was calculated with the V0 value of 3.1 mL.
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It often occurs that a successful chiral recognition is accompanied by diastereo-recognition or
structural recognition, such as the example of flavanone isomers where “OD-H” recognizes neither
but “AD-H” recognizes both (Figure 2). This suggests that structural and chiral recognitions are just
an element of total molecular shape recognition.
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Figure 2. Chromatogram of racemic (±)-3'-hydroxyflavanone (17) and (±)-4'-hydroxy flavanone (18),
upper on “OD-H” and lower on “AD-H”, each with hexane/ethanol/trifluoroacetic acid (80:20:0.1 v/v/v),
1.0 mL/min at 40 ◦C.

2.4. Origin of the Selectivity

While some reports were published including computer-assisted simulation study of chiral
recognition mechanism by polysaccharide-based CSPs [20–22], we have independently undertaken
a simulation study to understand the remarkably different spectrum of separable racemates between
“OB-H” and “OJ-H”. The study could also give a rationalization for the above mentioned achiral
selectivity of “OJ-H”. Just a summary of the study is given hereafter, as the detail of the study has been
submitted for publication [23].

2.4.1. Conformer Contributing Molecular Recognition

The structure of “OB-H” and “OJ-H” polymers, cellulose tribenzoate (CB) and cellulose
tris(4-methylbenzoate) (CMB), respectively, were optimized starting from the coordinates of CB
reported by Zugenmaier [24], and two major energy minima were predicted for both derivatives
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(Figure 3). As is seen in the axial views, the 3-folded conformation of the cellulose backbone and the
arrangement of 4-methylbenzoyloxy groups at glucosidic positions 2 and 3 are not much different, but
the arrangement of the 4-methylbenzoyloxy group at glucosidic position 6 is quite different between
the two conformers. In one conformer (Figure 3, upper, gg-conformer), the 4-methylbenzoyloxy
group at this position is included in the line of those at positions 2 and 3, but in the other (Figure 3,
lower, gt-conformer) it is out of the line, leaving a space in the line. In the perpendicular view to the
molecular axis of the gt conformer, a space surrounded by glucopyranose rings and 4-methylbenzoyl
groups can be seen. While in some reports concerning CMB [21,22] its gt-conformation was assumed,
Zugenmaier had concluded that the gg-conformer is the deepest minimum of CB, and we obtained the
same result for both CB and CMB. However, based on several considerations, we too predicted that
the gt-conformer—which, we think, may be present at a certain population and/or under dynamic
equilibria—must be the adsorption active form.
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Figure 3. Two predicted conformers of cellulose tris(4-methylbenzoate) [23]. Upper: The bonds O(5)–C(6)
and C(6)–O(6) taking gauche conformation, and C(5)–C(4) vs. C(6)–O(6) is gauche too (gg-conformer).
Lower: The former taking gauche conformation and the latter taking trans conformations (gt-conformer).

2.4.2. Docking Simulation

The predicted binding site in Figure 3 (lower) looks like a gate, but from a different view angle
(Figure 4), it has a long flat floor like a hallway. Then, docking simulation of CB and CMB with 6
and 7, respectively, was performed to find energy minima by rote, and both analytes were predicted
to bind the polymer at the aforementioned space. The binding energy of CMB was calculated to
be −25.10 and −24.21 kcal, respectively with 6 and 7, which agreed well with the chromatographic
results where 6 is retained more. The total binding energy was divided into the destabilization of
the polymer strained to accept an analyte and the binding energy between the strained polymer and
the analyte. Thus, the much stronger binding of 6 than that of 7 with CMB could be rationalized
mainly by the former (i.e., the larger deformation energy of the polymer to accept 7). In other words,
the intrinsic geometry of the CMB binding site is more suitable for accepting 6 than for accepting 7.
Besides, the poorer separation with the same elution order by CB was also traced by the simulation,
and the better molecular recognition by CMB than by CB was attributed to the concert of 4-methyl
hydrogen in binding (Figure 4).
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We have also studied the chiral separations of Tröger’s base, mephobarbital, and methaqualone
on “OJ-H”, and it was suggested that chiral recognition takes place in the aforementioned site of CMB
(Figure 5). It is noteworthy that in each case of the simulation study, the α-face of a pyranose ring
is predicted to stack with a cyclic π-system, which is a type of interaction attracting interest for its
biological importance [25].
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Figure 5. The predicted association of cellulose tris(4-methylbenzoate) and the more retained
(5R, 11R)-(−)-enantiomer of Tröger’s Base. Atoms close together are connected by a thin line and
the atomic distance is given. The close stacking between aromatic ring and glucose ring is notable.
The contribution of benzoyl methyl groups can rationalize why “OJ” can separate Tröger’s base
enantiomer but “OB” cannot, and that of the methyl group of Tröger’s base can explain why substituting
the methyl group with either hydrogen or chlorine deteriorates retention and chiral recognition [26].

2.5. Difference between ODS Phase and Polysaccharide-Based CSPs

Thus, having inferred the mechanism of molecular recognition, like inclusion, we then would like
to consider the selection rule as the consequence, in comparison with the most accepted achiral
phase, ODS. In the abovementioned comparisons between an ODS and a polysaccharide-based
CSP, the latter usually exhibited a much superior isomeric recognition. However, this does
not mean that the magnitudes of total molecular recognition of the CSP is larger than that of
ODS but that the type of the molecular recognition by each is different. Figure 6 shows the
chromatograms of biphenyl and methylbiphenyl isomers on “OJ-H” (under normal phase) and
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on “ODS” (under reversed phase). The elution pattern on “ODS” showed that retention increases
with methylation regardless of the position of the methyl group, which is a reasonable result
considering the hydrophobic property of a methyl group. In contrast, the elution pattern on “OJ-H”
showed that the retention is strongly affected by the position of the methyl group rather than its
presence or absence. Furthermore, the elution pattern on “OJ-H” was not essentially affected by a
reversed-phase eluent (i.e., acetonitrile–water 70:30 v/v [22]), which is common in chiral recognition
by a polysaccharide-based CSP [27]. Thus, each type of stationary phase exhibited an entirely different
selection rule: one is physicochemical and the other is geometrical. Such an orthogonality must provide
a useful coupling of stationary phases to attain a successful separation and/or a reliable confirmation
of a purity.
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Figure 6. Chromatograms of biphenyl (19) and three methylbiphenyl isomers, 2-methylbiphenyl (20),
3-methylbiphenyl (21), and 4-methylbiphenyl (22). Upper: On L-Column® with acetonitrile/water
mixture (70:30 v/v). Lower: On CHIRALCEL® OJ-H with hexane/2-propanol mixture (100:1 v/v),
1.0 mL/min.

3. Materials and Methods

3.1. Materials

Columns packed with polysaccharide-based chiral stationary phases are “CHIRALCEL OB-H”,
“CHIRALCEL OJ-H”, “CHIRALCEL OD-H”, and “CHIRALPAK AD-H”, each 0.46 cmid × 25 cmL,
products of DAICEL Corporation (Osaka, Japan). An ODS column, “L-Column” (0.46 cmid × 25 cmL),
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was purchased from Chemicals Evaluation and Research Institute of Japan (Bunkyo-ku, Tokyo, Japan).
o-, m-, and p-terphenyl, anthracene, phenanthrene, triphenylene, 1- and 2-acetonaphthone, and 1-, 2-,
and 3-methylbiphenyl were purchased from Tokyo Chemical Industry Co. (Chuo-ku, Tokyo, Japan);
2- and 9-acetylanthracene and 2-, 3-, and 9-acetyl phenanthrene were purchased from Sigma-Aldrich
Corporation (St. Louis, MO, USA). Biphenyl and 2-propanol were purchased from Wako Pure
Chemical Industries (Osaka, Japan) and hexane from Kanto Chemical Co. (Chuo-ku, Tokyo, Japan).
Naphthacene was purchased from Nacalai Tesque Inc. (Kyoto, Japan). As naphthacene is usually
contaminated with UV-active impurities, it was once chromatographed on CHIRALCEL OJ-H, and the
major elution peak, the UV–vis spectrum of which coincides with available data, was collected and
mixed with a triphenylene solution at an undetermined concentration and the 1 µL aliquot of the
mixed solution was injected. 1-(2-anthryl)ethanol (15) and 1-(9-phenanthryl)ethanol (16) were derived
from the corresponding acetyl PAH by sodium borohydride reduction in ethanol.

3.2. Instrumentation and Chromatographic Conditions

Chromatographic study on the CSPs was performed with a set of JASCO PU-980, AS-950, 865-CO,
UV-975 instruments, products of JACSO Corporation (Hachioji, Japan). The mobile phase was a
mixture of hexane and 2-propanol (100:1, v/v) unless otherwise noted, the flow rate was 1.0 mL/min,
the column oven temperature was set at 25 ◦C, and the detection wavelength was 254 nm. A 1 µL
aliquot of 0.1% analyte solution in the mobile phase was injected individually to roughly determine its
elution time, and relative retention values were determined from the chromatogram of mixed analytes.
When targeted peaks coalesced, data taken from individual analyses were adopted.

3.3. Data Analysis

Relative retention (k’) and separation factor (α) were calculated with the equations below.

k’ = (V/V0) – 1, (1)

α = k’2/k’1, (2)

where V is the elution volume of an analyte and V0 is the column void volume. V0 was estimated from
the injection shock caused by the injection of 5 µL aliquot of 2,2,4,-trimethylpentane and 2-propanol
mixture (9:1 v/v), and the elution peak of tetrakis(trimethylsilyl)silane, both gave the value of 3.1 mL
for every polysaccharide-based column. The subscript 1 and 2 in Equation (2) means the two analytes
between which the separation factor is to be defined.

Chromatography on an ODS phase was performed under the same conditions to that with
a polysaccharide-based column except the mobile phase, a mixture of acetonitrile and water (70:30, v/v).
The V0 of the ODS column was estimated to be 2.29 based on the elution shock of acetonitrile and
water (each 2 µL). While the method of determining V0 is a controversial issue, it is not of concern here.

The details of force-field calculation are to be published [23].

4. Conclusions

We studied the separation of several aromatic isomeric molecules on some polysaccharide-based
CSPs, and the extremely wide range of relative retentions observed for isomers revealed their
outstanding potential for isomeric recognition. We are convinced that they can be a powerful tool for
difficult achiral separation, as some analytical chemists have pointed out [4,18].

The selection rule of the CSP is particular to each type. For example, “OD-H” and “OJ-H”
often gave an inverse elution order in analyte sets studied here. In contrast to an ODS phase, which
performs a recognition based on the physicochemical property of an analyte (i.e., hydrophobicity),
a polysaccharide-based CSP exhibits a remarkable but rather unpredictable selectivity stemming from
the geometrical fitting of the binding site of the selector and an analyte and, therefore, we would like
to call it a geometrical recognition. Cyclodextrins are an established selector to perform such molecular
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recognition and the comparison of the selection rule between them and polysaccharide-based phases
seems interesting.

The simulation study suggested the binding site of CMB, the “OJ-H” selector, to be a long space
with a flat floor like a hallway consisting of 4-methylbenzoyl groups and glucose rings formed in the
gt-conformer of the polymer. The simulation of chiral separation of Tröger’s base and some other
racemates by CMB revealed that a chiral recognition is also held in this site. Thus, chiral and achiral
recognitions seem to be the different outcomes of the molecular geometry recognition held in this
space. We expect the similar study on the “OD-H” polymer, which exhibits a selectivity contrasting to
that of “OJ-H” polymer, CMB, will be very interesting and confirm the verity of the simulation.

The main interaction of CMB with a bare aromatic analyte is attributed to the accumulation of
weak C–H···π interactions [23], and such a weak interactions may have more or less importance in a
chromatographic separation on polysaccharide-based CSPs.

It must be emphasized that a CSP which looks incompetent for certain analyte series often exhibits
a great potential for other series. It likely also stems from the particular shape and size of the binding
site of the selector and understanding the feature of each site will make it easier to predict a suitable
phase, not only for achiral, but also chiral recognition.
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